The computation of a large number *nev* of eigenvalues and eigenvectors of the Hamiltonian is still an outstanding problem.

Preconditioners through Davidson methods helpful only for a few tens of lowest eigenvalues.

Orthogonalization is the limiting factor of classical Davidson methods.

We have developed theory and software based on an unpreconditioned, dynamic inner-outer Jacobi-Davidson. We call it JDQMR.

Pros: No orthogonalization against converged eigenvalues during inner steps. Scales almost linearly with nev (not nev^2)

Cons: Convergence deteriorates for interior eigenvalues, but very slowly

100 lowest evals	Davidson	ARPACK	JDQMR
of $ abla^2$	(no precond)		
Matrix-vector products	51673	4612	60462
Time (sec)	1533	826	237

