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Current & recent team members team: (CS side)

• Costas Bekas Post-Doc
• Yunkai Zhou Post-Doc
• Susanne Shontz Post-Doc
• Shiv Gowda Masters student

[Now at NEC, Houston]
• Emmanuel Lorin

de La Grandmaison Post-doc [Now in Montreal]
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What we do:

II We develop Numerical Algorithms

II We test them along with materials science researchers

II We optimize them

II We install them in materials code (s) – e.g., PARSEC

II .. a few years later ...
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What we do:

II We develop Numerical Algorithms

II We test them along with materials science researchers

II We optimize them

II We install them in materials code (s) – e.g., PARSEC

II .. a few years later ...
We throw them away and repeat
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What algorithms?

II Algorithms for solving eigenvalue problems

II Find alternatives [avoid eigenvectors, eigenvalues]

II Solve various related computational problems [TDDFT,
computation of dielectric matrix, ...]
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Electronic structures and Schrödinger’s equation

II Determining matter’s electronic structure can be a major
challenge:

Number of particules is large [a macroscopic
amount contains ≈ 1023 electrons and nuclei] and
the physical problem is intrinsically complex.

II Solution via the many-body Shrödinger equation:
HΨ = EΨ

II In original form the above equation is very complex
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II Hamiltonian H is of the form :
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II Ψ = Ψ(r1, r2, . . . , rn, R1, R2, . . . , RN) depends on co-
ordinates of all electrons/nuclei.

II Involves sums over all electrons / nuclei and their pairs

II Note ∇2Ψ is Laplacean of Ψ = sum of second deriva-
tives of Ψ in each direction. Represents kinetic energy.
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A hypothetical calculation: (dont try this at home)

II 10 Atoms each having 14 electrons [Silicon]

II ... a total of 15*10= 150 particles

II ... Assume each coordinate will need 100 points for
discretization..

II ... you will get

# Unknowns = 100
︸ ︷︷ ︸

part.1
× 100

︸ ︷︷ ︸

part.2
× · · · × 100

︸ ︷︷ ︸

part.150
= 100150

II Methods based on this basic formulation are limited to
a few atoms.
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Several approximations/ theories used

Problem can be viewed from the angle of optimization:
Find Ψ Minimize energy

< Ψ |H | Ψ >

< Ψ | Ψ >

.. or from the angle of eigenvalue problems:
Find eigenfunction Ψ associated with
smallest eigenvalue of H

II Methods have been developed on both camps

II Our camp: eigenvalue problems
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A brief history of diagonalization methods

II First: what is an eigenvalue problem?
Given a matrix A, find a scalar λ and
a nonzero vector x such that

Ax = λx

Quiz: what are the main uses of eigenvalues/ eigenvectors
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Eigenvalue Problems. Their origins

• Structural Engineering [Ku = λMu]

• Stability analysis [e.g., electrical networks, mechanical
system,..]

• Bifurcation analysis [e.g., in fluid flow]

• Electronic structure calculations [Shrödinger equation..]

• Application of new era: page ranking on the world-wide
web.
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Types of Problems:

• Compute a few λi ’s with smallest or largest real parts;

• Compute all λi’s in a certain region of C;

• Compute a few of the dominant eigenvalues;

• Compute all λi’s.

Our problem: A is symmetric real – so

its eigenvalues are real, and we want to
compute the lowest k, where k represents
the number of occupied states.

II k can be in the hundreds or thousands

II A can be very large up to a few Millions - currently.
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Eigenvalues of dense matrices

II Early days: compute the characteristic polynomial.

II Works well “by hand” for dimension of up to 5 or so..

II Not viable for serious calculations

II Work in the 40’s and 50s concentrated on reducing the
problem into an easy one: triadiagonal / or Hessenberg
form (nonsymmetric matrices).
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II Characteristic polynomials easier to compute..
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Breakthroughs: The LR and QR algorithms

II Discovered in 1959 (LR) and 1961 (QR).

II Complicated to understand theoretically

II QR was held “secret” for a few years given its impor-
tance.

II Both QR and LR are very economical for tridiagonal
matrices.
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A brief history of eigenvalues - cont.

II 1965: Major book in computing eigenvalues by J. Wilki-
son: The “bible” on eigenvalue problems

II 1971: volume by Wilkinson and Reinsch “handbook for
automatic computations”, Linear algebra. Published 1st
programs – in Algol... a now defunct language

II By 1975: EISPACK project. Translate Wilkinson & Rein-
sch volume in FORTRAN IV. Tremendous impact

II Later came LINPACK [linear equations]

II and much later came LAPACK = combined the two..
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Current state of the art for dense computations:

II Consider the symmetric case only. Then

II Reduce A to tridiagonal form

II Use QR-alg. on tridiag matrix.

II Order n3 calculation –

II software: LAPACK

ITAMIT 07-29-05 17

17



Quiz: Suppose cost is 14n3 and n = 106, and you have
a very powerful machine at home which can store the ma-
trix and which delivers an operation every nanosecond (1
Gflop machine). How long would it take to compute the
eigenvalues of A?
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Quiz: Suppose cost is 14n3 and n = 106, and you have
a very powerful machine at home which can store the ma-
trix and which delivers an operation every nanosecond (1
Gflop machine). How long would it take to compute the
eigenvalues of A?

Answer:

444 years!
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Effective methods exploit sparsity

II Most methods exploit the fact that a product of a sparse
matrix by a vector is very inexpensive [Order n]

II Suppose for the sake of argument that we now have an
algorithm that takes exactly n2 operations to compute one
eigenvector.

II Same question as before for one eigenvector
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Quiz: Suppose cost is n2 and n = 106, and you have a
very powerful machine at home which can store the ma-
trix and which delivers an operation every nanosecond (1
Gflop machine). How long would it take to compute one
eigenvector of A?
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Quiz: Suppose cost is n2 and n = 106, and you have a
very powerful machine at home which can store the ma-
trix and which delivers an operation every nanosecond (1
Gflop machine). How long would it take to compute one
eigenvector of A?

Answer:

1000 sec = 16.667 mn!
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Environments used throughout the project:

• Initially: Cray YMP [93]

• Cluster of SGI workstations

• CM5 [1994-1996]

• IBM SP2 [Using PVM]

• Cray T3D [Combining PVM + MPI] – around 1996-1997

• Cray T3E [using MPI] – 1997

• IBM SP with +256 nodes – 1998+

• IBM SP3 / SGI Altix currently
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