
Viscosities of liquid CdTe near melting point from ab initio

molecular dynamics calculations

Eunjung Ko, M. M. G. Alemany, and James R. Chelikowsky

Department of Chemical Engineering and Materials Science

Minnesota Supercomputing Institute

University of Minnesota, Minneapolis, Minnesota 55455

Abstract

Recent experimental results for the viscosity of liquid CdTe exhibit disparate behavior as a func-

tion of temperature. While some measurements show the expected Arrhenius like behavior, other

measurements show an anomalous temperature dependence indicating an increase in viscosity with

increasing temperature. We present ab initio molecular dynamics simulations of liquid cadmium

telluride near its melting point and use the Stokes-Einstein relation to extract values of the viscosity

constant. We find no anomalous behavior; the viscosity decreases monotonically with temperature

and is consistent with an Arrhenius like behavior. Although calculated values are slightly smaller

than those measured, the predicted activation energy agrees well with experiment.
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Among II-VI semiconductors, CdTe is of special technological interest. Cadmium telluride

and its alloys are used to fabricate a wide array of electro-optic devices, high performance

infrared detectors and room-temperature radiation detectors. For example, infrared sensors

based on epitaxial layers of Hg1−xCdxTe (HgCdTe) typically are grown on single-crystal

CdTe substrate. In order to continue the advance of such applications, large, high-quality

single crystals of CdTe are required. However, the growth of such material has proven

to be extremely difficult.1,2 These difficulties have motivated growth experiments in the

microgravity environment of earth orbit.3 A more complete understanding of the physics of

the melt state should provide important information to solve such technical difficulties of

CdTe growth. Liquid CdTe (l-CdTe) also presents an interesting subject for fundamental

studies.

One of the most important properties of a liquid is its shear viscosity. Experiments on

the viscosity of l-CdTe have yielded very different behavior for the viscosity. Glazov and

Chizhevskaya4 reported results for the viscosity of l-CdTe in pioneering work done in the late

1960’s on liquid semiconductors. They measured a monotonic decrease of the viscosity with

temperature following an Arrhenius-like behavior. This behavior is common for most liquids.

In contrast, Shcherbak et al.5 found an anomalous trend of the viscosity with temperature.

They found an increase with the viscosity with increasing temperature above the melting

point. Starting at a temperature close to the melting point, Shcherbak et al. found a

two-fold increase in the viscosity when the temperature was increased approximately 20 K.

Here we examine the behavior of the viscosity of l-CdTe as a function of temperature. In

particular, we use ab initio molecular dynamics simulations to predict the viscosity within

the experimental temperature range. Unlike earlier simulations of liquids, it is possible to

calculate quantum interatomic forces, which can be incorporated in a molecular simula-

tion. Until recently such simulations were very difficult and computationally demanding.

However, ab initio simulations do not require ad hoc descriptions of the interatomic forces.

Charge transfer, coordination changes and rehybridization are accurately reproduced with

quantum forces. The required forces were computed quantum mechanically from ab initio

pseudopotentials constructed within the local density approximation.?

We used a plane-wave pseudopotential representation, with norm-conserving

pseudopotentials6 for both Cd and Te species and with a plane-wave energy cutoff of 12 Ry.

The Cd pseudopotential was constructed using the “partial core” approximation7 to account
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for the outer 4d states. We considered a system of 64 atoms in a cubic cell with periodic

boundary conditions. Characterization of the valence charge density was limited to the

Γ point of the Brillouin zone. The mass density was fixed at the experimental value8 for

l-CdTe: ρ = 5.64 g/cm3. Additional computational details can be found in the literature.?

We prepared the liquid ensemble using Langevin dynamics.9 The equations of motion of

the ions were integrated for a time step of 4 fs using the Beeman algorithm.10 Starting from

a random configuration, the system was thermalized at a temperature of 6000 K for 2 ps in

order to eliminate any memory effect from the initial configuration. After the randomization

process at the elevated temperature, we cooled the system to a temperature of 1370 K for

2.5 ps. The target temperature was fixed to be near the melting point of l-CdTe, 1373 K.

We gradually reduced the Langevin viscosity associated with the heat bath to zero over a

time period of 1 ps. This transforms our canonical ensemble to a microcanonical ensemble.

Once the system is converted to a microcnanonical ensemble, we need to establish the

actual temperature. We do this by averaging over the kinetic energy of the system using

the equipartition theorem.

Once we have established the microcanonical temperature, we run the simulation for

approximately 2 to 5 ps. Over this time interval, we can obtain the required atomic dis-

placements for an accurate determination of the viscosity. Typically, we run the system for

a given time interval and then reheat the the system to 3000 K, thermalize it at 3000 K

over a 2.5 ps interval, and quench it again to the desired temperature. This eliminates any

memory of the previous run.

Owing to the stochastic nature of this process, the heat bath temperature can be different

in the transformation from canonical to microcanonical ensembles. However, the resulting

temperatures from the kinetic energy are close to the target temperature. We examined five

temperature regimes spanning over 200 K: 1324 K, 1349 K, 1411 K, 1468 K, and 1554 K.

Using these ensembles, we can calculate a number of properties of the melt such as the

structure factors, the diffusion constants and the viscosity. We obtain the partial static

structure factors, Sαβ(q), from standard relations:11

Sαβ(q) =
1√

NαNβ

〈
Nα∑
i=1

Nβ∑
j=1

exp[−iq · (Ri,α −Rj,β)]〉 , (1)

(α, β = Cd, Te), where Nα is the number of paricles of species α, Ri,α is the position

of particle i of that species, and q is a wave vector compatible with the periodic boundary
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conditions [i.e., q = (2π/L)(nx, ny, nz), where nx, ny, and nz are intergers and L is the length

of the cubic supercell]. The angular brackets denote average over both the trajectories of the

particles and over all the wave vectors q with the same modulus q. From the partial structure

factors, SCdTe(q), SCdCd(q), and STeTe(q), we can calculate the total structure factor, S(q),

as weighted by neutron-scattering factors:

S(q) =
bCd

2SCdCd(q) + 2bCdbTeSCdTe(q) + bTe
2STeTe(q)

bCd
2 + bTe

2 , (2)

where bCd and bTe are the corresponding experimental neutron scattering lengths (bCd = 0.51

and bTe = 0.58).12

In Fig. 1, we compare the computed total structure factor S(q) for l-CdTe at T = 1411 K

with x-ray data obtained by Prigent et al.13 at T = 1390 K. Our calculated total structure

factor was smoothed with a Gaussian with a full width at half maximum of 0.1 Å−1. The

agreement between theory and experiment for the first, third, and fourth peaks at ∼ 1.7 Å,

∼ 3.0 Å, and ∼ 5.0 Å is quite good. The intensity of the first three peaks of the theoretical

total structure factor S(q) is somewhat sensitive to the temperature.14 For example, as the

temperature decreases, the intensity of the second peak also decreases relative to the first

and third peaks. Thus, it is possible that a small temperature change in the simulation may

bring the simulation into better agreement with experiment. In contrast, a ∼10% change in

the volume does not change the nearest neighbor coordination.14

We also calculated the self-diffusion constants from the mean-square displacements using

Einstein’s formula, and from the normalized velocity autocorrelation functions using the

Green-Kubo relation.11 The diffusion constant of species α is given by the mean-square

displacement from

Dα = lim
t−>∞

〈[Rα(t)]2〉
6t

, (3)

where α = Cd, Te. The mean-square displacement at time t is given by

〈[Rα(t)]2〉 =
1

Nα

Nα∑
i=1

[Ri,α(t)−Ri,α(0)]2 , (4)

where the initial time may be set arbitrarily, provided the simulation is run sufficiently long.

In Figure 2 (inset), we plot the mean-square displacement as a function of time for Cd

and Te atoms at the temperature of 1411 K. We followed the trajectory of each atom in

the liquid for ∼ 1.2 ps by averaging over time origins for 3.2 ps. From the slopes of both
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curves, we obtain DCd = 11.3×10−5 cm2/s and DTe = 5.8×10−5 cm2/s at the temperature

of 1411 K. Table 1 shows the diffusion constants for the five different temperature regimes.

Our theoretical diffusion constant for Te atom near the melting point, 1373 K, agrees well

with available experimental data,8 DTe = 5.0×10−5 cm2/s.

We also calculated the normalized velocity autocorrelation function Zα(t) for species α

defined as

Zα(t) =
〈vi,α(t) · vi,α(0)〉
〈vi,α(0) · vi,α(0)〉

, (5)

where vi,α(t) is the atomic velocity of the ith atom of that species at time t. The angular

brackets denote an average over all atoms and over different time origins. The diffusion

constant can be calculated as

Dα =
kBT

mα

∞∫
0

Zα(t)dt, (6)

where mα is the mass of an atom of species α, kB is the Boltzmann constant, and T is the

temperature calculated from the kinetic energy of the system. Plots of ZCd(t) and ZTe(t) at

T = 1411 K are presented in Fig. 2.

As shown in Fig. 3 and Table 1, the values of the diffusion constants obtained from

the velocity autocorrelation functions agree to within 5-10 % those from the mean-square

displacements. In principle, the autocorrelation functions and mean square displacements

should yield identical numbers. In practice, there are differences because of finite sample

sizes and simulation times. We note that diffusion constants of Cd and Te increase linearly

with respect to temperature between T = 1300 K and 1600 K.

The diffusion constant and the shear viscosity, η, are connected through the Stokes-

Einstein formula,11

η =
kBT

2πaD
(7)

where D = (DCd + DTe)/2 and a is the effective “diameter” of the diffusing particles. We

define the particle size, a, as the first maximum in the total pair correlation function. The

Stokes-Einstein relation is exact only for the Brownian motion of a macroscopic particle.

However, molecular dynamics simulations of liquids have demonstrated that the viscosity

as calculated from the Green-Kubo and generalized Einstein formulas15 or the transverse-

current autocorrelation function16 is consistent with that obtained from the Stokes-Einstein

relation.
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Our calculated values for the shear viscosity are shown in Table 1. The theoretical

shear viscosity of l-CdTe decreases gradually with increasing temperature as expected. The

kinematic viscosity is given as ν = η/ρ, where ρ is the mass density of the melt. From the

mass density used in our simulations, we estimated the kinematic viscosity given in Table 1.

In Fig. 4, we compare the calculated and measured kinematic viscosities. The temperature

dependence of the viscosity is usually expressed as simple Arrhenius relationship,17

ν = νo exp(−E/RT ), (8)

where E is an activation energy of viscous flow and R is the gas constant.

The experimental data in Fig. 4 from Shcherbak et al.5 is not consistent with an Arrhenius

behavior, whereas the work of Glazov and Chizhevskaya4 is. Our work is clearly at variance

with Shcherbak et al. and in fairly good agreement with Glazov and Chizhevskaya. The

calculated activation energy assuming an Arrhenius behavior is approximately 28.5 kJ/mol.

The experimental activation energy from Glazov and Chizhevskaya is 28.9 kJ/mol. However,

the magnitude of the calculated viscosity is smaller than the Glazov and Chizhevskaya

experimental values.

In summary, we report the structure factor and temperature dependence of the diffusion

constants and shear viscosity of l-CdTe near its melting point from molecular dynamics

simulations based on quantum forces. The structure factor agrees well with experiment.

The values of the diffusion constants calculated from the mean square displacements and

velocity autocorrelation functions are mutually consistent. The variation of the viscosity

with temperature follows an Arrhenius-type behavior with an activation energy in good

agreement with that extracted from experiments. Our results resolve a recent controversy

that arise from disparate experimental results on the viscosity near the melting point of this

important liquid alloy.
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FIG. 1: Total structure factor of l-CdTe near the melting point. The continuous curve represents

our ab initio results at T = 1411 K, the dashed curve experimental data at T = 1390 K from

Ref. 13.

FIG. 2: Normalized velocity autocorrelation functions and mean-square displacements (inset) of l-

CdTe at T = 1411 K as obtained from our ab initio molecular dynamics simulation. The continuous

curve corresponds to Cd, the dashed curve to Te.

FIG. 3: Diffusion constants of l-CdTe at different temperatures near the melting point as obtained

from our ab initio molecular dynamics simulation. The circles correspond to Cd, the squares to Te.

Diffusion constants calculated from the mean square displacements and velocity autocorrelation

funtions are represented by solid and open symbols, respectively.

FIG. 4: Kinematic viscosity of l-CdTe at different temperatures near the melting point. The

diamonds correspond to theoretical data as obtained from our ab initio molecular dynamics simu-

lation, the squares and circles correspond to experimental data from Ref 4 and Ref 5, respectively.

The solid and dashed lines represent the Arrhenius fit (see text) to theoretical and experimental

data (Ref 4).
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TABLE I: Values of the diffusion constant (in 10−5 cm2/s), shear viscosity (in mPa s) and kinematic

viscosity (in cS) at different temperatures (in K), as obtained from our ab initio molecular dynamics

simulation of l-CdTe near the melting point. MSD stands for the diffusion constant calculated from

the mean square displacement, and VAF from the velocity autocorrelation function.

T DCd DTe η ν

MSD VAF MSD VAF

1554 15.9 17.5 7.7 8.5 1.02 0.18

1468 13.6 14.4 7.4 7.7 1.06 0.19

1411 11.3 11.5 5.8 6.5 1.26 0.22

1349 10.6 10.9 5.4 5.7 1.30 0.23

1324 9.1 10.0 4.7 4.8 1.50 0.27
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