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Outline

» Babuska's Theorem.
» Struggle with discrete stability.
» Optimal test functions and least squares.
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Babuska's Theorem.
Struggle with discrete stability.
Optimal test functions and least squares.

vV v v Vv

Ultraweak variational formulation and DPG Method.
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Babuska's Theorem.

Struggle with discrete stability.

Optimal test functions and least squares.

Ultraweak variational formulation and DPG Method.

vV vV.v. v .Yy

Systematic choice of test norm.
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Abstract Variational Problem

uelU - Bu=1l B:U—=>V
b(u,v) =1l(v) YveV < Bu,v >=b(u,v) veV

where

» U,V are Hilbert spaces,

> b(u,v) is a continuous bilinear (sesquilinear) form on U x V/,
[b(u, v)| < M[ullo [Jv]lv

that satisfies the inf-sup condition (< B is bounded below),

b
inf  sup |b(u,v)=:vy>0 <& sup b(u, v)
llullo=1 vy =1 vev  vllv

> ullo

» [ € V' represents the load and satisfies the compatibility condition
I(v) = 0,Vv € Vy where

Vo={veV :buwv)y=0 YuelU}
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Banach Closed Range and Babuska Theorems

Let b(u,v),u € U,v € V be a continuous bilinear form, V5 = {0}, l € V'.
Consider the variational problem,

uelU
{b(u,v):l(v), YoeV

The inf-sup condition

1 0)

o = Yullo
veV ||U||V

implies existence, uniqueness and stability*

luller < A7l

*Qden, D, Functional Analysis, Chapman & Hall, 2nd ed., 2010, p.518
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Banach Closed Range and Babuska Theorems

Let b(u,v),u € U,v € V be a continuous bilinear form, V5 = {0}, l € V".
Consider the approximate variational problem,

Unpp € Uhp cU
b(unp,v) =1l(v), Vv eV, CV

The discrete inf-sup condition

up 1 0)

o = Yhpllunpllu
vevi,  vllv e

implies existence, uniqueness and discrete stability

lunpllo < v I,

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares



Banach Closed Range and Babuska Theorems

Let b(u,v),u € U,v € V be a continuous bilinear form, V5 = {0}, l € V".
Consider the approximate variational problem,

Uphp € Uhp cU
b(upp,v) =1(v), Yv eV, CV

The discrete inf-sup condition

sup |b(uhpav)|

2 Yhpl|UhpllU
2P ol pllunll

implies existence, uniqueness and discrete stability

lunglle < v lllvy,

and convergence *

lu = unpllo < inf lu—whyllu

Yhp WhpE€EUnp

*1. Babuska, “Error-bounds for Finite Element Method.”, Numer. Math, 16, 1970/1971.
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Banach Closed Range and Babuska Theorems

(Uniform) discrete stability and approximability imply convergence.

A similar result for Finite Differences was proved by Peter Lax T who argued that
proving discrete stability is more difficult that proving continuous stability.

TP. Lax, “Numerical Solution of Partial Differential Equations.”. Amer. Math. Monthly, 72
1965 no. 2, part Il.
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Babuska's Theorem.

Struggle with discrete stability.

Optimal test functions and least squares.

Ultraweak variational formulation and DPG Method.

vV vV.v. v .Yy

Systematic choice of test norm.
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Coercive Problems, Céa Lemma

If U =V, and the bilinear (sesquilinear) form is coercive i
b(u,u,) > allullf;
Then both continuous and discrete stability constants are bounded below by «,

1

Y5 Yhp >« — T
P

<

QIx

Thus, for coercive problems, discrete stability is guaranteed automatically.
All strongly elliptic problems including linear elasticity, various plates and shells
theories (static problems only) fall into this category.

¥ Jean Céa, “Approximation variationnelle des problemes aux limites”. Annales de [I'Institut
Fourier 14. 2. pp. 345-444.
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Ritz and Bubnov-Galerkin Methods

FE classics:
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Ritz and Bubnov-Galerkin Methods

FE classics:

> If the bilinear form is symmetric (hermitian) and positive-definite,

b(u,v) =b(v,u), blv,v)>0

u,v € a Hilbert space V,

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares



Ritz and Bubnov-Galerkin Methods

FE classics:

> If the bilinear form is symmetric (hermitian) and positive-definite,

b(u,v) =b(v,u), blv,v)>0

u,v € a Hilbert space V,
» then

{ ueV N { ueV
J(u) :== 3b(u,u) — I(u) — min b(u,v) =1l(v),veV
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Ritz and Bubnov-Galerkin Methods

FE classics:
> If the bilinear form is symmetric (hermitian) and positive-definite,

b(u,v) =b(v,u), blv,v)>0

u,v € a Hilbert space V,
» then

{ ueV N { ueV
J(u) :== 3b(u,u) — I(u) — min b(u,v) =1l(v),veV

» and, Bubnov-Galerkin method delivers the best approximation error in the
energy norm,

up, €V, CV up € Vi,
b(uh,vh) = l(vh), vp € Vi ||u — uh||E — min

where [[v]|%, = b(v,v).
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Ritz and Bubnov-Galerkin Methods

FE classics:
> If the bilinear form is symmetric (hermitian) and positive-definite,

b(u,v) =b(v,u), blv,v)>0

u,v € a Hilbert space V,
» then

{ ueV N { ueV
J(u) :== 3b(u,u) — I(u) — min b(u,v) =1l(v),veV

» and, Bubnov-Galerkin method delivers the best approximation error in the
energy norm,

up, €V, CV up € Vi,
b(uh,vh) = l(vh), vp € Vi ||u — uh||E — min

where [[v]|%, = b(v,v).

» You cannot do better ! (in energy norm...)
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Asymptotic Stability (Mikhlin)

Compact perturbation:

8D, Computers & Mathematics with Applications, 27(12),69-84, 1994
D, J.T. Oden, Comput. Methods Appl. Mech. Engrg., 133 (3-4), 287-318, 1996.
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Asymptotic Stability (Mikhlin)

Compact perturbation:

> If we perturb b(u, v) with a compact contribution,
b(u, v) + c(u,v)

(le(u, 0)| < Cllulallolly, V<= H),

8D, Computers & Mathematics with Applications, 27(12),69-84, 1994
D, J.T. Oden, Comput. Methods Appl. Mech. Engrg., 133 (3-4), 287-318, 1996.
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Asymptotic Stability (Mikhlin)

Compact perturbation:

> If we perturb b(u, v) with a compact contribution,
b(u, v) + c(u,v)

(&
(le(u, )| < Cllullallvllv, V = H),
> then the best approximation error property is achieved asymptotically?,

[u — unpllE
infwhp lu — whpll B

h
—~+0as - —0
p

We have an asymptotic discrete stability. To this class belong most of
vibration and wave propagation problems.

8D, Computers & Mathematics with Applications, 27(12),69-84, 1994
D, J.T. Oden, Comput. Methods Appl. Mech. Engrg., 133 (3-4), 287-318, 1996.
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Asymptotic Stability (Mikhlin)

Compact perturbation:

> If we perturb b(u, v) with a compact contribution,
b(u, v) + c(u,v)

(&
(le(u, )| < Cllullallvllv, V = H),
> then the best approximation error property is achieved asymptotically?,

[v = unpll
infuy,, lu— w5

h
—~+0as - —0
p

We have an asymptotic discrete stability. To this class belong most of
vibration and wave propagation problems.

> Is h/p small enough to observe this in practice ?

8D, Computers & Mathematics with Applications, 27(12),69-84, 1994
D, J.T. Oden, Comput. Methods Appl. Mech. Engrg., 133 (3-4), 287-318, 1996.
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Pollution (Babuska, lhlenburg)

°

21

235}t6rror N
SCALES: logtardof), logeeror) e T
— EBamor s
- DA crror uf0
1
sdo
250
132
.
~. og
\\; 037
~ o4
oot o3
I 186 300 1 512 9 e 12

SCALES: log(nrdaf), logerroe)

— FBaror
- BAcor

Vibrations of an elastic bar, & = 32 (5 wavelengths). FE and best approximation
(BA) errors for uniform h- (p = 2) and p-refinements. ¥

9See D., Computing with hp Finite Elements, Chapman & Hall, 2007, chap. 7
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Pollution
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Vibrations of an elastic bar, k¥ = 160 (25 wavelengths). FE and best
approximation (BA) errors for uniform h- (p = 2) refinements.
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History of Discrete Stability by Demkowicz

1910 — (Bubnov) Galerkin method

1954 — numerical flux of P. Lax

1959 —— Petrov—Galerkin method

1964 — Cea’s lemma

1969 — Mikhlin’s asymptotic stability

1971 — Babuska’s theorem

1974 — Brezzi’s theory

1930 — Barett and Morton use Petrov—Galerkin to symmetrize
1981 — SUPG method of Brooks and Hughes, stabilized methods

1985 — D and Oden use PG to change the norm of convergence

1986 — Franca and Russo — bubble methods
1989 — DPG method of Cockbum and Shu

2009 — D and Gopalakrishnan — DPG method with optinal test functions
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» Babuska's Theorem.

» Struggle with discrete stability.

» Optimal test functions and least squares.

> Ultraweak variational formulation and DPG Method.

» Systematic choice of test norm.
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Energy Norm

The supremum in the inf-sup condition defines an equivalent, problem-dependent
energy (residual) norm,

lullz == sup_|b(u,v) = [[Bullv:
loll=1

For the energy norm, M = ~ = 1. Recalling that the Riesz operator is an isometry
form V into V', we may characterize the energy norm in an equivalent way as

lulle = llvullv

where v,, is the solution of the variational problem,

vy €V
(vy, 6V)y = b(u, dv) Vov eV
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Optimal Test Functions

Select your favorite trial basis functions: e;, j =1,..., N. For each function e;,
introduce a corresponding optimal test (basis) function €; € V that realizes the
supremum,

[b(e;, &)l = sup [b(ej, v)|

llvllv=1

i.e. it solves the variational problem,
e;eVv
(&5, 0v)y =b(ej,dv) VéveV
Define the discrete test space as Vhp :=span{e;, j=1,...,N} C V. It follows

from the construction of the optimal test functions that the discrete inf-sup
constant

inf sup  [b(upp, vpp)| =1
lunpll 5=1 o, [I=1
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The Best Approximation

Consequently, Babuska's Theorem

M
uU— U < — inf U —w
Ju— gl < 2= int gl

implies that

_ < inf _
=gl < inf =i

i.e., the method delivers the best approximation error in the energy norm. |l

ID., J. Gopalakrishnan. “A Class of Discontinuous Petrov-Galerkin Methods. Part II: Optimal
Test Functions.” Numer. Meth. Part. D. E., 27, 70-105, 2011.
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Stiffness Matrix Is Symmetric and Positive Definite

bei, ;) = (€i,€5)v = (&5, &:)v = blej, &)
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Energy Norm of FE Error e, = u — up,

can be computed without knowing the exact solution.

Vep, €V
(Vep,» 0V)y = b(u — upp, V) = 1(0V) — b(upp, dv) Vév €V

We have then
lenplle = llve,, v

We shall call v, , the error representation function

Note: No need for an a-posteriori error estimation.
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Least Squares (with a Twist)

uelU - Bu=l B:U—=V
b(u,v) =1l(v) veV < Bu,v >= b(u, v)
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Least Squares (with a Twist)

uelU - Bu=l B:U—=V
b(u,v) =1l(v) veV < Bu,v >= b(u, v)

» Least squares: U, C U,

| Buyp = U3 — u]t;nellr}h
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Least Squares (with a Twist)

uelU - Bu=l B:U—=V
b(u,v) =1l(v) veV < Bu,v >= b(u, v)

» Least squares: U, C U,

| Buyp = U3 — u]t;nellr}h

» Riesz operator:

Ry :V = V', < Ryv, v >= (v,6v)y

is an isometry, ||Ryv|lv: = |[v|v.
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Least Squares (with a Twist)

uelU - Bu=l B:U—=V
b(u,v) =1l(v) veV < Bu,v >= b(u, v)

» Least squares: U, C U,

| Buyp = U3 — u]t;nellr}h

» Riesz operator:

Ry :V = V', < Ryv, v >= (v,6v)y

Ryvllv: = vllv.
» Least squares reformulated:

is an isometry, |

1 2 1 -1 2 .
$1Bun — I = 3IR7 (Bun — DI~ min
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Least squares and optimal test functions

Taking Gateaux derivative,

(Ry'(Bup, — 1), Ry," Bouy)y =0 Sup, € Uy,
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Least squares and optimal test functions

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry* Bouy)y =0 Sup, € Uy,

or
< Buy, =, R;'Bouy, >=0 Sup, € Uy,
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Least squares and optimal test functions

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry," Béuy)y =0 Sup, € Uy,

or
< Buy, — l, R;' Bouy, >=0 Sup, € Uy,
N—_——

Uh
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Least squares and optimal test functions

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry* Bouy)y =0 Sup, € Uy,

or
< Bup —l,vp, >=0 v, = R;-chSuh

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares



Least squares and optimal test functions

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry* Bouy)y =0 Sup, € Uy,

or
< Bup,vp >=<lvp > v = R‘_/IB(SU}L
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Least squares and optimal test functions

Taking Gateaux derivative,
(RN (Buy, — 1), Ry' Béuy)y =0 duy, € Uy,
or
b(uh,vh) = l(vh)
where
vp €V
(vp, )y = b(dup,0v) dv eV

Petrov-Galerkin Method with Optimal Test Functions is the least-squares method !
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» Babuska's Theorem.

» Struggle with discrete stability.

» Optimal test functions and least squares.

» Ultraweak variational formulation and DPG Method.

» Systematic choice of test norm.
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1D Convection—Dominated Diffusion

A reminder:
How does the usual Bubnov—Galerkin method perform for 1D Confusion ?
—euw’ +u' =0 in (0,1)
{ w(0)=1, u(l)=0
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Bubnov-Galerkin Method

- — |

e=10""1
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Bubnov-Galerkin Method

- — |
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Bubnov-Galerkin Method

- — |
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Ultraweak Variational Formulation and

DPG Method for 2D Confusion Problem
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2D Convection-Dominated Diffusion

%0' —Vu =0 in Q
—divic —Bu) =f inQ

u =1wug on Jf
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DPG Method

Elements: K

Edges:e

Skeleton:l', = J OK

Internal skeleton:[9 =T}, — 9Q
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DPG Method

Take an element K. Multiply the equations with test functions
T € H(div,K),v € HY(K):

%0’~T—VU~’T =0
{ —div(e — Bu)v = fou
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DPG Method

Integrate over the element K:

JiloT—Vu-T =0
{ — [ div(e — Bu)v = fv
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DPG Method

Integrate by parts (relax) both equations:
{ Jx %U-T—f—fKUdiVT—faKUTn =0
Jx(o—Bu)-Vo— [, qgsgn(n)v = [, fo
where ¢ = (o0 — Bu) - n. and

1 ifn=mn,
sgn(n) =

-1 ifn=-n,
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DPG Method

Declare traces and fluxes to be independent unknowns:

{ Jxto-T+ [udivr — [ a7, =0
— [x(o—=Bu)-Vo+ [, Gsgn(n)v = [ fv
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DPG Method

Use BC to eliminate known traces

{ fK %" T+ fK udivr — faK—aQ T, = fafman Up Tn

—fK(a—ﬁu)-Vv—i—faK(’jsgn(n)v :fov
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Trace and Flux Spaces

M, =Ug 0K (skeleton)
M =T, —0Q (internal skeleton)
HY2(19) = (V] : V € HY(Q)
with the minimum extension norm:
Wl gusaqeay = inf{IV e Vg = v}
H-Y2(r,) :={onlr, : o€ H(div,Q)
with the minimum extension norm:

lonllz-r2,) =inf{llolla@ve) : onlr, = on}
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DPG Method, a summary

1 . N _
{ Ko T+ fK udivr — faKfaQ UTpn = faKmaQ Up Tn

—[xo Vo4t [y dsgn(n)v = [ fo
Main points:
» Both equations have been integrated by parts (relaxed).

> Traces @ ~ u and fluxes § ~ (o0 — Bu) - n. are independent unknowns (DPG
is a hybrid method).

» Boundary conditions have been built in.

> Test functions are discontinuous (come from “broken” Sobolev spaces). This
is critical to enable the idea of using optimal test functions.
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Functional Setting

Group variables:
Solution U = (u, o, 1, §):
u,01,02 € L2(Qh)
€ 1?11/2(r<,1)
qe H*1/2(Fh)
Test function V' = (7,v):
T € H(div, Q)
(IS Hl(Qh)

Variational problem:
U, vV)=1V), VvV
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DPG Method, abstract notation

{ Lo, 7)a + (u,divr)g, — < 0,7, >ro =< U0, Tn >0

7(‘77 VU)th < q,'U >rh = (fav)ﬂ

b((u’ o, 1, E]\)v (Tv ’U)) = (ua divr + ﬂ : VU)Qh, (0- T Vv)Qh

— < U,Ty >r% — <d,v >r,
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DPG Method with Optimal Test Functions
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Punchlines
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Punchlines

» If the test norm is localizable, i.e.

(v,00v)y = Z(v, ) vy

where (v, 6v)y, defines an inner product for test functions over element K,
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Punchlines

» If the test norm is localizable, i.e.

(v,00v)y = Z(v, ) vy

where (v, 6v)y, defines an inner product for test functions over element K,

> then the determination of the optimal test functions is done locally. Given
trial functions e;, we compute on the fly corresponding optimal test functions
é; by solving element variational problems,

{ (&i,00)y = b(e;, ov), Yov € V(K)
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Punchlines

» If the test norm is localizable, i.e.

(v,00v)y = Z(v, ) vy

where (v, 6v)y, defines an inner product for test functions over element K,

> then the determination of the optimal test functions is done locally. Given
trial functions e;, we compute on the fly corresponding optimal test functions
é; by solving element variational problems,

{ (&i,00)y = b(e;, ov), Yov € V(K)

> Solution of the local problem above can still be only approximated using an
“enriched space” and standard Bubnov-Galerkin method.
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Sample test norm(s)

Mathematician’s test norm:
(0, 75 = loll? + IV 0]]? + [[7]% + [|divr|?
Weighted norm:**

1o, D)3 := )15, + IV 0ll5, + 7115 + Idivr]?,

**D., J. Gopalakrishnan and A. Niemi, “A class of discontinuous Petrov-Galerkin methods.
Part I1l: Adaptivity,” ICES Report 2010-01, App. Num Math., accepted.
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2D Convection-Dominated Diffusion

Problem definition.
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0.335-@tror
0.19B. 4 SCALES: log(nrdof), log(error)
0.465-02
0.178-02
0.635-03
0.238-03
0.86E-04
0.328-04
0.12E-04

0.445-05

0.16H-05

nrdof
468 1 1173 T 2042 T 7379 [ 18305 [ 46405 [ 116366 | 291804 [ 731738

Convergence history in a (dynamically rescaled’) energy norm

1 To fight round off error
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h e

Optimal hp mesh after 45 mesh refinements.
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h e

Optimal hp mesh after 45 mesh refinements. Zoom x10 on the north-east corner.




N

Optimal hp mesh after 45 mesh refinements. Zoom x100 on the north-east
corner.
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N

Optimal hp mesh after 45 mesh refinements. Zoom x1000 on the north-east
corner.
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N

Optimal hp mesh after 45 mesh refinements. Zoom x 10000 on the north-east
corner.
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Optimal hp mesh after 45 mesh refinements. Zoom x10° on the north-east corner.




h e

Velocity u.
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Velocity u. Zoom x10% on the north-east corner.
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h e

Velocity u. Zoom %108 on the north-east corner with the mesh.
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o

Velocity u. Zoom x10° on the north-east corner w/o the mesh.
OK, is not ideal yet...
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Babuska's Theorem.

Struggle with discrete stability.

Optimal test functions and least squares.

Ultraweak variational formulation and DPG Method.

vV vV.v. v .Yy

Systematic choice of test norm.
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Optimal test norm

Q: Can we select the norm in the test space in such a way that the
corresponding energy norm coincides with the original norm (of choice) in U ?

A « Yes! Choose:
|b(u, )]

[o]lv = sup
wet ullo

(under assumption that
Vo={veV :buv)y=0 VYueU}

is trivial)
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Linear Acoustics. Quasi-optimal test norm

Sesquilinear form
bU,V) =—(u,iwv+ Vq)a, — (p,iwg + divv)q,
+ <ln,q>r0 + <P,vn >r,

Trial norm:

(e, P, i, DT = llallZe + IplIZ2 + 27 + 11517
Optimal test norm (unfortunately, non-local ):

(v, )5, = lliwv + Val[§, + [liwg + divol[§,

[<tin,g>+<p,vn>|

SUp,s =~ ~ =
T SUPLp (Tan IZHTFN/2

Quasi-optimal test norm (local):

(v, Dl3pr = lliwv + Valg, + lliwg + divollg, + [v]* + [lq?
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Robust stability result

Theorem: ¥ Assume: Q contractable, impedance BC
Use: the quasi-optimal norm to define the minimum energy extension norms for
fluxes 4,, and traces p.

Then

1w, )25 ~ (v, q)II5,,  (uniformly in k and mesh)

Consequently, we get the robust stability in the desired norm:

1

(e = wnll? + llp = pall? + [[an — G pll + 17 — Bnl?) 2
5 ||(U,p, ﬁnap\) - (uhaphv’an,haﬁh)”E
= BAE of (u, p, @i, p) in energy norm

< BAE of (u, p, {in, p) in desired norm

D, J. Gopalakrishnan, I. Muga, and J. Zitelli. “Wavenumber Explicit Analysis for a DPG
Method for the Multidimensional Helmholtz Equation”, ICES Report 2011-24, submitted to
CMAME.
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No pollution in 1D case

In 1D, traces and fluxes and just numbers. Thus, the BAE of fluxes and traces is
zero. We get,

1
(Ilw = wnll® + Ip = pall? + 120 — @l + 115 — Pr]1?)2

1
Sinfuy, i, ([u—wnll? +[lp — ral?) 2

The BAE of u, p in L?-error is pollution free.
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2D experiments

Discretization:
> field variables are discretized using isoparametric L?-conforming quads of
order p,
u1, ug,p € PP @ PP,
> traces are discretized using H'-conforming elements of order p + 1,
> fluxes are discretized using L?-conforming elements of order p + 1

» optimal test functions are approximated with polynomials of order

p+1+Ap, ie ve (PPHAPHL @ Priar) i (PrHap g prtaptl)
q € PPHAPTL @ priiptl
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2D experiment A

Exact solution: horizontal plane wave

Enriched space: Ap = 2.

impedance BC

impedance BC

impedance BC

impedance BC
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2D experiment A

DE/BAE with four bilinear elements per wave (0=0)

—— Standard FEM
+ - Blended Quadrature
—&— DPG method
+
10} : 1
e
@
=] ¥
5 L -
+
+
4o
1F © = = < =2 = = =2 o -
10' 10° 10°

Wavenumberw (on log scale)
Ratio of L? discretization error vs BAE as a function of wave number. DPG vs
standard FEs and Ainsworth-Wajid underintegration scheme.

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares



2D experiment B

Exact solution: plane wave along diagonal

Enriched space: Ap = 2.

impedance BC

impedance BC

impedance BC

impedance BC
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2D experiment B

DE/BAE with four bilinear elements per wave (}=n/4)

—— Standard FEM
+ - Blended Quadrature
—&— DPG method
10 . -
¢
a]
w
=)
sk + ]
¥
+ + + +
1t © = = < =2 = = < o -
10' 10° 10°

Wavenumberw (on log scale)
Ratio of L? discretization error vs BAE as a function of wave number. DPG vs
standard FEs and Ainsworth-Wajid underintegration scheme.
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2D experiment C

Exact solution: plane wave along diagonal

Enriched space: Ap = 2.

hard boundary

impedance BC

hard boundary

impedance BC
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2D experiment C

DE/BAE with four bilinear elements per wave (}=n/4)

15 T T T
—— Standard FEM
+ - Blended Quadrature
—&— DPG method
10} -
+
¢
@
w
o
5 * -
F
4 + +
1t G = = =2 = € 4
10' 10° 10°

Wavenumberw (on log scale)

Ratio of L? discretization error vs BAE as a function of wave number. DPG vs
standard FEs and Ainsworth-Wajid underintegration scheme.
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Pekeris problem, 8 wavelengths)

Visualization Toolkit - OpenGL

-10.0 -3.33 3.33 10.0

[ jzitelli@waffles: ~ & emacs23@waffles m Visualization Toolkit - ..

Exact solution (real part of pressure).
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Pekeris problem, & = 50 (8 wavelengths)

[emacs23@wa... [ jaitelli@waffles. [*Unsaved Doc... |jamiViSUBliZationiie [dpg pekeris - F. (dpg.png] [Terminal]

Classical FEs, four biquadratic elements per wavelength.
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Pekeris problem, 8 wavelengths)

Visualization Toolkit - OpenGL

-10.0 -3.33 3.33 10.0

[ jzitelli@waffles: ~ & emacs23@waffles m Visualization Toolkit - ..

Exact solution (real part of pressure).
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Pekeris problem, & = 50 (8 wavelengths)

Visualization Toolkit - OpenGL
I

-0.300 -0.100 0.100 0.300

] -... & emacs23@waffles [ jzitelli@waffles: ~/res... |mmiViSUalization TooIKIESM T T=

Ainsworth-Wajid quadrature, four biquadratic elements per wavelength.
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Pekeris problem, 8 wavelengths)

Visualization Toolkit - OpenGL

-10.0 -3.33 3.33 10.0

[ jzitelli@waffles: ~ & emacs23@waffles m Visualization Toolkit - ..

Exact solution (real part of pressure).
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Pekeris problem, 8 wavelengths)

Visualization Toolkit - OpenGL

jzitelli@waffles [ jzitelli@waffles: ~ & emacs23@wafles m Visualization Toolkit - ..

DPG method, four bilinear elements per wavelength.
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Pekeris problem, k£ = 50 (8 wavele

Visualization Toolkit - OpenGL
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Pekeris problem, k£ = 100 (16 wavelenghts)

Visualization Toolkit - OpenGL

m Visualization Toolkit - ..

Exact solution (real part of pressure).
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Pekeris problem, k£ = 100 (16 wavelenghts)

Visualization Toolkit - OpenGL.
i
-0.300 - -0.100 0.100 0.300
B : & ema waffles [ jzitelli@waffles: ~/... [ cg_results.txt (~/D... [J Terminal W dpg pekeris - File 6... [[miVisualizationooikiny =) I sl

Ainsworth-Wajid quadrature, four biquadratic elements per wavelength.
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Pekeris problem, k£ = 100 (16 wavelenghts)

Visualization Toolkit - OpenGL

m Visualization Toolkit - ..

Exact solution (real part of pressure).
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Pekeris problem, k£ = 100 (16 wavelenghts)

- Visualization Toolkit - OpenGL x
Iy
=S
=90%2
SR 5.\ O
=N 080
09N o
p090¢
PO
-
= %,
=
-
15.0 -5.00 5.00 150

urring Contact List m Visualization Toolkit - ..

DPG method, four bilinear elements per wavelength.
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Pekeris problem, 0 (16 wavelenghts)

Visualization Toolkit - OpenGL

m Visualization Toolkit - .

Error for the DPG method.
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Pekeris problem, & = 200 (32 wavelenghts)

- Visualization Toolkit - OpenGL =)
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Pekeris problem, & = 200 (32 wavelenghts)

Visualization Toolkit - OpenGL

-0.300 -0.100 0.100 0.300

& emacs23@wafiles [ jzitelli@waffies: ~ cg_results.txt (~/D. [Terminal] W dpg pekeris - File B... |[miVisUalizationooikiny] = B2l sl

Ainsworth-Wajid quadrature, four biquadratic elements per wavelength.
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Pekeris problem, & = 200 (32 wavelenghts)

- Visualization Toolkit - OpenGL =)
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Pekeris problem, & = 200 (32 wavelenghts)

Visualization Toolkit - OpenGL

elli@waffles @ emacs23@waffles

DPG method, four bilinear elements per wavelength.
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Pekeris problem, 200 (32 wavelenghts)

Visualization Toolkit - OpenGL

nt 1... [l VisUalization Toolkit=

Error for the DPG method
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A Recipe:
How to Construct a Robust DPG Method
for the Confusion Problem

(and Any Other Linear Problem as Well )
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Step 1: Decide what you want

We want the L2 robustness in u:
ull < [(w, o, ,4)|E

(a < b means that there exists a constant C, independent of € such that
a < Cb). This implies

lu—un| < (u—uno—0opa—"1tnd—an)le

= inf  |(u—wun, 0 —0ontd—"10,,4—q4n)le
(uh,O hyTn,qn)

Best Approximation Error (BAE)

< C(e)h?
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Step 2: Select a special test function...

b((u,0,4,q), (v, 7)) = (0,11 4+ Vv)q, + (u,divt — B Vo),
— <0, > — < v >,
Choose a test function (v, T) such that

v € H}(Q), T € H(div,Q)
%T—I—VU =0
divr—3-Vv =u

Then
lul2 = b((u, 0,0, ), (v, 7)) = 2eFBALTN (), 7))y,
< sup(, ) MTLBCTD |, 1|y = |[(u, 0,8, 9) | | (v, 7) v
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and request stability of the adjoint problem

Consequently, we need to select the test norm in such a way that
I, Pl S el
This gives,
[l S (w0, Q)| & lu]

Dividing by ||ul||, we get what we wanted.
The point: Construction of a robust DPG reduces to the classical stability
analysis for the adjoint equation!
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Step 3: Study the stability of the adjoint equation

Theorem (Generalization of Erickson-Johnson Theorem) (Heuer,D., 2011)

o]

18- Vel VOl 5
[divT[lwtes €18 - 7llw, 2 lI7l

where w = O(1) is a weight vanishing on the inflow boundary that satisfies some
“mild" assumptions.

The terms on the left-hand side are our “Lego” blocks with which we can build
different test norms.
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Step 4: Construct test norm(s)

Quasi-optimal test norm:
1 .
(o, 7T = ol + | =7 + Vol + [dive — 8- Vol|?
Weighted norm:
(v, )13 = ellol* + 18 - Volf, + el Vol + 74 + Idivr

Remark: Both choices imply also L2-robustness in o, as well as in traces and
fluxes measured in special energy norms.
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Estimates for o, 1, §

Same methodology can be used to design a test norm that will imply,
loll < (e, u. 4,9)lle

In fact both quasioptimal and weighted norms imply the robust estimate for o.
They also imply a robust estimate for traces and fluxes measured in a minimum
extension norm implied by the problem,

A 1 .
() @)= ==~ VU|? + || —divE+B- VU|?
where ¥, U are extensions of i, § from mesh skeleton to the whole domain,
U=donl, (Z-BU)-n.=gonl,

that minimize the right hand side of (x).
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Pros and cons for both test norms

» The quasi-optimal test norm produces strong boundary layers that need to be
resolved, also in 1D,

Left: 7 and v components of the optimal test function corresponding to trial
function u = 1 and element size h = 0.25, along with the optimal hp subelement
mesh. Right: 10 X zoom on the left end of the element.
Determining optimal test functions is expensive.

» The weighted test norm produces no boundary layers. Solving for the optimal

test functions is inexpensive.
» Quasi-optimal test norm yields better estimates for the best approximation

error measured in the corresponding energy norm.

Discrete Stability, DPG Method and Least Squares
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2D: Model problem of Erickson and Johnson

B ) B _ | sinmy onx=0
Q=(0,1)%, B=(1,0),f=0, Uo = { 0 otherwise

The problem can be solved analytically using separation of variables.

Velocity u and "“stresses” o, 0, (using scale for o,) for e = 0.01.

. I W .
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2D: Weighted norm, ¢ = 1072,10°3,107%

Weight: w = .

SCALES: log(nrdof), log y SCALES: logtundaf), log v

P2
- epeE3
- et

01384100
0.748-01 T

03 U aedef 0.428-01 U ondef

IS T 0 1392 1270 1SS0 T T0%6 T 20802 [ 43366 7Ty 00T 132 T 270 T 5510 T 10960 | 21502 T 3366

Left: convergence in energy error. Right: convergence in relative L?-error for the
field variables (in percent of their L2-norm).
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2D: Weighted

125+01

12E+01

norm, e = 1072,103,10~*

138+01

SCALES: logirdof), y*1.00

s nrdof
700 T 1392 [ 2770 [ 5510 [ 10961 [ 21802 T 43366

Ratio of L? and energy norms.
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Conclusions
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Conclusions

» DPG method with optimal test functions guarantees automatically discrete
stability for any linear problem.
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» One can systematically select test norms to execute a required type of
stability and convergence.
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» DPG method with optimal test functions guarantees automatically discrete
stability for any linear problem.

» Performance of the method depends upon the choice of the test norm.

» One can systematically select test norms to execute a required type of
stability and convergence.

» The methodology can be used to design robust discretization methods for
singular perturbation problems.
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Conclusions

» DPG method with optimal test functions guarantees automatically discrete
stability for any linear problem.

» Performance of the method depends upon the choice of the test norm.

» One can systematically select test norms to execute a required type of
stability and convergence.

» The methodology can be used to design robust discretization methods for
singular perturbation problems.

> Some choices of test norms, suitable for stability, may produce optimal test
functions with boundary layers which are difficult to resolve.
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Conclusions

» DPG method with optimal test functions guarantees automatically discrete
stability for any linear problem.

» Performance of the method depends upon the choice of the test norm.

» One can systematically select test norms to execute a required type of
stability and convergence.

» The methodology can be used to design robust discretization methods for
singular perturbation problems.

> Some choices of test norms, suitable for stability, may produce optimal test
functions with boundary layers which are difficult to resolve.

» The implied discrete stability holds for hp meshes enabling hp-adaptivity.
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Thank You !

Discrete Stability, DPG Method and Least Squares



DPG references

P L. Demkowicz and J. Gopalakrishnan, “A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation,” CMAME, 199(23-24),
1558-1572, 2010.

P L. Demkowicz and J. Gopalakrishnan, “A class of discontinuous Petrov-Galerkin methods. Part II: Optimal test functions,” Num. Meth. Part.
D.E., 27, 70-105, 2011 (proceedings of Mafelap 2009).

| Demkowicz, J. Gopalakrishnan and A. Niemi, “A class of discontinuous Petrov-Galerkin methods. Part Ill: Adaptivity,” ICES Report 2010-01,
App. Num Math., in review.

| S Niemi, J. Bramwell and L. Demkowicz, “Discontinuous Petrov-Galerkin Method with Optimal Test Functions for Thin-Body Problems in Solid
Mechanics,” CMAME, 200, 1291-1300, 2011.

> Zitelli, I. Muga, L, Demkowicz, J. Gopalakrishnan, D. Pardo and V. Calo, “A class of discontinuous Petrov-Galerkin methods. 1V: Wave
propagation problems,” J.Comp. Phys., 230, 2406-2432, 2011.

> Bramwell, L. Demkowicz and W. Qiu, “Solution of Dual-Mixed Elasticity Equations Using AFW Element and DPG. A Comparison,” ICES
Report 2010-23.

> Chan, L. Demkowicz, R. Moser and N Roberts, “A class of discontinuous Petrov-Galerkin methods. Part V: Solution of 1D Burgers and
Navier-Stokes Equations,” ICES Report 2010-25.

> N,V. Roberts, D. Ridzal, P.N. Bochev, L. Demkowicz, K.J. Peterson and Ch. M. Siefert, “Application of a Discontinuous Petrov-Galerkin Method
to the Stokes Equations,” CSRI Summer Proceedings 2010.

P L. Demkowicz and J. Gopalakrishnan, “Analysis of the DPG Method for the Poisson Equation,” ICES Report 2010-37, SIAM J. Num. Anal.,
accepted.

P L. Demkowicz, J. Gopalakrishnan, I. Muga, and J. Zitelli. “Wavenumber Explicit Analysis for a DPG Method for the Multidimensional Helmholtz
Equation”, ICES Report 2011-24, submitted to CMAME.

> Bramwell, L. Demkowicz, J. Gopalakrishnan, and W. Qiu. “A Locking-free hpp DPG Method for Linear Elasticity with Symmetric Stresses”,
Technical Report 2369, Institute for Mathematics and Its Applications, May 2011, (http://www.ima.umn.edu/preprints/may2011/may2011.html),
submitted to Num. Math.

DPG Method and Least Squares



Acknowledgments

Past and Current Support:

Boeing Company

Department of Energy (National Nuclear Security Administration)
[DE-FC52-08NA28615]

KAUST (collaborative research grant)

Air Force[#FA9550-09-1-0608]

Troy, Oct 5, 2011 Discrete Stability, DPG Method and Least Squares



