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Introduction
Derivation of the SWE

The Shallow Water Equations (SWE)

What are they?

The SWE are a system of hyperbolic/parabolic PDEs governing fluid
flow in the oceans (sometimes), coastal regions (usually), estuaries
(almost always), rivers and channels (almost always).

The general characteristic of shallow water flows is that the vertical
dimension is much smaller than the typical horizontal scale. In this
case we can average over the depth to get rid of the vertical
dimension.

The SWE can be used to predict tides, storm surge levels and
coastline changes from hurricanes, ocean currents, and to study
dredging feasibility.

SWE also arise in atmospheric flows and debris flows.
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The SWE (Cont.)

How do they arise?

The SWE are derived from the Navier-Stokes equations, which
describe the motion of fluids.

The Navier-Stokes equations are themselves derived from the
equations for conservation of mass and linear momentum.
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Derivation of the Navier-Stokes Equations
Boundary Conditions

SWE Derivation Procedure

There are 4 basic steps:

1 Derive the Navier-Stokes equations from the conservation laws.

2 Ensemble average the Navier-Stokes equations to account for the
turbulent nature of ocean flow. See [1, 3, 4] for details.

3 Specify boundary conditions for the Navier-Stokes equations for a
water column.

4 Use the BCs to integrate the Navier-Stokes equations over depth.

In our derivation, we follow the presentation given in [1] closely, but we
also use ideas in [2].
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Conservation of Mass

Consider mass balance over a control volume Ω. Then

d

dt

∫
Ω

ρ dV︸ ︷︷ ︸
Time rate of change
of total mass in Ω

= −
∫
∂Ω

(ρv) · n dA︸ ︷︷ ︸
Net mass flux across

boundary of Ω

,

where

ρ is the fluid density (kg/m3),

v =

u
v
w

 is the fluid velocity (m/s), and

n is the outward unit normal vector on ∂Ω.
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Derivation of the Navier-Stokes Equations
Boundary Conditions

Conservation of Mass: Differential Form

Applying Gauss’s Theorem gives

d

dt

∫
Ω

ρ dV = −
∫

Ω

∇ · (ρv) dV .

Assuming that ρ is smooth, we can apply the Leibniz integral rule:∫
Ω

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0.

Since Ω is arbitrary,

∂ρ

∂t
+∇ · (ρv) = 0
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Conservation of Linear Momentum

Next, consider linear momentum balance over a control volume Ω. Then

d

dt

∫
Ω

ρv dV︸ ︷︷ ︸
Time rate of

change of total
momentum in Ω

= −
∫
∂Ω

(ρv)v · n dA︸ ︷︷ ︸
Net momentum flux

across boundary of Ω

+

∫
Ω

ρb dV︸ ︷︷ ︸
Body forces
acting on Ω

+

∫
∂Ω

Tn dA︸ ︷︷ ︸
External contact

forces acting
on ∂Ω

,

where

b is the body force density per unit mass acting on the fluid (N/kg),
and

T is the Cauchy stress tensor (N/m2). See [5, 6] for more details
and an existence proof.
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Conservation of Linear Momentum: Differential Form

Applying Gauss’s Theorem again (and rearranging) gives

d

dt

∫
Ω

ρv dV +

∫
Ω

∇ · (ρvv) dV −
∫

Ω

ρb dV −
∫

Ω

∇ · T dV = 0.

Assuming ρv is smooth, we apply the Leibniz integral rule again:∫
Ω

[
∂

∂t
(ρv) +∇ · (ρvv)− ρb−∇ · T

]
dV = 0.

Since Ω is arbitrary,

∂

∂t
(ρv) +∇ · (ρvv)− ρb−∇ · T = 0
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Derivation of the Navier-Stokes Equations
Boundary Conditions

Conservation Laws: Differential Form

Combining the differential forms of the equations for conservation of
mass and linear momentum, we have:

∂ρ

∂t
+∇ · (ρv) = 0

∂

∂t
(ρv) +∇ · (ρvv) = ρb +∇ · T

To obtain the Navier-Stokes equations from these, we need to make some
assumptions about our fluid (sea water), about the density ρ, and about
the body forces b and stress tensor T.
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Sea water: Properties and Assumptions

It is incompressible. This means that ρ does not depend on p. It
does not necessarily mean that ρ is constant! In ocean modeling, ρ
depends on the salinity and temperature of the sea water.

Salinity and temperature are assumed to be constant throughout our
domain, so we can just take ρ as a constant. So we can simplify the
equations:

∇ · v = 0,

∂

∂t
ρv +∇ · (ρvv) = ρb +∇ · T.

Sea water is a Newtonian fluid. This affects the form of T.
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Body Forces and Stresses in the Momentum Equation

We know that gravity is one body force, so

ρb = ρg + ρbothers,

where

g is the acceleration due to gravity (m/s2), and

bothers are other body forces (e.g. the Coriolis force in rotating
reference frames) (N/kg). We will neglect for now.

For a Newtonian fluid,
T = −pI + T̄

where p is the pressure (Pa) and T̄ is a matrix of stress terms.
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The Navier-Stokes Equations

So our final form of the Navier-Stokes equations in 3D are:

∇ · v = 0,

∂

∂t
ρv +∇ · (ρvv) = −∇p + ρg +∇ · T̄,
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The Navier-Stokes Equations

Written out:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(1)

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
=
∂(τxx − p)

∂x
+
∂τxy
∂y

+
∂τxz
∂z

(2)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv 2)

∂y
+
∂(ρvw)

∂z
=
∂τxy

∂x
+
∂(τyy − p)

∂y
+
∂τyz
∂z

(3)

∂(ρw)

∂t
+
∂(ρuw)

∂x
+
∂(ρvw)

∂y
+
∂(ρw 2)

∂z
= −ρg +

∂τxz
∂x

+
∂τyz
∂y

+
∂(τzz − p)

∂z
(4)
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A Typical Water Column

ζ = ζ(t, x , y) is the elevation (m) of the free surface relative to the
geoid.

b = b(x , y) is the bathymetry (m), measured positive downward
from the geoid.

H = H(t, x , y) is the total depth (m) of the water column. Note
that H = ζ + b.
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A Typical Bathymetric Profile

Bathymetry of the Atlantic Trench. Image courtesy USGS.
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Boundary Conditions

We have the following BCs:
1 At the bottom (z = −b)

No slip: u = v = 0
No normal flow:

u
∂b

∂x
+ v

∂b

∂y
+ w = 0 (5)

Bottom shear stress:

τbx = τxx
∂b

∂x
+ τxy

∂b

∂y
+ τxz (6)

where τbx is specified bottom friction (similarly for y direction).
2 At the free surface (z = ζ)

No relative normal flow:

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
− w = 0 (7)

p = 0 (done in [2])
Surface shear stress:

τsx = −τxx
∂ζ

∂x
− τxy

∂ζ

∂y
+ τxz (8)

where the surface stress (e.g. wind) τsx is specified (similary for y
direction).

C. Mirabito The Shallow Water Equations



Introduction
Derivation of the SWE

Derivation of the Navier-Stokes Equations
Boundary Conditions

z-momentum Equation

Before we integrate over depth, we can examine the momentum equation
for vertical velocity. By a scaling argument, all of the terms except the
pressure derivative and the gravity term are small.
Then the z-momentum equation collapses to

∂p

∂z
= ρg

implying that
p = ρg(ζ − z).

This is the hydrostatic pressure distribution. Then

∂p

∂x
= ρg

∂ζ

∂x
(9)

with similar form for ∂p
∂y .
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The 2D SWE: Continuity Equation

We now integrate the continuity equation ∇ · v = 0 from z = −b to
z = ζ. Since both b and ζ depend on t, x , and y , we apply the Leibniz
integral rule:

0 =

∫ ζ

−b

∇ · v dz

=

∫ ζ

−b

(
∂u

∂x
+
∂v

∂y

)
dz + w |z=ζ − w |z=−b

=
∂

∂x

∫ ζ

−b

u dz +
∂

∂y

∫ ζ

−b

v dz −
(

u|z=ζ
∂ζ

∂x
+ u|z=−b

∂b

∂x

)
−
(

v |z=ζ
∂ζ

∂y
+ v |z=−b

∂b

∂y

)
+ w |z=ζ − w |z=−b
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The Continuity Equation (Cont.)

Defining depth-averaged velocities as

ū =
1

H

∫ ζ

−b

u dz , v̄ =
1

H

∫ ζ

−b

v dz ,

we can use our BCs to get rid of the boundary terms. So the
depth-averaged continuity equation is

∂H

∂t
+

∂

∂x
(Hū) +

∂

∂y
(Hv̄) = 0 (10)
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LHS of the x- and y -Momentum Equations

If we integrate the left-hand side of the x-momentum equation over
depth, we get:∫ ζ

−b

[
∂

∂t
u +

∂

∂x
u2 +

∂

∂y
(uv) +

∂

∂z
(uw)] dz

=
∂

∂t
(Hū) +

∂

∂x
(Hū2) +

∂

∂y
(Hūv̄) +

{
Diff. adv.

terms

}
(11)

The differential advection terms account for the fact that the average of
the product of two functions is not the product of the averages.
We get a similar result for the left-hand side of the y -momentum
equation.
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RHS of x- and y -Momentum Equations

Integrating over depth gives us{
−ρgH ∂ζ

∂x + τsx − τbx + ∂
∂x

∫ ζ
−b
τxx + ∂

∂y

∫ ζ
−b
τxy

−ρgH ∂ζ
∂y + τsy − τby + ∂

∂x

∫ ζ
−b
τxy + ∂

∂y

∫ ζ
−b
τyy

(12)
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At long last. . .

Combining the depth-integrated continuity equation with the LHS and
RHS of the depth-integrated x- and y -momentum equations, the 2D
(nonlinear) SWE in conservative form are:

∂H

∂t
+

∂

∂x
(Hū) +

∂

∂y
(Hv̄) = 0

∂

∂t
(Hū) +

∂

∂x

(
Hū2

)
+

∂

∂y
(Hūv̄) = −gH

∂ζ

∂x
+

1

ρ
[τsx − τbx + Fx ]

∂

∂t
(Hv̄) +

∂

∂x
(Hūv̄) +

∂

∂y

(
Hv̄ 2

)
= −gH

∂ζ

∂y
+

1

ρ
[τsy − τby + Fy ]

The surface stress, bottom friction, and Fx and Fy must still determined
on a case-by-case basis.
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