ANALYSIS OF THE DPG METHOD FOR THE POISSON EQUATION

Leszek Demkowicz ${ }^{a}$
and Jay Gopalakrishnan ${ }^{b}$
${ }^{a}$ ICES, The University of Texas at Austin
${ }^{b}$ Department of Mathematics, University of Florida

FE Rodeo, Texas A\& M, Februrary 26, 2011

Acknowledgments

Current and Past Support:
Department of Energy [National Nuclear Security Administration] (Award Number [DE-FC52-08NA28615])
KAUST (collaborative research grant)
Boeing Company
Air Force

Outline of Presentation

- Abstract B^{3} framework.

Outline of Presentation

- Abstract B^{3} framework.
- Proof of well-posedness for the DPG formulation in multidimensions.

Outline of Presentation

- Abstract B^{3} framework.
- Proof of well-posedness for the DPG formulation in multidimensions.
- Numerical experiments.

Petrov-Galerkin Method with Optimal Test Functions Abstract B ${ }^{3}$ Framework (Repetitio Mater Studiorum Est)

Abstract Variational Problem

$$
\left\{\begin{array}{l}
u \in U \\
b(u, v)=l(v) \quad \forall v \in V
\end{array} \Leftrightarrow \begin{array}{ll}
B u=l & B: U \rightarrow V^{\prime} \\
\langle B u, v\rangle=b(u, v) \forall v \in V
\end{array}\right.
$$

where

- U, V are Hilbert spaces,
- $b(u, v)$ is a continuous bilinear form on $U \times V$,

$$
|b(u, v)| \leq M\|u\|_{U}\|v\|_{V}
$$

that satisfies the inf-sup condition ($\Leftrightarrow B$ is bounded below),

$$
\inf _{\|u\|_{U}=1} \sup _{\|v\|_{V}=1}|b(u, v)|=: \gamma>0
$$

- $l \in V^{\prime}$ represents the load and satisfies the compatibility condition $l(v)=0, \forall v \in V_{0}$ where

$$
V_{0}:=\{v \in V: b(u, v)=0 \quad \forall u \in U\}
$$

Energy Norm

Banach Closed Range Theorem implies that there exists a unique solution u that depends continuously upon the data, $\|u\| \leq \frac{1}{\gamma}\|l\|_{V^{\prime}}$. The supremum in the inf-sup condition defines an equivalent, problem-dependent energy (residual) norm,

$$
\|u\|_{E}:=\sup _{\|v\|=1}|b(u, v)|=\|B u\|_{V^{\prime}}
$$

For the energy norm, $M=\gamma=1$. Recalling that the Riesz operator is an isometry form V into V^{\prime}, we may characterize the energy norm in an equivalent way as

$$
\|u\|_{E}=\left\|v_{u}\right\|_{V}
$$

where v_{u} is the solution of the variational problem,

$$
\left\{\begin{array}{l}
v_{u} \in V \\
\left(v_{u}, \delta v\right)_{V}=b(u, \delta v) \quad \forall \delta v \in V
\end{array}\right.
$$

Optimal Test Functions

Select your favorite trial basis functions: $e_{j}, j=1, \ldots, N$. For each function e_{j}, introduce a corresponding optimal test (basis) function $\bar{e}_{j} \in V$ that realizes the supremum,

$$
\left|b\left(e_{j}, \bar{e}_{j}\right)\right|=\sup _{\|v\|_{V}=1}\left|b\left(e_{j}, v\right)\right|
$$

i.e. it solves the variational problem,

$$
\left\{\begin{array}{l}
\bar{e}_{j} \in V \\
\left(\bar{e}_{j}, \delta v\right)_{V}=b\left(e_{j}, \delta v\right) \quad \forall \delta v \in V
\end{array}\right.
$$

Define the discrete test space as $\bar{V}_{h p}:=\operatorname{span}\left\{\bar{e}_{j}, j=1, \ldots, N\right\} \subset V$. It follows from the construction of the optimal test functions that the discrete inf-sup constant

$$
\inf _{\left\|u_{h p}\right\|_{E}=1} \sup _{\left\|v_{h p}\right\|=1}\left|b\left(u_{h p}, v_{h p}\right)\right|=1
$$

The Best Approximation

Consequently, Babuška's Theorem

$$
\left\|u-u_{h p}\right\|_{E} \leq \frac{M}{\gamma_{h p}} \inf _{w_{h p} \in U_{h p}}\left\|u-w_{h p}\right\|_{E}
$$

implies that

$$
\left\|u-u_{h p}\right\|_{E} \leq \inf _{w_{h p} \in U_{h p}}\left\|u-w_{h p}\right\|_{E}
$$

i.e., the method delivers the best approximation error in the energy norm.

Stiffness Matrix Is Symmetric and Positive Definite

$$
b\left(e_{i}, \bar{e}_{j}\right)=\left(\bar{e}_{i}, \bar{e}_{j}\right)_{V}=\left(\bar{e}_{j}, \bar{e}_{i}\right)_{V}=b\left(e_{j}, \bar{e}_{i}\right)
$$

Energy Norm of FE Error $e_{h p}=u-u_{h p}$

can be computed without knowing the exact solution.

$$
\left\{\begin{array}{l}
v_{e_{h p}} \in V \\
\left(v_{e_{h p}}, \delta v\right)_{V}=b\left(u-u_{h p}, \delta v\right)=l(\delta v)-b\left(u_{h p}, \delta v\right) \quad \forall \delta v \in V
\end{array}\right.
$$

We have then

$$
\left\|e_{h p}\right\|_{E}=\left\|v_{e_{h p}}\right\|_{V}
$$

We shall call $v_{e_{h p}}$ the error representation function

Note: No need for an a-posteriori error estimation.

Relation with Least Squares

Rewrite the variational problem in the operator form:

$$
B u=l, \quad B: U \rightarrow V^{\prime}, \quad<B u, v>=b(u, v)
$$

Relation with Least Squares

Rewrite the variational problem in the operator form:

$$
B u=l, \quad B: U \rightarrow V^{\prime}, \quad<B u, v>=b(u, v)
$$

Precondition with inverse of the Riesz operator R_{V},

$$
R_{V}^{-1} B u=R_{V}^{-1} l, \quad R_{V}^{-1} B: U \rightarrow V
$$

Relation with Least Squares

Rewrite the variational problem in the operator form:

$$
B u=l, \quad B: U \rightarrow V^{\prime}, \quad<B u, v>=b(u, v)
$$

Precondition with inverse of the Riesz operator R_{V},

$$
R_{V}^{-1} B u=R_{V}^{-1} l, \quad R_{V}^{-1} B: U \rightarrow V
$$

Apply the least squares method

$$
\left\|R_{V}^{-1} B u_{h p}-R_{V}^{-1} l\right\|_{V} \rightarrow \min
$$

Relation with Least Squares

Rewrite the variational problem in the operator form:

$$
B u=l, \quad B: U \rightarrow V^{\prime}, \quad<B u, v>=b(u, v)
$$

Precondition with inverse of the Riesz operator R_{V},

$$
R_{V}^{-1} B u=R_{V}^{-1} l, \quad R_{V}^{-1} B: U \rightarrow V
$$

Apply the least squares method

$$
\left\|R_{V}^{-1} B u_{h p}-R_{V}^{-1} l\right\|_{V} \rightarrow \min
$$

This is exactly our DPG method

Optimal Test Norm

Q: Can we select the norm in the test space in such a way that the corresponding energy norm coincides with the original norm (of choice) in U ?

Optimal test norm

A: Yes! Choose:

$$
\|v\|_{V}=\sup _{u \in U} \frac{|b(u, v)|}{\|u\|_{U}}
$$

(under assumption that

$$
V_{0}=\{v \in V: b(u, v)=0 \quad \forall u \in U\}
$$

is trivial)

Convergence Analysis in Multidimensions

Poisson Problem

$$
\left\{\begin{aligned}
u & =u_{0} & & \text { on } \partial \Omega \\
-\boldsymbol{\nabla} \cdot(\boldsymbol{\alpha} \boldsymbol{\nabla} u)+\boldsymbol{\beta} \cdot \nabla u & =f & & \text { in } \Omega
\end{aligned}\right.
$$

For a moment $\boldsymbol{\beta}=\mathbf{0}$.

Poisson Problem

First order system:

$$
\left\{\begin{array}{rll}
\boldsymbol{\alpha}^{-1} \boldsymbol{\sigma}-\boldsymbol{\nabla} u & =\mathbf{0} & \text { in } \Omega \\
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} & =f & \text { in } \Omega \\
u & =u_{0} & \text { on } \partial \Omega
\end{array}\right.
$$

DPG Method

Elements: K
Edges:e
Skeleton: $\Gamma_{h}=\bigcup_{K} \partial K$
Internal skeleton: $\Gamma_{h}^{0}=\Gamma_{h}-\partial \Omega$

DPG Method

Take an element K. Multiply the equations with test functions $\boldsymbol{\tau} \in \boldsymbol{H}(\operatorname{div}, K), v \in H^{1}(K):$

$$
\left\{\begin{aligned}
\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\sigma}\right) \cdot \boldsymbol{\tau}-(\nabla u) \cdot \boldsymbol{\tau} & =0 \\
(\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}) v & =f v
\end{aligned}\right.
$$

DPG Method

Integrate over the element K :

$$
\left\{\begin{aligned}
\int_{K}\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\sigma}\right) \cdot \boldsymbol{\tau}-\int_{K}(\boldsymbol{\nabla} u) \cdot \boldsymbol{\tau} & =0 \\
\int_{K}(\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}) v & =\int_{K} f v
\end{aligned}\right.
$$

DPG Method

Integrate by parts (relax) both equations:

$$
\left\{\begin{aligned}
\int_{K}\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\sigma}\right) \cdot \boldsymbol{\tau}+\int_{K} u \operatorname{div} \boldsymbol{\tau}-\int_{\partial K} u \tau_{n} & =0 \\
-\int_{K} \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} v+\int_{\partial K} q \operatorname{sgn}(\boldsymbol{n}) v & =\int_{K} f v
\end{aligned}\right.
$$

where $q=\boldsymbol{\sigma} \boldsymbol{n}_{e}$ and

$$
\operatorname{sgn}(\boldsymbol{n})=\left\{\begin{aligned}
1 & \text { if } \boldsymbol{n}=\boldsymbol{n}_{e} \\
-1 & \text { if } \boldsymbol{n}=-\boldsymbol{n}_{e}
\end{aligned}\right.
$$

DPG Method

Declare fluxes to be independent unknowns:

$$
\left\{\begin{aligned}
\int_{K}\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\sigma}\right) \cdot \boldsymbol{\tau}+\int_{K} u \operatorname{div} \boldsymbol{\tau}-\int_{\partial K} \hat{u} \tau_{n} & =0 \\
-\int_{K} \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} v+\int_{\partial K} \hat{q} \operatorname{sgn}(\boldsymbol{n}) v & =\int_{K} f v
\end{aligned}\right.
$$

where $q=\boldsymbol{\sigma} \boldsymbol{n}_{e}$ and

$$
\operatorname{sgn}(\boldsymbol{n})=\left\{\begin{aligned}
1 & \text { if } \boldsymbol{n}=\boldsymbol{n}_{e} \\
-1 & \text { if } \boldsymbol{n}=-\boldsymbol{n}_{e}
\end{aligned}\right.
$$

DPG Method

Use BCs to eliminate known fluxes

$$
\left\{\begin{aligned}
\int_{K}\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\sigma}\right) \cdot \boldsymbol{\tau}+\int_{K} u \operatorname{div} \boldsymbol{\tau}-\int_{\partial K-\partial \Omega} \hat{u} \tau_{n} & =+\int_{\partial K \cap \partial \Omega} u_{0} \tau_{n} \\
-\int_{K} \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} v+\int_{\partial K} \hat{q} \operatorname{sgn}(\boldsymbol{n}) v & =\int_{K} f v
\end{aligned}\right.
$$

Trace and Flux Spaces

$$
\begin{aligned}
\Gamma_{h} & :=\bigcup_{K} \partial K \quad \text { (skeleton) } \\
\Gamma_{h}^{0} & :=\Gamma_{h}-\partial \Omega \quad \text { (internal skeleton) } \\
\tilde{H}^{1 / 2}\left(\Gamma_{h}^{0}\right) & :=\left\{\left.V\right|_{\Gamma_{h}^{0}}: V \in H_{0}^{1}(\Omega)\right.
\end{aligned}
$$

with the minimum extension norm:

$$
\begin{aligned}
\|v\|_{\tilde{H}^{1 / 2}\left(\Gamma_{h}^{0}\right)} & :=\inf \left\{\|V\|_{H^{1}}:\left.V\right|_{\Gamma_{h}^{0}}=v\right\} \\
H^{-1 / 2}\left(\Gamma_{h}\right) & :=\left\{\left.\sigma_{n}\right|_{\Gamma_{h}}: \boldsymbol{\sigma} \in \boldsymbol{H}(\operatorname{div}, \Omega)\right.
\end{aligned}
$$

with the minimum extension norm:

$$
\left\|\sigma_{n}\right\|_{H^{-1 / 2}\left(\Gamma_{h}\right)}:=\inf \left\{\|\boldsymbol{\sigma}\|_{H(\operatorname{div}, \Omega)}:\left.\boldsymbol{\sigma} \boldsymbol{n}\right|_{\Gamma_{h}}=\sigma_{n}\right\}
$$

Functional Setting

Group variables:
Solution $\boldsymbol{U}=(u, \boldsymbol{\sigma}, \hat{u}, \hat{q})$:

$$
\begin{aligned}
& u, \sigma_{1}, \sigma_{2} \in L^{2}\left(\Omega_{h}\right) \\
& \hat{u} \in \tilde{H}^{1 / 2}\left(\Gamma_{h}^{0}\right) \\
& \hat{q} \in H^{-1 / 2}\left(\Gamma_{h}\right)
\end{aligned}
$$

Test function $\boldsymbol{V}=(\boldsymbol{\tau}, v)$:

$$
\begin{aligned}
& \boldsymbol{\tau} \in \boldsymbol{H}\left(\operatorname{div}, \Omega_{h}\right) \\
& v \in H^{1}\left(\Omega_{h}\right)
\end{aligned}
$$

Variational problem:

$$
b(\boldsymbol{U}, \boldsymbol{V})=l(\boldsymbol{V}), \quad \forall \boldsymbol{V}
$$

Simple facts

- Form b is continuous
- $b(U, V)=0, \forall V$ implies $U=0$.

In operator terms,

$$
b(U, V)=<B U, V>=<U, B^{*} V>
$$

B is injective, B, B^{*} are well-defined and continuous.

Well-Posedness

Theorem 1

The DPG variational formulation is well-posed with a mesh-independent inf-sup constant.

Theorem 2

There exists a mesh-independent $C>0$:

$$
\begin{aligned}
& \left\|u-u_{h p}\right\|_{L^{2}(\Omega)}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h p}\right\|_{L^{2}(\Omega)} \\
& +\left\|\hat{u}-\hat{u}_{h p}\right\|_{\tilde{H}^{1 / 2}\left(\Gamma_{h}^{0}\right)}+\left\|\hat{q}-\hat{q}_{h p}\right\|_{H^{-1 / 2}\left(\Gamma_{h}\right)} \\
& \leq C \inf _{\boldsymbol{\sigma}_{h p}, u_{h p}, \hat{q}_{h p}, \hat{u}_{h p}}[\ldots]
\end{aligned}
$$

where $u_{h p}, \boldsymbol{\sigma}_{h p}, \hat{u}_{h p}, \hat{q}_{h p}$ is the DPG FE solution.

Optimal Test Norm

Define:

$$
\begin{aligned}
\|\boldsymbol{V}\|_{o} & =\left\|B^{*} V\right\|=\sup _{\boldsymbol{U}} \frac{|b(\boldsymbol{U}, \boldsymbol{V})|}{\|\boldsymbol{U}\|_{U}} \\
& =\sup _{u, \sigma, \hat{u}, \hat{q}} \frac{(u,-\operatorname{div} \boldsymbol{\tau})_{\Omega}+\left(\boldsymbol{\sigma}, \boldsymbol{\alpha}^{-1} \boldsymbol{\tau}-\boldsymbol{\nabla} v\right)_{\Omega}+<\hat{u}, \tau_{n}>_{\Gamma_{h}^{0}}+<v, \hat{q}>_{\Gamma_{h}}}{\left(\|u\|^{2}+\|\boldsymbol{\sigma}\|^{2}+\|\hat{u}\|^{2}+\|\hat{q}\|^{2}\right)^{1 / 2}} \\
& =\left(\|\operatorname{div} \boldsymbol{\tau}\|^{2}+\left\|\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}-\boldsymbol{\nabla} v\right\|^{2}+\|[v]\|_{\Gamma_{h}^{0}}^{2}+\left\|\left[\tau_{n}\right]\right\|_{\Gamma_{h}}^{2}\right)^{1 / 2}
\end{aligned}
$$

where

$$
\begin{aligned}
\|[v]\|_{\Gamma_{h}^{0}} & =\sup _{w \in H(\operatorname{div}, \Omega)} \frac{<v, w_{n}>_{\Gamma_{h}}}{\|\boldsymbol{w}\|_{H(\operatorname{div}, \Omega)}} \\
\left\|\left[\tau_{n}\right]\right\|_{\Gamma_{h}} & =\sup _{w \in H_{0}^{1}(\Omega)} \frac{<w, \tau_{n}>_{\Gamma_{h}^{0}}^{0}}{\|w\|_{H^{1}(\Omega)}}
\end{aligned}
$$

Equivalence of Norms

We will show that the standard and optimal norms are equivalent, i.e.

$$
\|\boldsymbol{V}\| \leq C\|\boldsymbol{V}\|_{o} \quad \text { and } \quad\|\boldsymbol{V}\|_{o} \leq C\|\boldsymbol{V}\|
$$

The second inequality is straightforward, we will focus on the first one. Conclusions:

- B^{*} is injective,
- b satisfies the inf-sup condition (B is bounded below).

Consequently, Nečas - Babuška (Generalized Lax-Milgram, Lions, Banach Closed Range) Theorem implies that the variational problem is well-posed. Theorem 2 follows.

Proof

Take $\boldsymbol{\tau} \in \boldsymbol{H}\left(\operatorname{div}, \Omega_{h}\right), v \in H^{1}\left(\Omega_{h}\right)$. Denote

$$
\begin{aligned}
\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}-\boldsymbol{\nabla} v=: & \boldsymbol{f} \\
\operatorname{div} \boldsymbol{\tau}=: & g
\end{aligned}
$$

Need to show the bounds:

$$
\|\boldsymbol{\tau}\|_{H\left(\operatorname{div}, \Omega_{h}\right)},\|v\|_{H^{1}\left(\Omega_{h}\right)} \leq C\left(\|\boldsymbol{f}\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}+\|[v]\|_{\Gamma_{h}^{0}}+\left\|\left[\tau_{n}\right]\right\|_{\Gamma_{h}}\right)
$$

Step 1: $\boldsymbol{f}=\mathbf{0}, g=0$.
Consider the weighted Helmholtz decomposition:

$$
\boldsymbol{\tau}=\boldsymbol{\alpha} \boldsymbol{\nabla} \psi+\boldsymbol{\nabla} \times \boldsymbol{z}, \quad \psi \in H_{0}^{1}(\Omega), \boldsymbol{z} \in \boldsymbol{H}(\operatorname{curl}, \Omega)
$$

Potentials $\psi, \boldsymbol{\tau}$ are unique, orthogonal in the weighted $\left(\boldsymbol{\alpha}^{-1} \cdot, \cdot\right)$ L^{2}-product, and depend continuously upon $\boldsymbol{\tau}$.

Step 1: $\boldsymbol{f}, g=0$

$$
\|\boldsymbol{\tau}\|_{\alpha^{-1}}^{2}=\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}, \boldsymbol{\tau}\right)=\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}, \boldsymbol{\alpha} \boldsymbol{\nabla} \psi+\boldsymbol{\nabla} \times \boldsymbol{z}\right)_{\Omega_{h}}
$$

Step 1: $\boldsymbol{f}, g=0$

$$
\begin{aligned}
\|\boldsymbol{\tau}\|_{\alpha^{-1}}^{2} & =\left(\alpha^{-1} \boldsymbol{\tau}, \boldsymbol{\tau}\right)=\left(\alpha^{-1} \boldsymbol{\tau}, \alpha \boldsymbol{\nabla} \psi+\boldsymbol{\nabla} \times z\right)_{\Omega_{h}} \\
& =(\boldsymbol{\tau}, \boldsymbol{\nabla} \psi)_{\Omega_{h}}+(\boldsymbol{\nabla} v, \boldsymbol{\nabla} \times z)_{\Omega_{h}}
\end{aligned}
$$

Step 1: $\boldsymbol{f}, g=0$

$$
\begin{aligned}
\|\boldsymbol{\tau}\|_{\alpha^{-1}}^{2} & =\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}, \boldsymbol{\tau}\right)=\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}, \boldsymbol{\alpha} \boldsymbol{\nabla} \psi+\boldsymbol{\nabla} \times \boldsymbol{z}\right)_{\Omega_{h}} \\
& =(\boldsymbol{\tau}, \boldsymbol{\nabla} \psi)_{\Omega_{h}}+(\boldsymbol{\nabla} v, \boldsymbol{\nabla} \times \boldsymbol{z})_{\Omega_{h}} \\
& =-(\operatorname{div} \boldsymbol{\tau}, \psi)_{\Omega_{h}}+<\psi, \tau_{n}>_{\Gamma_{h}}+<v,(\boldsymbol{\nabla} \times \boldsymbol{z}) \cdot \boldsymbol{n}>_{\Gamma_{h}^{0}}
\end{aligned}
$$

Step 1: $f, g=0$

$$
\begin{aligned}
\|\boldsymbol{\tau}\|_{\alpha^{-1}}^{2} & =\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}, \boldsymbol{\tau}\right)=\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}, \boldsymbol{\alpha} \boldsymbol{\nabla} \psi+\boldsymbol{\nabla} \times \boldsymbol{z}\right)_{\Omega_{h}} \\
& =(\boldsymbol{\tau}, \boldsymbol{\nabla} \psi)_{\Omega_{h}}+(\boldsymbol{\nabla} v, \boldsymbol{\nabla} \times \boldsymbol{z})_{\Omega_{h}} \\
= & -(\operatorname{div} \boldsymbol{\tau}, \psi)_{\Omega_{h}}+<\psi, \tau_{n}>_{\Gamma_{h}}+<v,(\boldsymbol{\nabla} \times \boldsymbol{z}) \cdot \boldsymbol{n}>_{\Gamma_{h}^{0}} \\
& =\frac{<\psi, \tau_{n}>_{\Gamma_{h}}}{\|\psi\|_{H^{1}(\Omega)}}\|\psi\|_{H^{1}(\Omega)}+\frac{<v,(\boldsymbol{\nabla} \times \boldsymbol{z}) \cdot \boldsymbol{n}>_{\Gamma_{h}^{0}}}{\|\boldsymbol{\nabla} \times \boldsymbol{z}\|_{H(\operatorname{div}, \Omega)}}\|\boldsymbol{\nabla} \times \boldsymbol{z}\|_{L^{2}(\Omega)}
\end{aligned}
$$

Step 1: $\boldsymbol{f}, g=0$

$$
\begin{aligned}
& \|\boldsymbol{\tau}\|_{\alpha^{-1}}^{2}=\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}, \boldsymbol{\tau}\right)=\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}, \boldsymbol{\alpha} \boldsymbol{\nabla} \psi+\boldsymbol{\nabla} \times \boldsymbol{z}\right)_{\Omega_{h}} \\
& =(\boldsymbol{\tau}, \boldsymbol{\nabla} \psi)_{\Omega_{h}}+(\boldsymbol{\nabla} v, \boldsymbol{\nabla} \times \boldsymbol{z})_{\Omega_{h}} \\
& =-(\operatorname{div} \boldsymbol{\tau}, \psi)_{\Omega_{h}}+<\psi, \tau_{n}>_{\Gamma_{h}}+<v,(\boldsymbol{\nabla} \times \boldsymbol{z}) \cdot \boldsymbol{n}>_{\Gamma_{h}^{0}} \\
& =\frac{<\psi, \tau_{n}>_{\Gamma_{h}}}{\|\psi\|_{H^{1}(\Omega)}}\|\psi\|_{H^{1}(\Omega)}+\frac{<v,(\boldsymbol{\nabla} \times \boldsymbol{z}) \cdot \boldsymbol{n}>_{\Gamma_{h}^{0}}}{\|\boldsymbol{\nabla} \times \boldsymbol{z}\|_{H(\operatorname{div}, \Omega)}}\|\boldsymbol{\nabla} \times \boldsymbol{z}\|_{L^{2}(\Omega)} \\
& \leq \sup _{w \in H_{0}^{1}(\Omega)} \frac{<w, \tau_{n}>_{\Gamma_{h}}}{\|w\|_{H^{1}(\Omega)}}\|\psi\|_{H^{1}(\Omega)}+\sup _{w \in H(\operatorname{div}, \Omega)} \frac{<v, w_{n}>_{\Gamma_{h}}^{0}}{\|\boldsymbol{w}\|_{H(\operatorname{div}, \Omega)}}\|\boldsymbol{\nabla} \times \boldsymbol{z}\|
\end{aligned}
$$

Step 1: $\boldsymbol{f}, g=0$

$$
\begin{aligned}
\|\boldsymbol{\tau}\|_{\alpha^{-1}}^{2} & =\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}, \boldsymbol{\tau}\right)=\left(\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}, \boldsymbol{\alpha} \boldsymbol{\nabla} \psi+\boldsymbol{\nabla} \times \boldsymbol{z}\right)_{\Omega_{h}} \\
& =(\boldsymbol{\tau}, \boldsymbol{\nabla} \psi)_{\Omega_{h}}+(\boldsymbol{\nabla} v, \boldsymbol{\nabla} \times \boldsymbol{z})_{\Omega_{h}} \\
& =-(\operatorname{div} \boldsymbol{\tau}, \psi)_{\Omega_{h}}+<\psi, \tau_{n}>_{\Gamma_{h}}+<v,(\boldsymbol{\nabla} \times \boldsymbol{z}) \cdot \boldsymbol{n}>_{\Gamma_{h}^{0}} \\
& =\frac{<\psi, \tau_{n}>_{\Gamma_{h}}}{\|\psi\|_{H^{1}(\Omega)}}\|\psi\|_{H^{1}(\Omega)}+\frac{<v,(\boldsymbol{\nabla} \times \boldsymbol{z}) \cdot \boldsymbol{n}>_{\Gamma_{h}^{0}}}{\|\boldsymbol{\nabla} \times \boldsymbol{z}\|_{H(\operatorname{div}, \Omega)}}\|\boldsymbol{\nabla} \times \boldsymbol{z}\|_{L^{2}(\Omega)} \\
& \leq \sup _{w \in H_{0}^{1}(\Omega)} \frac{<w, \tau_{n}>\Gamma_{h}}{\|w\|_{\Gamma^{1}(\Omega)}}\|\psi\|_{H^{1}(\Omega)}+\sup _{w \in H(\operatorname{div}, \Omega)} \frac{\|\boldsymbol{w}\|_{H(\operatorname{div}, \Omega)}}{\|\boldsymbol{\nabla} \times \boldsymbol{z}\|} . \\
& \leq C\left(\|[v]\|_{\Gamma_{h}^{0}}+\left\|\left[\tau_{n}\right]\right\|_{\Gamma_{h}}\right)\|\boldsymbol{\tau}\|_{\alpha^{-1}}
\end{aligned}
$$

Step 1: $\boldsymbol{f}, g=0$

Consequently,

$$
\|\nabla v\|_{L^{2}\left(\Omega_{h}\right)} \leq C\left(\|[v]\|_{\Gamma_{h}^{0}}+\left\|\left[\tau_{n}\right]\right\|_{\Gamma_{h}}\right)
$$

as well.

Discrete Poincaré Inequality:

$$
\|v\|_{\Omega_{h}} \leq C\left(\|\nabla v\|_{\Omega_{h}}+\|[v]\|_{\Gamma_{h}^{0}}\right)
$$

gives

$$
\|v\|_{H^{1}\left(\Omega_{h}\right)} \leq C\left(\|[v]\|_{\Gamma_{h}^{0}}+\left\|\left[\tau_{n}\right]\right\|_{\Gamma_{h}}\right)
$$

Step 2: $\boldsymbol{f}, g \neq 0$

Let $\boldsymbol{\tau}_{1} \in \boldsymbol{H}(\operatorname{div}, \Omega), v_{1} \in H_{0}^{1}(\Omega)$ such that

$$
\left\{\begin{aligned}
\boldsymbol{\alpha}^{-1} \boldsymbol{\tau}_{1}-\boldsymbol{\nabla} v_{1} & =\boldsymbol{f} \\
\operatorname{div} \boldsymbol{\tau}_{1} & =g
\end{aligned}\right.
$$

Brezzi's Theory implies

$$
\left\|\boldsymbol{\tau}_{1}\right\|_{H(\operatorname{div}, \Omega)}, \mid v_{1} \|_{H^{1}(\Omega)} \leq C(\|\boldsymbol{f}\|+\|g\|)
$$

Final step: replace $\boldsymbol{\tau}, v$ with $\boldsymbol{\tau}-\boldsymbol{\tau}_{1}, v-v_{1}$ and use Step 1 result. Note that jump terms for $\boldsymbol{\tau}-\boldsymbol{\tau}_{1}, v-v_{1}$ are controlled by the original jump terms and norms of $\boldsymbol{\tau}_{1}, v_{1}$.

Generalization to Convection-Dominated Diffusion

In Step 1, use the decomposition:

$$
\boldsymbol{\tau}=(\boldsymbol{\alpha} \boldsymbol{\nabla} \psi+\boldsymbol{\beta} \psi)+\boldsymbol{\nabla} \times \boldsymbol{z}, \quad \psi \in H_{0}^{1}(\Omega), \boldsymbol{z} \in \boldsymbol{H}(\mathbf{c u r l}, \Omega)
$$

Numerical Experiments

Test problems:

- Square domain with $u(x, y)=\sin (\pi x) \sin (\pi y)$,
- L-shape domain with $u(r, \theta)=r^{2 / 3} \sin \left(\frac{2}{3}\left(\theta+\frac{\pi}{2}\right)\right)$

Uniform h-convergence rates

Figure: h-convergence rates for the two examples

Uniform p-convergence rates

(a) Results from the square domain

(b) Results from the L-shaped domain

Figure: p-convergence rates for the two examples

Adaptivity

(a) Comparison of convergence of (b) Energy error estimator vs. L^{2}-error adaptive schemes

Figure: Convergence curves from adaptive schemes

Adaptivity - cont.

Figure: Convergence curves from adaptive schemes

Some Color to Finish

Figure: Left: The $h p$ mesh found by the $h p$-adaptive algorithm after 15 refinements. (Color scale represents polynomial degrees.) Right: The corresponding solution u. (Color scale represent solution values.)

Thank You!

DPG references

L. Demkowicz and J. Gopalakrishnan, "A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation," CMAME, 199(23-24), 1558-1572, 2010.

- L. Demkowicz and J. Gopalakrishnan, "A class of discontinuous Petrov-Galerkin methods. Part II: Optimal test functions," ICES Report 2009-16, Num. Meth. Part. D.E., in print (proceedings of Mafelap 2009).
- L. Demkowicz, J. Gopalakrishnan and A. Niemi, "A class of discontinuous Petrov-Galerkin methods. Part III: Adaptivity," ICES Report 2010-01, App. Num Math., revised version in review.
- A. Niemi, J. Bramwell and L. Demkowicz, "Discontinuous Petrov-Galerkin Method with Optimal Test Functions for Thin-Body Problems in Solid Mechanics," ICES Report 2010-13, CMAME, in print.
$>$ J. Zitelli, I. Muga, L, Demkowicz, J. Gopalakrishnan, D. Pardo and V. Calo, "A class of discontinuous Petrov-Galerkin methods. IV: Wave propagation problems," ICES Report 2010-17, J.Comp. Phys., revised version in review.
- J. Bramwell, L. Demkowicz and W. Qiu, "Solution of Dual-Mixed Elasticity Equations Using AFW Element and DPG. A Comparison," ICES Report 2010-23.
$>$ J. Chan, L. Demkowicz, R. Moser and N Roberts, "A class of discontinuous Petrov-Galerkin methods. Part V: Solution of 1D Burgers and navier-Stokes Equations," ICES Report 2010-25, submitted to J. Comp. Phys.
- N,V. Roberts, D. Ridzal, P.N. Bochev, L. Demkowicz, K.J. Peterson and Ch. M. Siefert, "Application of a Discontinuous Petrov-Galerkin Method to the Stokes Equations," CSRI Summer Proceedings 2010.
$>$ L. Demkowicz and J. Gopalakrishnan, "Analysis of the DPG Method for the Poisson Equation," ICES Report 2010-37, submitted to SIAM J. Num. Anal.

Happy Birthday Lars, Rick and Joe !!

