An active concept for limiting injuries caused by air blasts

A R T I C L E I N F O

Article history:
Received 29 July 2008
Received in revised form 6 January 2009
Accepted 12 June 2009
Available online 21 June 2009

Keywords:
Air blasts
Active mitigation
Cellular materials
Deployable structures
Reactive armor

A B S T R A C T

We explore the feasibility of cellular materials concepts for passive and active mitigation of blast overpressures. The passive approach requires a cellular medium that compresses at nominally constant stress and dissipates the kinetic energy acquired by an attached buffer plate. Provided the cellular material is not compressed beyond its densification strain, the transmitted pressure is approximately the dynamic crush strength of the medium. This can be set just below a damage threshold by appropriate selection of the cellular material, its topology and relative density. However, for many realistic blast scenarios, the thicknesses required to avoid excess densification are excessive. The alternative is a deployable, pre-compressed, cellular medium released just prior to the arrival of the blast-created impulse. This accelerates an attached buffer toward the blast and creates momentum opposing that acquired from the blast. Numerical simulations of the fully coupled fluid structure interaction in air show that momentum cancellation is feasible, enabling a protective structure having much smaller volume.

1. Introduction

Explosions in air create intense shock waves capable of transferring large transient pressures and impulses to the objects they intercept [1–3]. The traveling shock comprises a strong positive pulse followed by a weaker rarefaction, Fig. 1. The peak overpressure, p_o, scales as: $p_o \sim \frac{m_{exp}}{R^3}$, with m_{exp} the mass of the explosive and R the distance from the explosion. The pressure-time integral represents the impulse per unit area, I, carried by the shock. The incident wave front is partially reflected at a surface [1–6] amplifying the disturbance that enters a structure. Upon entering a body, the differential displacements set-up in tissues of differing compliance and density can cause tearing of muscle tissue, blood vessels and neurons [7–14]. Studies using animal models exposed to explosions have revealed that both the pressure and duration of the shock affect the probability of injury [15–17]. For detonations of high explosives (with decay time $\sim 0.1–1$ ms), a peak overpressure of 0.3 MPa (three atmospheres) can cause injury to the thorax, while a peak pressure of 1 MPa usually results in death. For the present assessment, we will require that each mitigation concept assures that the transmitted pressure behind a mitigation system never exceeds a threshold, $p_{th} = 0.3$ MPa.

A passive strategy for mitigation entails the use of perforated plates [18], cellular media [19,20] such as polymer, metal or ceramic (pumice granules) foams, and various unconsolidated ballistic fabrics. It will be shown that, for representative loadings, significant mitigation can only be achieved by using excessively bulky or heavy buffer plate systems. For air blasts, these limitations can be overcome through active mitigation concepts in which a cellular material is compressed and then deployed just prior to arrival of the shock disturbance. The key feature of such an active (deployable) strategy is momentum cancellation. Other examples of active concepts can be found in the helicopter industry [21], hydraulic actuator based active impact control (or absorption) [22], and sensor-based pedestrian protection systems [23,24]. A deployable concept based on momentum cancellation utilizing a pre-compressed cellular core sandwich panel is proposed and evaluated by simulations with varying levels of fidelity. To define and support the concept, the basic characteristics of air shocks, and their interactions with static structures, are first summarized. Thereafter, the interactions with moving plates are analyzed and used to chart the velocities of deployable buffers.

2. Impulses, pressures and arrival times

The free-field pressure–time response from an explosion in air is described by,
where $p(x,t)$ is the pressure at a point x and time t, p_0 is the maximum incident overpressure, t_i is the wave decay time and a_0 is the sound speed in air. In this simplified description, the wave propagates to the right within the domain $x/C_0 \leq t$ without changing its shape and reaches the plate at time, $t = 0$. When the (compressed) shock encounters a surface, it is reflected, amplifying the overpressure. For weak shocks in air, the reflection is linear and the reflection coefficient is 2. However, the magnification can be highly non-linear and depends upon the degree of compression of the incident shock and the constitutive response of air. For strong shocks in ideal gases, the theoretical limit for the reflection coefficient is 8. However, values up to 20 have been reported when real gas effects such as the dissociation and ionization of air molecules are considered [1]. Exact calculations of the fluid–structure interaction and the pressures and impulses transferred to the structure require sophisticated coupled Euler–Lagrangian computations. Reasonable estimates can be made for the air blast loading of a rigid plate from empirical expressions developed for freely propagating shocks created by explosions [4], or by software incorporating these relations, such as the ConWep code [6]. For a known explosive material, charge mass and standoff, the code allows determination of the incident and reflected pressures and impulses, as well as the arrival time of the blast wave. It assumes that the interaction of the blast wave with a structure is decoupled. Coupled fluid-structure interaction effects on the air-blast loading are described elsewhere [25–30].

In the ensuing study, potential mitigation strategies are assessed for a model problem consisting of 10 kg of a high explosion (TNT) at a 1–10 m standoff. The relevant ConWep computations of peak pressure, impulse and arrival time as a function of range are plotted in Fig. 2.

3. The passive concept

The use of cellular materials for mitigation is conceptually straightforward. Between the blast and the structure to be protected, an intervening medium is used that reduces the pressure from $p_0 \rightarrow p_{th}$. This medium must be capable of large volume

![Fig. 1. The temporal variation of the pressure as an explosively created air shock propagates through a measurement point. The initial compressive phase is followed by a weak rarefaction.](image)

![Fig. 2. ConWep calculations of the pressure and impulse when a blast due to a 10 kg TNT explosion reflects from a rigid surface: (a) the incident and reflected pressure, (b) the incident and reflected impulse, (c) The time of arrival of the shock as a function of distance from the source.](image)
decrease at essentially constant pressure (Fig. 3). Solids and fluids are not suitable because they are incompressible. The only materials having the appropriate characteristic are low density cellular solids such as reticulated polymers, metal foams [19,20], partially pre-crushed honeycombs [31] and certain lattice solids [32] with low relative density, \(\rho \) (in the 1–10% range, i.e. with pore volume fractions of 90–99%). Examples of the topologies of some of the many candidates are schematically shown in Fig. 4.

A rectification scheme is required before the blast enters the cellular medium. The preferred approach is depicted in Fig. 3. A buffer plate, with a mass/area, \(m_p \), is positioned to face the blast and the compressible material is mechanically attached. The buffer acquires a momentum per area, \(M \), to the transmitted impulse per unit area, \(h_{\text{trans}} \). Because the impulse remains unchanged as it transmits, to reduce the pressure to a shock with a peak overpressure \(p_{\text{th}} \), the medium extends the pulse duration [33]. Note that, the larger the \(m_p \), the lower both the kinetic energy (KE) acquired by the buffer (\(KE = M^2 / 2m_p \)) and its velocity, \(v = M / m_p \). If the kinetic energy transmitted into the protected structure (behind the cellular system) is small, most of the buffer plate kinetic energy is absorbed by inelastic dissipation mechanisms occurring within a densification front that passes through the medium, starting at the buffer. For a material with “ideal” mechanical response, Fig. 3(b), characterized by a constant unidirectional crushing stress, \(\sigma_{pl} \), the maximum dissipation per area is, \(U = \sigma_{pl}h \), where \(h \) is the thickness that crushes and \(\sigma_{pl} \) is the strain at densification with \(\sigma \) being the cellular material’s relative density.

Equating the dissipation and kinetic energies gives the minimum cellular material thickness needed to arrest the buffer plate:

\[
h_{\text{min}} = \frac{M^2}{2m_p\sigma_{pl}(1 - \rho)}
\]

Provided that the actual thickness exceeds \(h_{\text{min}} \), the transmitted pressure will not exceed \(\sigma_{pl} \). When thinner, densification occurs and much larger pressures are transmitted. The total mass per area to mitigate the pressure is:

\[
m_{\text{total}} = h_{b}p_{b} + h_{\text{min}}\rho_{b}\rho = h_{b}p_{b} + \frac{M^2}{2\sigma_{pl}(1 - \rho)}h_{b}\rho_{b}\rho
\]

where \(h_{b} \) is the buffer plate thickness, \(\rho_{b} \) its density and \(\rho \) is the density of the material used to make the cellular medium. This analysis leads to a minimum mass per area:

\[
m_{\text{total}}^{\text{min}} = M\sqrt{\frac{2\rho_{pl}}{\sigma_{pl}f_D}}\rho
\]

If \(\sigma_{pl} = \rho_{pl} \) is specified as the constraint, then for a given impulse, the density terms are the only parameters affecting the minimum mass.

The preceding formulae are used to construct mitigation curves for a fixed explosive mass (10 kg of TNT) using an Al alloy foam with 5% relative density that compresses at 0.28 MPa (just below the injury threshold of 0.3 MPa) [19]. Using impulses ascertained from Fig. 2, the minimum foam thickness has been calculated as a function of stand-off distance for buffers with a mass per area of 8, 20 and 40 kg/m² (corresponding to 1, 2.5 and 5 mm of steel, respectively) as plotted in Fig. 5. Note that to mitigate a 1 kPa s impulse, corresponding to a 3 m stand-off (Fig. 2), by using a buffer with a mass of 20 kg/m², a minimum foam thickness, \(h_{\text{min}} = 10 \) cm is required. More intense impulses require yet more bulky systems.

To substantiate these analytic results, decoupled dynamic simulations of crushing have been performed using the same foam and various buffer plates. The calculations have been conducted using ABAQUS/Explicit. The foam is considered to be rate insensitive (typical for Al alloys) [19] and the impulse is imparted to the buffer as a pressure/time history of the type expressed by Eq. (1), with \(t = 0.044 \) ms and \(p_0 = 2.5 \) MPa, such that the impulse \(I_{\text{total}} \approx 1.1 \) kPa s. The simulations have been performed using a foam thickness \(h = 10 \) and 15 cm. The results (Fig. 6) reveal that, at \(h = 15 \) cm, the foam crushes with average transmitted stress remaining below the threshold pressure. Moreover, the buffer arrests before the foam attains its densification strain. However, there are superimposed oscillations, which attain stresses as high as \(0.4 \) MPa, albeit for short times. It remains to be determined whether these oscillations are transmitted and could cause injury. At \(h = h_{\text{min}} = 10 \) cm, the foam completely crushes after about 3.4 ms and large stress oscillations develop when the moving buffer pushes into the crushed foam. This calculation affirms that problems arise if the foam thickness is insufficient and ascertains the magnitude of the transmitted overstress when this happens. They also reveal that the analytic method somewhat underestimates the critical thickness, suggesting that numerical simulations are needed to refine the determination of \(h_{\text{min}} \).

4. The active concept

Analytic estimates. To explore active mitigation, we note that a shock propagating from a 10 kg TNT charge to an object placed 3 m away arrives in \(t_{\text{arrive}} = 2 \) ms, Fig. 2(c). At 6 m, the time increases to \(t_{\text{arrive}} \approx 7 \) ms. A sensor capable of detecting the electromagnetic emission [34–37] created at the instant of detonation would thus afford a time delay, \(t_{\text{arrive}} \), between detonation and the arrival of the blast wave. This delay provides an opportunity to deploy a buffer by using a high-speed actuator, such as a propellant, Fig. 7. The force exerted on the buffer as it deploys must assure that the reaction pressure exerted on the protected structure does not exceed \(p_{th} \). The caveat is that reflection of the actuation pressure at the biological surface must not amplify the pressure transmitted...
(backward) into the medium. This can be realized by the appropriate design of the pressure profile of the deployment system.

The maximum distance, x_{deploy}, moved by the buffer during t_{arrive} is:

$$x_{\text{deploy}} = \frac{p_{\text{th}} t^2_{\text{arrive}}}{2 m_p}$$ \hspace{1cm} (5)

The momentum acquired by the buffer during deployment is:

$$M_{\text{cancel}} = -p_{\text{th}} t_{\text{arrive}}$$ \hspace{1cm} (6)

At the instant it collides with the blast wave, the buffer has momentum:

$$M_{\text{buffer}} = M_{\text{blast}} + M_{\text{cancel}}$$ \hspace{1cm} (7)

When $M_{\text{cancel}} > M_{\text{blast}}$, the buffer plate continues to move outward until it reaches its deployment limit. When $M_{\text{cancel}} < M_{\text{blast}}$, the buffer reverts to backward motion with velocity, $v_{\text{back}} = M_{\text{buffer}}/m_p$, at distance x_{deploy} from its original position. Since the cellular medium retains crushing strength, the velocity of the buffer when it returns to its position before deployment is:

$$v_{\text{final}} = \left(\frac{1}{m_p}\right) \sqrt{M_{\text{buffer}}^2 - M_{\text{cancel}}^2}$$ \hspace{1cm} (8)

By assuring that $M_{\text{buffer}}^2 > M_{\text{cancel}}^2$, the mitigation system defeats the blast. The criterion for success is thus:

$$M_{\text{blast}} + 2 M_{\text{cancel}} \leq 0.$$ \hspace{1cm} (9)

The implication is that, for the device shown in Fig. 7 with a buffer plate mass $m_p = 20 \text{ kg/m}^2$ subjected to a 10 kg explosion at a 3 m standoff, since $M_{\text{cancel}} = -0.6 \text{ kPa s}$ and $M_{\text{blast}} = 1.1 \text{ kPa s}$, a compact system that retains its crushing strength after deployment just defeats the impulse.

Numerical simulations. To assess the conclusions of this simplified analysis, detailed numerical simulations of coupled fluid–structure interaction (FSI) in air have been conducted by considering the plate as rigid, but able to move as a result of the deployment and blast pressure exerted upon it. The significance of the fluid–structure interaction depends on the mass per unit area of the buffer plate (or front face of a sandwich panel). For practical plate thicknesses, the mass per unit area is sufficient that the fluid–structure interaction effect in air is minimal [25].

The piecewise parabolic method [38,39] for the one-dimensional (spherically-symmetric) Euler equation in Lagrangian form is used to solve for the flow field, i.e. density, velocity and pressure, in the fluid domain. The buffer plate is assumed to be perfectly rigid and its dynamics is governed by Newton’s second law:

$$m_p \ddot{v} = p - p_0 - p_{\text{th}}$$ \hspace{1cm} (10)

$$\dot{x} = v$$ \hspace{1cm} (11)

where m_p is the mass of the buffer plate (20 kg/m^2), x the plate coordinate, v the plate velocity, p_0 the constant ambient static pressure on the right side of the plate, and p_{th} (0.28 MPa) the deployment...
pressure, and p the fluid pressure acting on the plate. The initial conditions adopted for the blast flow field correspond to the spherical point source solution of Okhotsimskii et al.\[40\]. A schematic of the simulation setup is shown in Fig. 8. The center of explosion is at $x = 3.0$ m and the buffer plate is at $x = 0.0$ m at time $t = 0.0$ ms. Outflow boundary conditions are applied on the left of the computational fluid domain, whereas a constant pressure ($p_\text{th} + p_0$) is applied on the right to simulate the deployment conditions. Fig. 8 shows the pressure distribution and the build up of the compression wave ahead of the deploying plate at $t = 1.25$ ms. Eq. (10) governing the plate dynamics is integrated in time using the Crank–Nicholson scheme, and the coupled interaction between the plate and the fluid is accomplished using a partitioned scheme [41].

The temporal evolution of the position and velocity of the buffer, as well as the pressure history on its face, are plotted in Fig. 9 for three explosive charges (10, 12.5, 15 kg of TNT) located at a 3 m standoff. The ambient pressure is assumed to be 1 atm (0.1 MPa). In the figure, a positive (negative) ordinate position implies that the buffer has moved away from (towards) the blast. Under the action of a constant deployment pressure of $p_\text{th} = 0.28$ MPa, it initially moves towards the incoming blast, with an ostensibly constant
acceleration, affected only by the opposing air pressure exerted on the front. The impact of the blast causes the buffer to decelerate and in some cases, invert its direction of motion. The rapidly decaying blast overpressure is supplanted by the continued application of the deployment pressure, which eventually causes the buffer to arrest at a maximum penetration into the medium. This circumstance coincides with the criterion for vanishing final velocity used in the simplified analysis. Note, however, that, unlike the simple analysis which required a zero (or negative) final velocity, this criterion does not assure that the buffer arrests at its initial location, as evident from the result for 15 kg of TNT. Nevertheless, the simple analysis, based on ConWep generated information, is conservative. Namely, at the analytically predicted threshold of 10 kg of TNT, the buffer arrests beyond its original location. The actual defeat threshold is attained for a charge of 12.5 kg. This discrepancy highlights the importance of using a computational capability that incorporates the coupled FSI effects. These approaches reveal how the blast intensity determines the maximum displacement of the buffer toward the blast, the time of impact, the rate at which the blast reverses the motion and, most importantly, the maximum penetration of the buffer into the expanded cellular medium.

5. Summary

Explosions in air can cause damage in at least six different ways: (i) by their reaction to the impulse associated with the primary blast wave, (ii) by secondary fragment impact, (iii) by burning upon contact with high temperature gases created during the detonation, (iv) by acceleration into a rigid object, (v) by differential momentum transfer to appendages, and (vi) by the collapse of...
surrounding structures. The present article addressed the first of these by devising concepts for the prevention of damage caused by the primary blast wave.

In the passive approach, highly compressible cellular media designed to collapse at a constant pressure, just below the user chosen threshold (e.g. that which causes damage to biological tissues), enable blast mitigation when rectified with an attached buffer of appropriate mass. However, at representative levels of blast, these passive systems are shown to be excessively bulky. A reactive concept based upon the deployment of an inflatable cellular structure facilitates momentum cancellation and is shown to achieve mitigation with substantially more compact (and lighter) solutions.

Acknowledgements

The active mitigation concepts discussed in this paper were initially developed during a study conducted by the Defense Science Research Council and we are grateful to Geoffrey Ling, Brett Giroir, Rick Satava and Judith Swain for stimulating discussions of this topic. We are grateful to the Defense Advanced Research Projects Agency for its support of the Council and to the Office of Naval Research for its support of the subsequent analysis of reactive cellular material mitigation concepts under grant number N00014-01-1-1051 monitored by Dr. David Shifler.

References

[34] van Lint VAJ. Electromagnetic emission from chemical explosions. IEEE Transactions on Nuclear Science 1982:NS-29(6).