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Computational Materials Science Target Problem

…predict the properties of materials…

How?
 AB INITIO calculations: Simulate the behavior of materials at
the atomic level, by applying the basic laws of physics:
Quantum Mechanics

What do we (hope to) achieve?
 Explain the experimentally established properties of materials
 Engineer new materials with desired properties

Applications:…numerous (some include)
 Semiconductors, synthetic light weight materials
 Drug discovery, protein structure prediction
 Energy: alternative fuels



In this talk

 Introduction to the mathematical formulation of ab initio calculations…
 in particular…the Density Functional Theory (DFT)…formulation
 Identify the computationally intensive “spots”… eigenvalue calculations

Large scale eigenvalue problems are central…
 Symmetric/Hermitian problems
 very large number of eigenvalues/vectors required…so
 reorthogonalization (Gram-Schmidt) and synchronization
(barrier/join) costs dominate…
 limiting the feasible size of molecules under study

Alternative…Automated Multilevel Substructuring (AMLS)
 Significantly limits reorthogonalization costs…
 can attack very large problems…when O(1000) eigs. are required…
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Mathematical Modelling: The Wave Function

 We seek to find the steady state of the electron distribution

 Each electron ei is described by a corresponding wave function ψi …
 ψi is a function of space (r)…in particular it is determined by

 The position rk of all particles (including nuclei and electrons)
 It is normalized in such a way that

 Max Born’s probabilistic interpretation: Considering a region D, then

…describes the probability of electron ei being in region D. Thus: the
distribution of electrons ei in space is defined by the wave function ψi
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Mathematical Modelling: The Hamiltonian

 Steady state of the electron distribution:
 it is such that it minimizes the total energy of the molecular
system…(energy due to dynamic interaction of all the particles
involved  because of the forces that act upon them)

Hamiltonian H of the molecular system:
 Operator that governs the interaction of the involved particles…
 Considering all forces between nuclei and electrons we have…

Hnucl Kinetic energy of the nuclei
He Kinetic energy of electrons
Unucl Interaction energy of nuclei (Coulombic repulsion)
Vext Nuclei electrostatic potential with which electrons interact
Uee Electrostatic repulsion between electrons
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Mathematical Modelling: Schrödinger's Equation

Let the columns of Ψ:

hold the wave functions corresponding the electrons…Then it holds that

 This is an eigenvalue problem…that becomes a usual…
 “algebraic” eigenvalue problem when we discretize ψi w.r.t. space (r)
 Extremely complex and nonlinear problem…since
 Hamiltonian and wave functions depend upon all particles…
 We can very rarely (only for trivial cases) solve it exactly…

Variational Principle (in simple terms!)
Minimal energy and the corresponding electron distribution amounts to
calculating the smallest eigenvalue/eigenvector of the Schrödinger
equation

Large scale eigenvalue problems in electronic structure calculations 

C. Bekas: ITAMIT Seminar



Schrödinger's Equation: Basic Approximations

Multiple interactions of all particles…result to extremely complex
Hamiltonian…which typically becomes huge when we discretize

Thus…a number of reasonable approximations/simplifications have been
considered…with negligible effects on the accuracy of the modeling:

 Born-Oppenheimer: Separate the movement of nuclei and
electrons…the latter depends on the positions of the nuclei in a
parametric way…(essentially neglect the kinetic energy of the nuclei)

 Pseudopotential  approximation: Nucleus and surrounding core
electrons are treated as one entity

 Local Density Approximation: If electron density does not change
rapidly w.r.t. sparse (r)…then electrostatic repulsion Uee is
approximated by assuming that density is locally uniform
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Density Functional Theory

High complexity is mainly due to the many-electron formulation of ab initio
calculations…is there a way to come up with an one-electron formulation?

 Key Theory
 DFT: Density Functional Theory (Hohenberg,Kohn,Sham)

 The total ground energy of a molecular system is a functional of
the electronic density…(number of electrons in a cubic unit)
The energy of a system of electrons is at a minimum if it is an
exact density of the ground state!

 This is an existence theorem…the density functional always exists
 …but the theorem does not prescribe a way to compute it…

 This energy functional is highly complicated…
 Thus approximations are considered…concerning:

 Kinetic energy and
 Exchange-Correlation energies of the system of electrons
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Density Functional Theory: Formulation (1/2)

Equivalent eigenproblem:

Kinetic energy of electron ei

Total potential that acts on ei at position r

Energy of the i-th state of the system

One electron wave function

Charge density at position r
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Density Functional Theory: Formulation (2/2)

Furthermore:

Exchange-Correlation potential…function of the charge density ρ

Coulomb potential from valence electrons

Potential due to nuclei and core electrons

Non-linearity: The new Hamiltonian depends upon the charge density ρ
while ρ itself depends upon the wave functions (eigenvectors) ψi

Some short of iteration is required until convergence is achieved!

Large scale eigenvalue problems in electronic structure calculations 

C. Bekas: ITAMIT Seminar



Self Consistent Iteration in PARSEC
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S.C.I in PARSEC: Computational Considerations
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S.C.Iin PARSEC: Computational Considerations

Conventional approach:
 Solve the eigenvalue problem (1)…and compute the charge densities…
 This is a tough problem…many of the smallest eigenvalues…deep into
the spectrum are required! Thus…
 efficient eigensolvers have a significant impact on electronic structure
calculations!

Alternative approach:
 The eigenvectors ψi are required only to compute ρk(r)
Can we instead approximate charge densities without eigenvectors…?
 Yes…!
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Computational Considerations in Applying
Eigensolvers for Electronic Structure Calculations
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The Eigenproblem

Hamiltonian Characteristics
 Discretization: High-order finite difference scheme…leads to
 Large Hamiltonians!…typically N>100K…with significant…
 number of nonzero elements (NNZ)>5M…
 Hamiltonian is Symmetric/Hermitian…thus the eigenvalues are real
numbers…some smallest and some larger than zero.

Eigenproblem Characteristics (why is this a tough case?)
 We need the algebraically smallest  (leftmost) eigenvalues (and vectors)
 How many? Typically a large number of them. Depending upon the
molecular system under study:

 for standard spin-less calculations →  SixHy: (4x + y)/2
 i.e. for the small molecule Si34H36 we need the 86 smallest
eigenvalues…

 For large molecules, x,y>500 (or for exotic entities…quantum dots)
thousands of the smallest eigenvalues are required….
Using current state of the-art-methods we need thousands of CPU hours
on DOE supercomputers…and we have to do that many times!
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Methods for Eigenvalues (basics only!)

Eigenvalue Approximation from a Subspace

Consider the standard eigenvalue problem:

and let V be a thin N x k (N>>k) matrix…then

approximate the original problem with:

Observe that:
 Selecting V to have orthogonal columns …VTV = I … but it is expensive
to come up with an orthogonal V
 Set H = VTAV… then H is k x k …much smaller than N x N
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Subspace Methods

H is much smaller
than A…use

LAPACK for H

How to compute orthogonal V ?
 For a non-symmetric matrix A…use Gramm-Schmidt (Arnoldi)…
 For a symmetric matrix A (our case) use Lanczos…
 Other approaches available (i.e. Jacobi-Davidson) but still some sort of
Gramm-Schmidt is required…

REMINDER
We  need many eigenvalues/vectors O(1000)…thus V may not be that thin!!!
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Symmetric Problems: Lanczos

Basic property
 Theoretically…(assuming no round-off errors)…Lanczos can build a very
large orthogonal basis V requiring in memory only 3 columns of V at each
step!

Lanczos
1. Input: Matrix A, unit norm starting vector v0, β0 = 0, # k
2. For j = 1,2,…,k Do

3. wj = Avj MATRIX VECTOR
4. wj = wj - βj vj-1 DAXPY
5. αj = (wj, vj) DOT PRODUCT
6. wj = wj - αj vj DAXPY
7. βj+1 = ||wj||2. DOT PRODUCT
8. If βj+1 = 0 then STOP
9. vj+1 = wj / βj+1 DSCAL

10. EndDO

NO SYNC.
NO SYNC.
SYNC. -BCAST
NO SYNC.
SYNC. - BCAST

NO SYNC.

Large scale eigenvalue problems in electronic structure calculations 

C. Bekas: ITAMIT Seminar



Lanczos in Finite Arithmetic…

Round-off errors
 Lanczos vectors vi quickly loose orthogonality…so that
 VTV is no longer orthogonal…thus
 We need to check if vj is ⊥ to previous vectors 0,1,…,j-1
If NOT … reorthogonalize it against previous vectors (Gramm-Schmidt)

Lanczos
1. Input: Matrix A, unit norm starting vector v0, β0 = 0, # k
2. For j = 1,2,…,k Do

3. wj = Avj
4. wj = wj - βj vj-1
5. αj = (wj, vj)
6. wj = wj - αj vj
7. βj+1 = ||wj||2.
8. If βj+1 = 0 then STOP
9. vj+1 = wj / βj+1

10. EndDO

ORTHOGONALITY IS LOST
HERE…SO THESE STEPS ARE

REPEATED AGAINST ALL
PREVIOUS VECTORS…

SELECTIVE REORTH IS ALSO
POSIBLE (SIMON, LARSEN)
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Practical Eigensolvers and Limitations

ARPACK (Sorensen-Lehoucq-Yang): Restarted Lanczos
 Remember that O(1000) eigenvalues/vectors are required…thus
 we need a very long basis V…k = twice the number of eigenvalues which
 will result in a large number of reorthogonalizations…
 Synchronization costs – Reorthogonalization costs – and Memory costs
become intractable for large problems of interest…

Shift-Invert Lanczos (Grimes et all) – Rational Krylov (Ruhe)
 work with matrix (A-σi I)-1 instead…
 compute some of the eigenvalues close to σi each time…thus a smaller
basis is required each time…BUT
 many shifts σi are required…
 cost of working with the different “inverses” (A-σi I)-1 becomes
prohibitive for (practically) large Hamiltonians…

We need alternative methods that can build large projection bases without the
reorthogonalization-synchronization costs
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Automated Multilevel Substructuring

Component Mode Synthesis (CMS) (Hurty ’60, Graig-Bampton ’68)
Well known alternative to Lanczos type methods. Used for many years in
Structural Engineering. But it too suffers from limitations due to problem
size…

AMLS, (Bennighof, Lehoucq, Kaplan and collaborators)
• Multilevel CMS method (solves the dimensionality problem)
• Automatic computation of substructures (easy application)
• Approximation: Truncated Congruence Transformation
• Builds very large projection basis without reorthogonalization
• Successful in computing  thousands of eigenvalues in vibro-acoustic
   analysis (N>107) in a few hours on workstations (Kropp–Heiserer, 02)

Spectral Schur Complements  (Bekas, Saad)
Significantly improves AMLS accuracy…suitable for electronic structure
calculations
(unlike AMLS) …framework for the iterative refinement of the
approximations
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Ω1 Ω2

Subdivide Ω into 2 subdomains:
Ω1 and Ω2

Component Mode Synthesis: a model problem

Y

X

Consider the model problem:

on the unit square Ω. We wish to
compute  smallest eigenvalues.

Component Mode Synthesis

• Solve problem on each Ωi

• “Combine” partial solutions
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AMLS: Multilevel application

S1

E1

E1
*

B2

B1

S2

S3

Scheme applied recursively.
Resulting to thousands of
subdomains. Successful in
computing thousands smallest
eigenvalues in vibro-acoustic
analysis with problem size N>107

(Kropp – Heiserer BMW)
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AMLS: Example

Example: Container ship, 35K degrees of freedom
(Research group of prof. H. Voss, T. U. Hamburg, Germany)
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AMLS: Example

Example: Container ship, 35K degrees of freedom
(Research group of prof. H. Voss, T. U. Hamburg, Germany)
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AMLS: Example

AMLS: Substructure tree (Kropp-Heiserer, BMW)
 Multilevel parallelism…
 Both Top-Down and Bottom-Up implementations are possible…
 At each node we need to solve a linear system…
 Multilevel solution of linear systems…level k depends-benefits from level k+1
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Problem Set…AMLS v.s. Standard Methods

Application Domains,
Kropp-Heiserer, 02
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Implementation Issues – Trilinos

ab initio calculations:…many ingredients required for successful techniques
 Mesh generation…discretization
 Visualization of input data…results…geometry
 Efficient data structures-communicators for parallel computations
 Efficient (parallel) Matrix-Vector  and inner products
 Linear system solvers
 State-of-the-art eigensolvers…

A unifying software development environment will prove to be very useful
 ease of use…
 reusability…(object oriented)
 portable…

TRILINOS http://software.sandia.gov/trilinos
 software multi-package…developed at SANDIA (M. Heroux)
 modular…no need to install everything in order to work!
 Capabilities of LAPACK, AZTEC, Chaco, SuperLU, etc…combined
 very active user community…ever evolving!
 ease of use…without sacrificing performance
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Conclusions

Large Scale Challenges in Computational Materials Science
 In DFT eigenvalue  calculations dominate…
 …many O(1000) eigenvalues/vectors required…
 …easily reaching and exceeding the limits of state-of-the-art
traditional solvers
 AMLS appears as an extremely attractive alternative…however
accuracy requirements and efficient parallel implementation is still
under development

Many open problems in ab initio calculations…one of the most active fields of
research today!
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