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Outline

I Babuška’s Theorem.
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I Optimal test functions and least squares.

I Ultraweak variational formulation and DPG Method.

I Systematic choice of test norm.
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Abstract Variational Problem

{
u ∈ U
b(u, v) = l(v) ∀v ∈ V ⇔ Bu = l B : U → V ′

< Bu, v >= b(u, v) v ∈ V

where

I U, V are Hilbert spaces,

I b(u, v) is a continuous bilinear (sesquilinear) form on U × V ,

|b(u, v)| ≤M‖u‖U ‖v‖V

that satisfies the inf-sup condition (⇔ B is bounded below),

inf
‖u‖U=1

sup
‖v‖V =1

|b(u, v)| =: γ > 0 ⇔ sup
v∈V

|b(u, v)|
‖v‖V

≥ γ‖u‖U

I l ∈ V ′ represents the load and satisfies the compatibility condition
l(v) = 0,∀v ∈ V0 where

V0 := {v ∈ V : b(u, v) = 0 ∀u ∈ U}
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Banach Closed Range and Babuška Theorems

Let b(u, v), u ∈ U, v ∈ V be a continuous bilinear form, V0 = {0}, l ∈ V ′.
Consider the variational problem,{

u ∈ U
b(u, v) = l(v), ∀v ∈ V

The inf-sup condition

sup
v∈V

|b(u, v)|
‖v‖V

≥ γ‖u‖U

implies existence, uniqueness and stability∗

‖u‖U ≤ γ−1‖l‖V ′

∗Oden, D, Functional Analysis, Chapman & Hall, 2nd ed., 2010, p.518
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Banach Closed Range and Babuška Theorems

Let b(u, v), u ∈ U, v ∈ V be a continuous bilinear form, V0 = {0}, l ∈ V ′.
Consider the approximate variational problem,{

uhp ∈ Uhp ⊂ U
b(uhp, v) = l(v), ∀v ∈ Vhp ⊂ V

The discrete inf-sup condition

sup
v∈Vhp

|b(uhp, v)|
‖v‖V

≥ γhp‖uhp‖U

implies existence, uniqueness and discrete stability

‖uhp‖U ≤ γ−1
hp ‖l‖V ′hp
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Let b(u, v), u ∈ U, v ∈ V be a continuous bilinear form, V0 = {0}, l ∈ V ′.
Consider the approximate variational problem,{

uhp ∈ Uhp ⊂ U
b(uhp, v) = l(v), ∀v ∈ Vhp ⊂ V

The discrete inf-sup condition

sup
v∈Vhp

|b(uhp, v)|
‖v‖V

≥ γhp‖uhp‖U

implies existence, uniqueness and discrete stability

‖uhp‖U ≤ γ−1
hp ‖l‖V ′hp

and convergence ∗

‖u− uhp‖U ≤
M

γhp
inf

whp∈Uhp

‖u− whp‖U

∗I. Babuska, “Error-bounds for Finite Element Method.”, Numer. Math, 16, 1970/1971.
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Banach Closed Range and Babuška Theorems

(Uniform) discrete stability and approximability imply convergence.

A similar result for Finite Differences was proved by Peter Lax † who argued that
proving discrete stability is more difficult that proving continuous stability.

†P. Lax, “Numerical Solution of Partial Differential Equations.”. Amer. Math. Monthly, 72
1965 no. 2, part II.
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Coercive Problems, Céa Lemma

If U = V , and the bilinear (sesquilinear) form is coercive ‡,

b(u, u, ) ≥ α‖u‖2
U

Then both continuous and discrete stability constants are bounded below by α,

γ, γhp ≥ α =⇒ 1

γhp
≤ 1

α

Thus, for coercive problems, discrete stability is guaranteed automatically.
All strongly elliptic problems including linear elasticity, various plates and shells
theories (static problems only) fall into this category.

‡Jean Céa, “Approximation variationnelle des problèmes aux limites”. Annales de l’Institut
Fourier 14. 2. pp. 345-444.
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Ritz and Bubnov-Galerkin Methods

FE classics:

I If the bilinear form is symmetric (hermitian) and positive-definite,

b(u, v) = b(v, u), b(v, v) > 0

u, v ∈ a Hilbert space V ,

I then{
u ∈ V
J(u) := 1

2b(u, u)− l(u)→ min
⇔

{
u ∈ V
b(u, v) = l(v), v ∈ V

I and, Bubnov-Galerkin method delivers the best approximation error in the
energy norm,{

uh ∈ Vh ⊂ V
b(uh, vh) = l(vh), vh ∈ Vh

⇔
{
uh ∈ Vh
‖u− uh‖E → min

where ‖v‖2
E = b(v, v).

I You cannot do better ! (in energy norm...)
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Asymptotic Stability (Mikhlin)

Compact perturbation:

I If we perturb b(u, v) with a compact contribution,

b(u, v) + c(u, v)

(|c(u, v)| ≤ C‖u‖H‖v‖V , V
c
↪→ H),

I then the best approximation error property is achieved asymptotically§,

‖u− uhp‖E
infwhp

‖u− whp‖E
→ 0 as

h

p
→ 0

We have an asymptotic discrete stability. To this class belong most of
vibration and wave propagation problems.

I Is h/p small enough to observe this in practice ?

§D, Computers & Mathematics with Applications, 27(12),69–84, 1994
D, J.T. Oden, Comput. Methods Appl. Mech. Engrg.,133 (3-4), 287–318, 1996.
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Pollution (Babuška, Ihlenburg)

Vibrations of an elastic bar, k = 32 (5 wavelengths). FE and best approximation
(BA) errors for uniform h- (p = 2) and p-refinements. ¶

¶See D., Computing with hp Finite Elements, Chapman & Hall, 2007, chap. 7
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Pollution

Vibrations of an elastic bar, k = 160 (25 wavelengths). FE and best
approximation (BA) errors for uniform h- (p = 2) refinements.
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History of Discrete Stability by Demkowicz
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Energy Norm

The supremum in the inf-sup condition defines an equivalent, problem-dependent
energy (residual) norm,

‖u‖E := sup
‖v‖=1

|b(u, v)| = ‖Bu‖V ′

For the energy norm, M = γ = 1. Recalling that the Riesz operator is an isometry
form V into V ′, we may characterize the energy norm in an equivalent way as

‖u‖E = ‖vu‖V

where vu is the solution of the variational problem,{
vu ∈ V
(vu, δv)V = b(u, δv) ∀δv ∈ V
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Optimal Test Functions

Select your favorite trial basis functions: ej , j = 1, . . . , N . For each function ej ,
introduce a corresponding optimal test (basis) function ēj ∈ V that realizes the
supremum,

|b(ej , ēj)| = sup
‖v‖V =1

|b(ej , v)|

i.e. it solves the variational problem,{
ēj ∈ V

(ēj , δv)V = b(ej , δv) ∀δv ∈ V

Define the discrete test space as V̄hp := span{ēj , j = 1, . . . , N} ⊂ V . It follows
from the construction of the optimal test functions that the discrete inf-sup
constant

inf
‖uhp‖E=1

sup
‖vhp‖=1

|b(uhp, vhp)| = 1
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The Best Approximation

Consequently, Babuška’s Theorem

‖u− uhp‖E ≤
M

γhp
inf

whp∈Uhp

‖u− whp‖E

implies that
‖u− uhp‖E ≤ inf

whp∈Uhp

‖u− whp‖E

i.e., the method delivers the best approximation error in the energy norm. ‖

‖D., J. Gopalakrishnan. “A Class of Discontinuous Petrov-Galerkin Methods. Part II: Optimal
Test Functions.”Numer. Meth. Part. D. E., 27, 70-105, 2011.
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Stiffness Matrix Is Symmetric and Positive Definite

b(ei, ēj) = (ēi, ēj)V = (ēj , ēi)V = b(ej , ēi)
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Energy Norm of FE Error ehp = u− uhp

can be computed without knowing the exact solution.{
vehp

∈ V
(vehp

, δv)V = b(u− uhp, δv) = l(δv)− b(uhp, δv) ∀δv ∈ V

We have then
‖ehp‖E = ‖vehp

‖V
We shall call vehp

the error representation function

Note: No need for an a-posteriori error estimation.

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares 19 / 79



Least Squares (with a Twist)

{
u ∈ U
b(u, v) = l(v) v ∈ V ⇔ Bu = l B : U → V ′

< Bu, v >= b(u, v)

I Least squares: Uh ⊂ U ,

1
2‖Buh − l‖

2
V ′ → min

uh∈Uh

I Riesz operator:

RV : V → V ′, < RV v, δv >= (v, δv)V

is an isometry, ‖RV v‖V ′ = ‖v‖V .

I Least squares reformulated:

1
2‖Buh − l‖

2
V ′ = 1

2‖R
−1
V (Buh − l)‖2

V → min
uh∈Uh

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares 20 / 79



Least Squares (with a Twist)

{
u ∈ U
b(u, v) = l(v) v ∈ V ⇔ Bu = l B : U → V ′

< Bu, v >= b(u, v)

I Least squares: Uh ⊂ U ,

1
2‖Buh − l‖

2
V ′ → min

uh∈Uh

I Riesz operator:

RV : V → V ′, < RV v, δv >= (v, δv)V

is an isometry, ‖RV v‖V ′ = ‖v‖V .

I Least squares reformulated:

1
2‖Buh − l‖

2
V ′ = 1

2‖R
−1
V (Buh − l)‖2

V → min
uh∈Uh

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares 20 / 79



Least Squares (with a Twist)

{
u ∈ U
b(u, v) = l(v) v ∈ V ⇔ Bu = l B : U → V ′

< Bu, v >= b(u, v)

I Least squares: Uh ⊂ U ,

1
2‖Buh − l‖

2
V ′ → min

uh∈Uh

I Riesz operator:

RV : V → V ′, < RV v, δv >= (v, δv)V

is an isometry, ‖RV v‖V ′ = ‖v‖V .

I Least squares reformulated:

1
2‖Buh − l‖

2
V ′ = 1

2‖R
−1
V (Buh − l)‖2

V → min
uh∈Uh

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares 20 / 79



Least Squares (with a Twist)

{
u ∈ U
b(u, v) = l(v) v ∈ V ⇔ Bu = l B : U → V ′

< Bu, v >= b(u, v)

I Least squares: Uh ⊂ U ,

1
2‖Buh − l‖

2
V ′ → min

uh∈Uh

I Riesz operator:

RV : V → V ′, < RV v, δv >= (v, δv)V

is an isometry, ‖RV v‖V ′ = ‖v‖V .

I Least squares reformulated:

1
2‖Buh − l‖

2
V ′ = 1

2‖R
−1
V (Buh − l)‖2

V → min
uh∈Uh

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares 20 / 79



Least squares and optimal test functions

Taking Gâteaux derivative,

(R−1
V (Buh − l), R−1

V Bδuh)V = 0 δuh ∈ Uh
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Least squares and optimal test functions

Taking Gâteaux derivative,

(R−1
V (Buh − l), R−1

V Bδuh)V = 0 δuh ∈ Uh

or
b(uh, vh) = l(vh)

where {
vh ∈ V
(vh, δv)V = b(δuh, δv) δv ∈ V

Petrov-Galerkin Method with Optimal Test Functions is the least-squares method !
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1D Convection–Dominated Diffusion

A reminder:

How does the usual Bubnov–Galerkin method perform for 1D Confusion ?{
−εu′′ + u′ = 0 in (0, 1)

u(0) = 1, u(1) = 0
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Bubnov-Galerkin Method

ε = 10−1
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Bubnov-Galerkin Method

ε = 10−2
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Bubnov-Galerkin Method

ε = 10−3
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Ultraweak Variational Formulation and

DPG Method for 2D Confusion Problem

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares 27 / 79



2D Convection-Dominated Diffusion


1
εσ −∇u = 0 in Ω

−div(σ − βu) = f in Ω

u = u0 on ∂Ω
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DPG Method

Elements:K
Edges:e
Skeleton:Γh =

⋃
K ∂K

Internal skeleton:Γ0
h = Γh − ∂Ω
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DPG Method

Take an element K. Multiply the equations with test functions
τ ∈H(div,K), v ∈ H1(K):{ 1

εσ · τ −∇u · τ = 0

−div(σ − βu)v = fv
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DPG Method

Integrate over the element K:{ ∫
K

1
εσ · τ −∇u · τ = 0

−
∫
K

div(σ − βu)v = fv
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DPG Method

Integrate by parts (relax) both equations:{ ∫
K

1
εσ · τ +

∫
K
u divτ −

∫
∂K

u τn = 0∫
K

(σ − βu) ·∇v −
∫
∂K

q sgn(n) v =
∫
K
fv

where q = (σ − βu) · ne and

sgn(n) =

{
1 if n = ne

−1 if n = −ne
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DPG Method

Declare traces and fluxes to be independent unknowns:{ ∫
K

1
εσ · τ +

∫
K
u divτ −

∫
∂K

û τn = 0

−
∫
K

(σ − βu) ·∇v +
∫
∂K

q̂ sgn(n)v =
∫
K
fv
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DPG Method

Use BC to eliminate known traces{ ∫
K

1
εσ · τ +

∫
K
u divτ −

∫
∂K−∂Ω

û τn =
∫
∂K∩∂Ω

u0 τn

−
∫
K

(σ − βu) ·∇v +
∫
∂K

q̂ sgn(n)v =
∫
K
fv
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Trace and Flux Spaces

Γh :=
⋃
K ∂K (skeleton)

Γ0
h := Γh − ∂Ω (internal skeleton)

H̃1/2(Γ0
h) := {V |Γ0

h
: V ∈ H1

0 (Ω)

with the minimum extension norm:

‖v‖H̃1/2(Γ0
h) := inf{‖V ‖H1 : V |Γ0

h
= v}

H−1/2(Γh) := {σn|Γh
: σ ∈H(div,Ω)

with the minimum extension norm:

‖σn‖H−1/2(Γh) := inf{‖σ‖H(div,Ω) : σn|Γh
= σn}
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DPG Method, a summary

{ ∫
K

1
εσ · τ +

∫
K
u divτ −

∫
∂K−∂Ω

û τn =
∫
∂K∩∂Ω

u0 τn

−
∫
K
σ ·∇v +

∫
∂K

q̂ sgn(n)v =
∫
K
fv

Main points:

I Both equations have been integrated by parts (relaxed).

I Traces û ∼ u and fluxes q̂ ∼ (σ − βu) · ne are independent unknowns (DPG
is a hybrid method).

I Boundary conditions have been built in.

I Test functions are discontinuous (come from “broken” Sobolev spaces). This
is critical to enable the idea of using optimal test functions.
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Functional Setting

Group variables:
Solution U = (u,σ, û, q̂):

u, σ1, σ2 ∈ L2(Ωh)

û ∈ H̃1/2(Γ0
h)

q̂ ∈ H−1/2(Γh)

Test function V = (τ , v):
τ ∈H(div,Ωh)
v ∈ H1(Ωh)

Variational problem:
b(U ,V ) = l(V ), ∀V
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DPG Method, abstract notation

{ 1
ε (σ, τ )Ω + (u, divτ )Ωh

− < û, τn >Γ0
h

=< u0, τn >∂Ω

−(σ,∇v)Ωh
− < q̂, v >Γh

= (f, v)Ω

b((u,σ, û, q̂), (τ , v)) = (u, divτ + β ·∇v)Ωh
+ (σ, 1

ετ −∇v)Ωh

− < û, τn >Γ0
h
− < q̂, v >Γh
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DPG Method with Optimal Test Functions
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Punchlines

I If the test norm is localizable, i.e.

(v, δv)V =
∑
K

(v, δv)VK

where (v, δv)VK
defines an inner product for test functions over element K,

I then the determination of the optimal test functions is done locally. Given
trial functions ei, we compute on the fly corresponding optimal test functions
êi by solving element variational problems,{

êi ∈ V (K)
(êi, δv)V = b(ei, δv), ∀δv ∈ V (K)

I Solution of the local problem above can still be only approximated using an
“enriched space” and standard Bubnov-Galerkin method.
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(êi, δv)V = b(ei, δv), ∀δv ∈ V (K)

I Solution of the local problem above can still be only approximated using an
“enriched space” and standard Bubnov-Galerkin method.

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares 36 / 79



Punchlines

I If the test norm is localizable, i.e.

(v, δv)V =
∑
K

(v, δv)VK

where (v, δv)VK
defines an inner product for test functions over element K,

I then the determination of the optimal test functions is done locally. Given
trial functions ei, we compute on the fly corresponding optimal test functions
êi by solving element variational problems,{
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Sample test norm(s)

Mathematician’s test norm:

‖(v, τ )‖2
1 := ‖v‖2 + ‖∇v‖2 + ‖τ‖2 + ‖divτ‖2

Weighted norm:∗∗

‖(v, τ )‖2
2 := ‖v‖2

w + ‖∇v‖2
w + ‖τ‖2

w + ‖divτ‖2
w

∗∗D., J. Gopalakrishnan and A. Niemi, “A class of discontinuous Petrov-Galerkin methods.
Part III: Adaptivity,” ICES Report 2010-01, App. Num Math., accepted.
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2D Convection-Dominated Diffusion

Problem definition.
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ε = 10−7

Convergence history in a (dynamically rescaled††) energy norm

††To fight round off error
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ε = 10−7

Optimal hp mesh after 45 mesh refinements.
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ε = 10−7

Optimal hp mesh after 45 mesh refinements. Zoom ×10 on the north-east corner.
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ε = 10−7

Optimal hp mesh after 45 mesh refinements. Zoom ×100 on the north-east
corner.
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ε = 10−7

Optimal hp mesh after 45 mesh refinements. Zoom ×1000 on the north-east
corner.
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ε = 10−7

Optimal hp mesh after 45 mesh refinements. Zoom ×10000 on the north-east
corner.
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ε = 10−7

Optimal hp mesh after 45 mesh refinements. Zoom ×105 on the north-east corner.
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ε = 10−7

Velocity u.
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ε = 10−7

Velocity u. Zoom ×105 on the north-east corner.

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares 47 / 79



ε = 10−7

Velocity u. Zoom ×106 on the north-east corner with the mesh.
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ε = 10−7

Velocity u. Zoom ×106 on the north-east corner w/o the mesh.
OK, is not ideal yet...
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Outline

I Babuška’s Theorem.

I Struggle with discrete stability.

I Optimal test functions and least squares.

I Ultraweak variational formulation and DPG Method.

I Systematic choice of test norm.
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Optimal test norm

Q: Can we select the norm in the test space in such a way that the
corresponding energy norm coincides with the original norm (of choice) in U ?

A: Yes! Choose:

‖v‖V = sup
u∈U

|b(u, v)|
‖u‖U

(under assumption that

V0 = {v ∈ V : b(u, v) = 0 ∀u ∈ U}

is trivial)
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Linear Acoustics. Quasi-optimal test norm

Sesquilinear form

b(U ,V ) = −(u, iωv + ∇q)Ωh
− (p, iωq + divv)Ωh

+ < ûn, q >Γ0
h

+ < p̂, vn >Γh

Trial norm:
‖(u, p, ûn, p̂)‖2

U = ‖u‖2
L2 + ‖p‖2

L2 + ‖û‖2
? + ‖p̂‖2

?

Optimal test norm (unfortunately, non-local ):

‖(v, q)‖2
opt = ‖iωv + ∇q‖2

Ωh
+ ‖iωq + divv‖2

Ωh

+ supûn,p̂
|<ûn,q>+<p̂,vn>|

(‖ûn‖2
?+‖p̂2

?)1/2

Quasi-optimal test norm (local):

‖(v, q)‖2
opt = ‖iωv + ∇q‖2

Ωh
+ ‖iωq + divv‖2

Ωh
+ ‖v‖2 + ‖q‖2
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Robust stability result

Theorem: ‡‡ Assume: Ω contractable, impedance BC
Use: the quasi-optimal norm to define the minimum energy extension norms for
fluxes ûn and traces p̂.
Then

‖(v, q)‖2
opt ≈ ‖(v, q)‖2

qopt (uniformly in k and mesh)

Consequently, we get the robust stability in the desired norm:

(
‖u− uh‖2 + ‖p− ph‖2 + ‖ûn − ûn,h‖+ ‖p̂− p̂h‖2

) 1
2

. ‖(u, p, ûn, p̂)− (uh, ph, ûn,h, p̂h)‖E

= BAE of (u, p, ûn, p̂) in energy norm

. BAE of (u, p, ûn, p̂) in desired norm

‡‡D., J. Gopalakrishnan, I. Muga, and J. Zitelli. “Wavenumber Explicit Analysis for a DPG
Method for the Multidimensional Helmholtz Equation”, ICES Report 2011-24, submitted to
CMAME.
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No pollution in 1D case

In 1D, traces and fluxes and just numbers. Thus, the BAE of fluxes and traces is
zero. We get,

(
‖u− uh‖2 + ‖p− ph‖2 + ‖ûn − ûn,h‖+ ‖p̂− p̂h‖2

) 1
2

. infwh,rh

(
‖u− wh‖2 + ‖p− rh‖2

) 1
2

The BAE of u, p in L2-error is pollution free.
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2D experiments

Discretization:

I field variables are discretized using isoparametric L2-conforming quads of
order p,
u1, u2, p ∈ Pp ⊗ Pp,

I traces are discretized using H1-conforming elements of order p+ 1,

I fluxes are discretized using L2-conforming elements of order p+ 1

I optimal test functions are approximated with polynomials of order
p+ 1 + ∆p, i.e. v ∈ (Pp+∆p+1 ⊗ Pp+∆p)× (Pp+∆p ⊗ Pp+∆p+1),
q ∈ Pp+∆p+1 ⊗ Pp+∆p+1
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2D experiment A

Exact solution: horizontal plane wave
Enriched space: ∆p = 2.
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2D experiment A

Ratio of L2 discretization error vs BAE as a function of wave number. DPG vs
standard FEs and Ainsworth-Wajid underintegration scheme.
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2D experiment B

Exact solution: plane wave along diagonal
Enriched space: ∆p = 2.
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2D experiment B

Ratio of L2 discretization error vs BAE as a function of wave number. DPG vs
standard FEs and Ainsworth-Wajid underintegration scheme.
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2D experiment C

Exact solution: plane wave along diagonal
Enriched space: ∆p = 2.
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2D experiment C

Ratio of L2 discretization error vs BAE as a function of wave number. DPG vs
standard FEs and Ainsworth-Wajid underintegration scheme.
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Pekeris problem, k = 50 (8 wavelengths)

Exact solution (real part of pressure).
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Pekeris problem, k = 50 (8 wavelengths)

Classical FEs, four biquadratic elements per wavelength.
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Pekeris problem, k = 50 (8 wavelengths)

Exact solution (real part of pressure).
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Pekeris problem, k = 50 (8 wavelengths)

Ainsworth-Wajid quadrature, four biquadratic elements per wavelength.
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Pekeris problem, k = 50 (8 wavelengths)

Exact solution (real part of pressure).
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Pekeris problem, k = 50 (8 wavelengths)

DPG method, four bilinear elements per wavelength.
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Pekeris problem, k = 50 (8 wavelengths)

Error for the DPG method.
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Pekeris problem, k = 100 (16 wavelenghts)

Exact solution (real part of pressure).
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Pekeris problem, k = 100 (16 wavelenghts)

Ainsworth-Wajid quadrature, four biquadratic elements per wavelength.
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Pekeris problem, k = 100 (16 wavelenghts)

DPG method, four bilinear elements per wavelength.
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Pekeris problem, k = 100 (16 wavelenghts)

Error for the DPG method.
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Pekeris problem, k = 200 (32 wavelenghts)

Exact solution (real part of pressure).
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Pekeris problem, k = 200 (32 wavelenghts)

Ainsworth-Wajid quadrature, four biquadratic elements per wavelength.
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Pekeris problem, k = 200 (32 wavelenghts)

Exact solution (real part of pressure).
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Pekeris problem, k = 200 (32 wavelenghts)

DPG method, four bilinear elements per wavelength.
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Pekeris problem, k = 200 (32 wavelenghts)

Error for the DPG method.
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A Recipe:

How to Construct a Robust DPG Method

for the Confusion Problem

(and Any Other Linear Problem as Well )
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Step 1: Decide what you want

We want the L2 robustness in u:

‖u‖ . ‖(u,σ, û, q̂)‖E

(a . b means that there exists a constant C, independent of ε such that
a ≤ Cb). This implies

‖u− uh‖ . ‖(u− uh,σ − σh, û− ûh, q̂ − q̂h)‖E

= inf
(uh,σh,ûh,q̂h)

‖(u− uh,σ − σh, û− ûh, q̂ − q̂h)‖E︸ ︷︷ ︸
Best Approximation Error (BAE)

≤ C(ε)hp
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Step 2: Select a special test function...

b((u,σ, û, q̂), (v, τ )) = (σ, 1
ετ + ∇v)Ωh

+ (u, divτ − β ·∇v)Ωh

− < û, τn >Γ0
h
− < q̂, v >Γh

Choose a test function (v, τ ) such that
v ∈ H1

0 (Ω), τ ∈H(div,Ω)
1
ετ + ∇v = 0

divτ − β ·∇v = u

Then

‖u‖2 = b((u,σ, û, q̂), (v, τ )) = b((u,σ,û,q̂),(v,τ ))
‖(v,τ )‖V ‖(v, τ )‖V

≤ sup(v,τ )
b((u,σ,û,q̂),(v,τ ))
‖(v,τ )‖V ‖(v, τ )‖V = ‖(u,σ, û, q̂)‖E ‖(v, τ )‖V
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... and request stability of the adjoint problem

Consequently, we need to select the test norm in such a way that

‖(v, τ )‖V . ‖u‖

This gives,
‖u‖2 . ‖(u,σ, û, q̂)‖E ‖u‖

Dividing by ‖u‖, we get what we wanted.
The point: Construction of a robust DPG reduces to the classical stability
analysis for the adjoint equation!
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Step 3: Study the stability of the adjoint equation

Theorem (Generalization of Erickson-Johnson Theorem) (Heuer,D., 2011)

‖v‖
‖β ·∇v‖w,

√
ε‖∇v‖

‖divτ‖w+ε,
1
ε‖β · τ‖w,

1√
ε
‖τ‖

 . ‖u‖

where w = O(1) is a weight vanishing on the inflow boundary that satisfies some
“mild” assumptions.
The terms on the left-hand side are our “Lego”blocks with which we can build
different test norms.
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Step 4: Construct test norm(s)

Quasi-optimal test norm:

‖(v, τ )‖2
1 := ‖v‖2 + ‖1

ε
τ + ∇v‖2 + ‖divτ − β ·∇v‖2

Weighted norm:

‖(v, τ )‖2
2 := ε‖v‖2 + ‖β ·∇v‖2

w + ε‖∇v‖2 + ‖τ‖2
w+ε + ‖divτ‖2

w+ε

Remark: Both choices imply also L2-robustness in σ, as well as in traces and
fluxes measured in special energy norms.
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Estimates for σ, û, q̂

Same methodology can be used to design a test norm that will imply,

‖σ‖ . ‖(σ, u, û, q̂)‖E

In fact both quasioptimal and weighted norms imply the robust estimate for σ.
They also imply a robust estimate for traces and fluxes measured in a minimum
extension norm implied by the problem,

(∗) ‖(û, q̂)‖2 := ‖1

ε
Σ−∇U‖2 + ‖ − divΣ + β ·∇U‖2

where Σ, U are extensions of û, q̂ from mesh skeleton to the whole domain,

U = û on Γ0
h, (Σ− βU) · ne = q̂ on Γh

that minimize the right hand side of (∗).
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Pros and cons for both test norms

I The quasi-optimal test norm produces strong boundary layers that need to be
resolved, also in 1D,

Left: τ and v components of the optimal test function corresponding to trial

function u = 1 and element size h = 0.25, along with the optimal hp subelement

mesh. Right: 10 × zoom on the left end of the element.

Determining optimal test functions is expensive.
I The weighted test norm produces no boundary layers. Solving for the optimal

test functions is inexpensive.
I Quasi-optimal test norm yields better estimates for the best approximation

error measured in the corresponding energy norm.
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2D: Model problem of Erickson and Johnson

Ω = (0, 1)2, β = (1, 0), f = 0, u0 =

{
sinπy on x = 0
0 otherwise

The problem can be solved analytically using separation of variables.

Velocity u and “stresses” σx, σy (using scale for σy) for ε = 0.01.
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2D: Weighted norm, ε = 10−2, 10−3, 10−4

Weight: w = x.

Left: convergence in energy error. Right: convergence in relative L2-error for the
field variables (in percent of their L2-norm).
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2D: Weighted norm, ε = 10−2, 10−3, 10−4

Ratio of L2 and energy norms.
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Conclusions

I DPG method with optimal test functions guarantees automatically discrete
stability for any linear problem.

I Performance of the method depends upon the choice of the test norm.

I One can systematically select test norms to execute a required type of
stability and convergence.

I The methodology can be used to design robust discretization methods for
singular perturbation problems.

I Some choices of test norms, suitable for stability, may produce optimal test
functions with boundary layers which are difficult to resolve.

I The implied discrete stability holds for hp meshes enabling hp-adaptivity.
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Thank You !
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