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Abstract

We develop a high-order hybridized discontinuous Galerkin (HDG) method for a linear degenerate elliptic equation arising from a
two-phase mixture of mantle convection or glacier dynamics. We show that the proposed HDG method is well-posed by using an
energy approach. We derive a priori error estimates for the method on simplicial meshes in both two- and three-dimensions. The
error analysis shows that the convergence rates are optimal for both the scaled pressure and the scaled velocity for non-degenerate
problems and are sub-optimal by half order for degenerate ones. Several numerical results are presented to confirm the theoretical
estimates. Degenerate problems with low regularity solutions are also studied, and numerical results show that high-order methods
are beneficial in terms of accuracy.
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1. Introduction

The Earth’s core is hotter than the Earth’s surface, which leads to thermal convection in which the cold mantle is
dense and sinks while the hot mantle is light and rises to the surface. The induced current, i.e., mantle convection,
moves slowly and cools gradually. The evolution and circulation of the mantle induce plate tectonics, volcanic activity,
and variation in crustal chemical composition. Therefore, the study of mantle dynamics is critical to understanding
how the planet functions [1]. Glacier dynamics, on the other hand, describes the movement of glaciers and ice sheets.
Glaciers and ice sheets interact with the atmosphere, the oceans, and the landscape [2], which could lead to a large
impact on weather and climate change [3]. Though mantle convection and glacier dynamics are different in nature,
their dynamics can be mathematically modeled by the Stokes equations combined with a Darcy equation accounting
for melt.

In this paper, we are interested in developing numerical methods for both glacial dynamics and mantle convection
described by a similar two-phase mathematical model, as we now briefly discuss. In glacial dynamics, the mixture
of ice and water is observed near the temperature at the pressure-melting point, which is in a phase-transition process
[4, 5]. In mantle dynamics, a partially molten rock is generated by supplying heat or reducing the pressure. In both
cases, the relative motion between the melt and the solid matrix is modeled by two-phase flow [6].

We adopt the mathematical model in [7, 6, 8, 9, 10, 11, 12]. In particular, the mixture parameter of fluid melt and
solid matrix is described by the porosity φ—the relative volume of fluid melt with respect to the bulk volume—which
separates the solid single-phase (φ = 0) and fluid-solid two-phase (φ > 0) regions [13]. The partially molten regions
are governed by Darcy flow through a deformable solid matrix which is modeled as a highly viscous Stokes fluid
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[14, 12]. We use the subscript f and s to distinguish between the fluid melt and solid matrix, and boldface lowercase
letters for vector-valued functions. We denote by v f and vs the velocities of fluid and solid, p̃ f and p̃s the pressures,
ρ f and ρs the densities, q̂ f and q̂s the viscosities, and σ f and σs the stresses. Darcy’s law [15, 6] states

φ
(
v f − vs

)
= −

κ(φ)
q̂ f

(
∇p̃ f − ρ f g

)
, (1)

where κ(φ) is the permeability with κ(0) = 0 and g is the gravity. We assume that the solid matrix is more viscous than
the fluid melt (q̂ f � q̂s) so that the fluid and the solid stresses can be modeled as

σ f : = −p̃ fI, (2)

σs : = −p̃sI + q̂s

(
∇vs + ∇vT

s

)
−

2
3

q̂s∇ · vsI, (3)

where I is the second order identity tensor. The mixture of the melt and the solid matrix obeys the Stokes equation
[10, 12]

∇ ·
(
φσ f + (1 − φ)σs

)
+

(
φρ f + (1 − φ)ρs

)
g = 0. (4)

The mass conservations of the fluid melt and the solid matrix are given as [6, 10]

∂
(
ρ fφ

)
∂t

+ ∇ ·
(
ρ fφv f

)
= 0, (5)

∂(ρs(1 − φ))
∂t

+ ∇ · (ρs(1 − φ)vs) = 0. (6)

Applying a Boussinesq approximation (constant and equal densities for non-buoyancy terms) to (5)–(6), the total mass
conservation of the mixture can be written as

∇ ·
(
φv f + (1 − φ)vs

)
= 0. (7)

The pressure jump between the melt and the matrix phases (the compaction relation) is given by [16, 11](
p̃s − p̃ f

)
= −

q̂s

φ
∇ · vs. (8)

The coupled Darcy-Stokes system (1), (4), (7) and (8) describes the motion of the mantle flow (and glacier dy-
namics). The challenge is when φ = 0. Since solid matrix always exists, the Stokes part is well-posed, but the Darcy
part is degenerate when φ = 0.

In this paper, we shall focus on addressing the challenge of solving the linear degenerate elliptic equation arising
from the Darcy part of the system. With a change of variables, (1) and a combination of (7)–(8) become

ṽ + d(φ)2(∇p̃ − g̃) = 0, in Ω, (9a)

∇ · ṽ + φ p̃ = φ
1
2 f , in Ω, (9b)

φ p̃ = φ
1
2 gD, on ΓD, (9c)

where Ω ⊂ Rdim, dim = 2 or 3, is an open and bounded domain, ΓD = ∂Ω the Dirichlet boundary, gD the Dirichlet
data, n the outward unit normal vector, ṽ = φ(v f − vs) the Darcy velocity, p̃ = p̃ f the fluid pressure, g̃ = ρ f g,

f = φ
1
2 p̃s, q̂s = 1 and d(φ) =

√
κ(φ)
q̂ f

. Though d is a function of φ, we shall write d instead of d (φ) for the simplicity
of the exposition.

The boundary value problem (9) has been studied in [17], where the scaled velocity and pressure were proposed
in order to obtain well-posedness. For numerical implementation, a cell-centered finite difference method [18] and a
mixed finite element method [17] have been studied. The results showed that the numerical schemes are stable and
have an optimal convergence rate for smooth solutions. However, these schemes are low order accurate approaches.
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Meanwhile, the high-order discontinuous Galerkin (DG) method—originally developed [19, 20, 21] for the neu-
tron transport equation—has been studied extensively for virtually all types of partial differential equations (PDEs)
[22, 23, 24, 25, 26]. This is due to the fact that DG combines advantages of finite volume and finite element methods.
As such, it is well-suited to problems with large gradients including shocks and with complex geometries, and large-
scale simulations demanding parallel implementations. In particular, for numerical modeling of magma dynamics,
the DG methods have been used to study the interaction between the fluid melt and the solid matrix [27, 28], and
to include a porosity-dependent bulk viscosity and a solid upwelling effect [29]. In spite of these advantages, DG
methods for steady state and/or time-dependent problems that require implicit time-integrators are more expensive in
comparison to other existing numerical methods, since DG typically has many more (coupled) unknowns.

As an effort to mitigate the computational expense associated with DG methods, the hybridized (also known as
hybridizable) discontinuous Galerkin (HDG) methods are introduced for various types of PDEs including Poisson-
type equation [30, 31, 32, 33, 34, 35], Stokes equation [36, 37], Euler and Navier-Stokes equations, wave equations
[38, 39, 40, 41, 42, 43, 44, 45], to name a few. In [46, 47, 48], one of the authors has proposed an upwind HDG
framework that provides a unified and systematic construction of HDG methods for a large class of PDEs. We note
that the weak Galerkin (WG) methods in [49, 50, 51, 52] share many similar advantages with HDG. In fact, HDG and
WG are the same for the degenerate elliptic problem in this paper.

The main goal of this paper is to develop a high-order HDG scheme for the linear degenerate elliptic equation
(9). In section 2, we briefly discuss the scaled system for (9). In section 3, we derive the HDG formulation for the
scaled system based on the upwind HDG framework. The key feature is that we have modified the upwind HDG flux
to accommodate the degenerate regions. When the porosity vanishes, the resulting HDG system becomes ill-posed
because the upwind parameter associated with the HDG flux disappears. To overcome the difficulty, we introduce a
generalized stabilization parameter that is an extension of the upwind based stabilization parameter. It has positive
values on the degenerate interfaces. Next, we show the well-posedness and error analysis of the HDG system under
the assumption that the grid well matches with the intersection between the fluid melt and the solid matrix. In section
4, various numerical results for the scaled system will be presented to confirm the accuracy and robustness of the
proposed HDG scheme. Finally, we conclude the paper and discuss future research directions in section 5.

2. Handling the degeneracy

Let (·, ·)Ω be the L2 inner-product on Ω, and 〈·, ·〉∂Ω be the L2 inner-product on ∂Ω. We denote the L2 norm by

‖ · ‖Ω = (·, ·)
1
2
Ω

on Ω and by ‖ · ‖∂Ω = 〈·, ·〉
1
2
∂Ω

on ∂Ω. We also define the weighted L2 norm on ∂Ω by ‖ · ‖∂Ω,τ = 〈|τ|·, ·〉
1
2
∂Ω

=(∫
∂Ω
|τ|(·)2dx

) 1
2 . For any s , 0, we denote the Hs (D)-norm as ‖·‖s,D, for example, ‖ · ‖ 1

2 ,∂Ω is the norm of H
1
2 (∂Ω).

2.1. The scaled system
When the porosity becomes zero, the system (9) degenerates. However, we can still investigate how the solutions

behave as the porosity vanishes. According to [17], a priori energy estimates for the system (9) read as

‖d−1ṽ‖Ω + ‖φ
1
2 p̃‖Ω + ‖φ−

1
2∇ · ṽ‖Ω ≤ c

(
‖gD‖H

1
2 (∂Ω)

+ ‖dg̃‖Ω + ‖ f ‖Ω
)
, (10)

for some constant c > 0. Note that we may lose control of the pressure p̃ as the porosity approaches zero.
To have the control of the pressure, following [17], we define the scaled velocity and the scaled pressure as

u = d−1ṽ and p = φ
1
2 p̃, respectively. The system (9) becomes

u + d∇
(
φ−

1
2 p

)
= dg̃, in Ω, (11a)

φ−
1
2∇ · (du) + p = f , in Ω, (11b)

p = gD, on ΓD. (11c)

Here, we interpret the differential operators in (11) as

d∇(φ−
1
2 p) = −

1
2
φ−

3
2 d∇φp + φ−

1
2 d∇p, (12)

φ−
1
2∇ · (du) = φ−

1
2∇d · u + φ−

1
2 d∇ · u, (13)
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where we assume that

φ−
1
2 d ∈ L∞(Ω), (14a)

φ−
1
2∇d ∈ (L∞(Ω))dim, (14b)

φ−
3
2 d∇φ ∈ (L∞(Ω))dim. (14c)

With the assumption (14), the scaled system does not degenerate. If the porosity vanishes, then d(φ) = 0, which leads
to u = 0 and p = f . The energy estimates for the scaled system (11) read as

‖u‖Ω + ‖p‖Ω + ‖φ−
1
2∇ · (du) ‖Ω ≤ c

(
‖gD‖H

1
2 (∂Ω)

+ ‖dg̃‖Ω + ‖ f ‖Ω
)
, (15)

for some constant c > 0 [17]. We clearly see that we have control of the scaled pressure p even when the porosity
becomes zero.

2.2. Upwind-based HDG flux

With some simple manipulation, the scaled system (11) can be rewritten as

u − φ−
1
2∇dp + ∇ ·

(
φ−

1
2 dpI

)
= dg̃, in Ω, (16a)

1
2
φ−

3
2 d∇φ · u + p + ∇ ·

(
φ−

1
2 du

)
= f , in Ω. (16b)

We cast the scaled system (16) into the conservative form

∇ · F (r) + Gr = f, in Ω, (17)

where we have defined the solution vector r := (u1, u2, u3, p), the source vector f := (dg̃1, dg̃2, dg̃3, f ), the flux tensor

F := (F1, F2, F3) := F (r) := φ−
1
2 d


p 0 0
0 p 0
0 0 p
u1 u2 u3

 (18)

and

G :=


1 0 0 −φ−

1
2 ∂d
∂x

0 1 0 −φ−
1
2 ∂d
∂y

0 0 1 −φ−
1
2 ∂d
∂z

1
2φ
− 3

2 d ∂φ
∂x

1
2φ
− 3

2 d ∂φ
∂y

1
2φ
− 3

2 d ∂φ
∂z 1

 . (19)

We define

A =

3∑
k=1

nk
∂Fk

∂r
= φ−

1
2 d


0 0 0 n1
0 0 0 n2
0 0 0 n3
n1 n2 n3 0

 , (20)

which has four eigenvalues
(
−φ−

1
2 d, 0, 0, φ−

1
2 d

)
and distinct eigenvectors

W1 =


−n1
−n2
−n3

1

 ,W2 =


−n2
n1
0
0

 ,W3 =


−n3

0
n1
0

 , and W4 =


n1
n2
n3
1

 . (21)
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The system (17) can be considered as a steady state hyperbolic system [53]. Finally, following the upwind HDG
framework in [46] we can construct the upwind HDG flux with scalar p̂ and vector û trace unknowns as

F̂ (r̂) · n = φ−
1
2 d


n1 p̂
n2 p̂
n3 p̂
û · n

 := F (r) · n + |A|(r − r̂) = φ−
1
2 d


n1 (p + (u − û) · n)
n2 (p + (u − û) · n)
n3 (p + (u − û) · n)

u · n + (p − p̂)

 , (22)

where r̂ = (û1, û2, û3, p̂), |A| := W |D|W−1, D is the diagonal matrix of eigenvalues of W1, W2, W3 and W4, and W is
the matrix of corresponding eigenvectors. Following [46], we can compute û · n as a function of p̂, and hence û · n
can be eliminated. The upwind HDG flux can be then written in terms of p̂ as

F̂ (r̂) · n = φ−
1
2 d


n1 p̂
n2 p̂
n3 p̂

u · n + (p − p̂)

 . (23)

3. HDG formulation

We denote by Ωh := ∪Ne
i=1Ki the mesh containing a finite collection of non-overlapping elements, Ki, that partition

Ω. Here, h is defined as h := max j∈{1,...,Ne} diam
(
K j

)
. Let ∂Ωh := {∂K : K ∈ Ωh} be the collection of the boundaries

of all elements. Let us define Eh := Eo
h ∪ E

∂
h as the skeleton of the mesh which consists of the set of all uniquely

defined faces/interfaces, where E∂h is the set of all boundary faces on ∂Ω, and Eo
h = Eh \ E

∂
h is the set of all interior

interfaces. For two neighboring elements K+ and K− that share an interior interface e = K+ ∩ K−, we denote by q±

the trace of the solutions on e from K±. We define n− as the unit outward normal vector on the boundary ∂K− of
element K−, and n+ = −n− the unit outward normal of a neighboring element K+. On the interior interfaces e ∈ Eo

h,
we define the mean/average operator {{v}}, where v is either a scalar or a vector quantify, as {{v}} := (v− + v+) /2, and
the jump operator ~v · n� := v+ · n+ + v− · n− On the boundary faces e ∈ E∂h, we define the mean and jump operators
as {{v}} := v, ~v� := v.

Let Pk (D) denote the space of polynomials of degree at most k on a domain D. Next, we introduce discontinuous
piecewise polynomial spaces for scalars and vectors as

Vh (Ωh) :=
{
v ∈ L2 (Ωh) : v|K ∈ P

k (K) ,∀K ∈ Ωh

}
,

Λh (Eh) :=
{
λ ∈ L2 (Eh) : λ|e ∈ P

k (e) ,∀e ∈ Eh

}
,

Vh (Ωh) :=
{
v ∈

[
L2 (Ωh)

]m
: v|K ∈

[
Pk (K)

]m
,∀K ∈ Ωh

}
,

Λh (Eh) :=
{
λ ∈

[
L2 (Eh)

]m
: λ|e ∈

[
Pk (e)

]m
,∀e ∈ Eh

}
.

and similar spaces Vh (K), Λh (e), Vh (K), and Λh (e) by replacing Ωh with K and Eh with e. Here, m is the number of
components of the vector under consideration.

We define the broken inner products as (·, ·)Ωh
:=

∑
K∈Ωh

(·, ·)K and 〈·, ·〉∂Ωh
:=

∑
∂K∈∂Ωh

〈·, ·〉∂K , and on the mesh

skeleton as 〈·, ·〉Eh
:=

∑
e∈Eh
〈·, ·〉e. We also define the associated norms as ‖ · ‖Ωh :=

(∑
K∈Ωh
‖ · ‖2K

) 1
2 , ‖ · ‖∂Ωh :=(∑

K∈Ωh
‖ · ‖2

∂K

) 1
2 , and the weighted norm ‖ · ‖∂Ωh,τ :=

(∑
K∈Ωh
‖ · ‖2

∂K,τ

) 1
2 (recall ‖ · ‖∂K,τ = ‖|τ|

1
2 (·)‖∂K).

3.1. Weak form

From now on, we conventionally use ue, pe and p̂e for the exact solution while u, p and p̂ are used to denote the
HDG solution. Unlike the DG approach, in which p̂ on an interface is computed using information from neighboring
elements that share that interface, i.e.,

p̂ =
1
2
~u · n� + {{p}} , (24)
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the idea behind HDG is to treat p̂ as a new unknown. Testing (16) or (17) with (v, q) and integrating by parts we obtain
the local solver for each element by replacing the flux 〈F · n, (v, q)〉∂K with the HDG numerical flux

〈
F̂ · n, (v, q)

〉
∂K

.
The local solver reads: find (u, p, p̂) ∈ Vh(K) × Vh(K) × Λh(∂K) such that

(u, v)K −
(
φ−

1
2∇dp, v

)
K
−

(
φ−

1
2 dp,∇ · v

)
K

+
〈
φ−

1
2 dp̂, v · n

〉
∂K

= (dg̃, v)K , (25a)

(p, q)K +

(
1
2
φ−

3
2 d∇φ · u, q

)
K
−

(
φ−

1
2 du,∇q

)
K

+
〈
φ−

1
2 d (u · n + (p − p̂)) , q

〉
∂K

= ( f , q)K , (25b)

for all (v, q) ∈ Vh(K) × Vh(K).
Clearly we need an additional equation to close the system since we have introduced an additional trace unknown

p̂. The natural condition is the conservation, that is, the continuity of the HDG flux. For the HDG method to be
conservative, it is sufficient to weakly enforce the continuity of the last component of the HDG flux (22) on each face
e of the mesh skeleton, i.e., 〈

~φ−
1
2 du · n + φ−

1
2 d (p − p̂)�, q̂

〉
e

= 0, ∀e ∈ Eo
h. (26)

On degenerate faces, where φ = 0, the conservation condition (26) is trivially satisfied. These faces would need to
be sorted out and removed from the system. However, this creates implementation issues. To avoid this, we introduce
a more general HDG flux

F̂ · n :=


n1φ

− 1
2 dp̂

n2φ
− 1

2 dp̂
n3φ

− 1
2 dp̂

φ−
1
2 du · n + τ(p − p̂)

 , (27)

where τ is a positive function on the edge. For example, we can take τ = φ−
1
2 d for non-degenerate faces (i.e., faces

with φ > 0), and for degenerate ones (i.e. faces with φ = 0) we take τ = γ > 0. Alternatively, we can take a single
value τ = O (1/h) over the entire mesh skeleton. We shall compare these choices in Section 4. With this HDG flux,
the conservation condition (26) becomes〈

~φ−
1
2 du · n + τ (p − p̂)�, q̂

〉
e

= 0, ∀e ∈ Eo
h, ∀q̂ ∈ Λh(e). (28)

On the Dirichlet boundary ΓD, we impose the boundary data gD to p̂ through the weak form of

〈τp̂, q̂〉ΓD
= 〈τgD, q̂〉ΓD

, ∀q̂ ∈ Λh(ΓD). (29)

With the general HDG flux (27) and Dirichlet boundary condition (11c), the local equation (25) now becomes

(u, v)K −
(
φ−

1
2∇dp, v

)
K
−

(
φ−

1
2 dp,∇ · v

)
K

+
〈
φ−

1
2 dp̂, v · n

〉
∂K\ΓD

+
〈
φ−

1
2 dgD, v · n

〉
∂K∩ΓD

= (dg̃, v)K , (30a)

(p, q)K +

(
1
2
φ−

3
2 d∇φ · u, q

)
K
−

(
φ−

1
2 du,∇q

)
K

+
〈
φ−

1
2 du · n + τ(p − p̂), q

〉
∂K\ΓD

+
〈
φ−

1
2 du · n + τ(p − gD), q

〉
∂K∩ΓD

= ( f , q)K . (30b)

The HDG comprises the local solver (30), the global equation (28) and the boundary condition (29). By summing
(30) over all elements and (28) over the mesh skeleton, we obtain the complete HDG system with the weakly imposed
Dirichlet boundary condition (29): find (u, p, p̂) ∈ Vh(Ωh) × Vh(Ωh) × Λh(Eh) such that

(u, v)Ωh
−

(
φ−

1
2∇dp, v

)
Ωh
−

(
φ−

1
2 dp,∇ · v

)
Ωh

+
〈
φ−

1
2 dp̂, v · n

〉
∂Ωh\ΓD

= (dg̃, v)Ωh
−

〈
gD, φ

− 1
2 dv · n

〉
ΓD
, (31a)

(p, q)Ωh
+

(
1
2
φ−

3
2 d∇φ · u, q

)
Ωh

−
(
φ−

1
2 du,∇q

)
Ωh

+
〈
φ−

1
2 du · n + τ (p − p̂) , q

〉
∂Ωh\ΓD

+
〈
φ−

1
2 du · n + τp, q

〉
ΓD

= ( f , q)Ωh
+ 〈τgD, q〉ΓD

, (31b)

−
〈
~φ−

1
2 du · n + τ (p − p̂)�, q̂

〉
Eh\ΓD

+ 〈τp̂, q̂〉ΓD
= 〈τgD, q̂〉ΓD

, (31c)
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for all (v, q, q̂) ∈ Vh(Ωh) × Vh(Ωh) ×Λh(Eh). Note that this form resembles the weak Galerkin framework [49, 50, 51,
52]. Indeed, HDG and the weak Galerkin method are equivalent in this case.

The HDG computation consists of three steps: first, solve the local solver for (u, p) as a function of p̂ element-by-
element, completely independent of each other; second, substitute (u, p) into the global equation (28) to solve for p̂
on the mesh skeleton; and finally recover the local volume unknown (u, p) in parallel.

3.2. Well-posedness

Let us denote the bilinear form on the left hand side of (31) as a ((u, p, p̂) ; (v, q, q̂)) and the linear form on right
hand side as ` ((v, q, q̂)). We begin with an energy estimate for the HDG solution.

Proposition 1 (Discrete energy estimate). Suppose gD ∈ L2(ΓD), f ∈ L2 (Ωh), and d(φ)g̃ ∈ L2 (Ωh). If τ = O(1/h),
then it holds that

a ((u, p, p̂) ; (u, p, p̂)) = ‖u‖2Ωh
+ ‖p‖2Ωh

+ ‖p̂‖2ΓD,τ
+ ‖p‖2ΓD,τ

+ ‖p − p̂‖2∂Ωh\ΓD,τ
(32)

≤ c
(
‖gD‖

2
ΓD,τ

+ ‖g̃‖2Ωh
+ ‖ f ‖2Ωh

)
, (33)

for some positive constant c = c (φ, d, τ, h, k). In particular, there is a unique solution (u, p, p̂) to the HDG system
(31).

Proof. We start with the following identities

−
(
φ−

1
2∇dp, v

)
K
−

(
φ−

1
2 dp,∇ · v

)
K

= −
(
p, φ−

1
2∇ · (dv)

)
K
, (34a)(

1
2
φ−

3
2 d∇φ · u, q

)
K
−

(
φ−

1
2 du,∇q

)
K

=
(
φ−

1
2∇ · (du) , q

)
K
−

〈
φ−

1
2 du · n, q

〉
∂K
. (34b)

Now taking v = u, q = p, and q̂ = p̂ in (31) and (34), and then adding all equations in (31) gives

a ((u, p, p̂) ; (u, p, p̂)) = ‖u‖2Ωh
+ ‖p‖2Ωh

+ ‖p̂‖2ΓD,τ
+ ‖p‖2ΓD,τ

+ ‖p − p̂‖2∂Ωh\ΓD,τ
=

−
〈
gD, φ

− 1
2 du · n

〉
ΓD

+ 〈τgD, p〉ΓD
+ 〈τgD, p̂〉ΓD

+ (dg̃,u)Ωh
+ ( f , p)Ωh

,

which, after invoking the Cauchy-Schwarz and Young inequalities, becomes

a ((u, p, p̂) ; (u, p, p̂)) ≤

∥∥∥∥φ− 1
2 d

∥∥∥∥
∞

2ε1
‖gD‖

2
ΓD,τ

+
ε1

2
‖u‖2

ΓD,τ−1

+
1

2ε2
‖gD‖

2
ΓD,τ

+
ε2

2
‖p − p̂‖2ΓD,τ

+
1

2ε3
‖dg̃‖2Ωh

+
ε3

2
‖u‖2Ωh

+
1

2ε4
‖ f ‖2Ωh

+
ε4

2
‖p‖2Ωh

,

which yields the desired energy estimate after applying an inverse trace inequality (c.f. Lemma (A.1)) for the second
term on right hand side and choosing sufficiently small values for ε1, ε2, ε3 and ε4.

Since the HDG system (31) is linear and square in terms of the HDG variables (u, p, p̂), the uniqueness result in
Proposition 1 implies existence and stability, and hence the well-posedness of the HDG system.

Lemma 1 (Consistency). Suppose (ue, pe) is a weak solution of (11), which is sufficiently regular. Then
(
ue, pe, pe|Eh

)
satisfies the HDG formulation (31). In particular, the Galerkin orthogonality holds, i.e.,

a
((

ue − u, pe − p, pe|Eh
− p̂

)
; (v, q, q̂)

)
= 0, ∀(v, q, q̂) ∈ Vh(Ωh) × Vh(Ωh) × Λh(Eh). (35)

The proof is a simple application of integration by parts and hence omitted.

7
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3.3. Error analysis

We restrict the analyis for simplicial meshes and adopt the projection-based error analysis in [31]. To begin, we
define p̂e as the trace of pe. For any element K, e ∈ Eh, e ⊂ ∂K, we denote by P

(
ue, pe, p̂e

)
:=

(
Pue,Ppe,Π p̂e

)
, where

Π is the standard L2-projection, a collective projection of the exact solution. Let us define

εI
u := ue − Pue, εh

u := u − Pue, (36)

εI
p := pe − Ppe, εh

p := p − Ppe, (37)

εI
p̂ := p̂e − Πp̂e, εh

p̂ := p̂ − Πp̂e, (38)

and then the projections Pue and Ppe are defined by

(εI
u, v)K = 0, v ∈ [Pk−1(K)]dim , (39a)

(εI
p, q)K = 0, q ∈ Pk−1(K), (39b)〈

αεI
u · n + τεI

p, q̂
〉

e
= 0, q̂ ∈ Pk(e), (39c)

for each K ∈ Ωh, e ∈ Eh and e ⊂ ∂K. Here α, to be defined below, is a positive constant on each face e of element K.

Lemma 2. Let τK := τ/α. The projections Pue and Ppe are well-defined, and∥∥∥εI
u

∥∥∥
K + h

∥∥∥εI
u

∥∥∥
1,K ≤ chk+1 ‖ue‖k+1,K + chk+1τ∗K ‖p

e‖k+1,K ,∥∥∥εI
p

∥∥∥
K

+ h
∥∥∥εI

p

∥∥∥
1,K
≤ c

hk+1

τmax
K
‖∇ · ue‖k,K + chk+1 ‖pe‖k+1,K ,

where τmax
K := max τK |∂K and τ∗K := τK |∂K\e∗ , where e∗ is the edge on which τK is maximum.

The proof can be obtained from [31].
Since the interpolation errors εI

u, ε
I
p and εI

p̂ have optimal convergence order, by the triangle inquality, the conver-
gent rates of the total errors εu = εI

u + εh
u, εp = εI

p + εh
p, and εp̂ = εI

p̂ + εh
p̂ are determined by those of the discretization

errors εh
u, ε

h
p and εh

p̂. We use an energy approach to estimate the discretization errors. To begin, let us define

E2
h :=

∥∥∥εh
u

∥∥∥2
Ωh

+
∥∥∥εh

p

∥∥∥2
Ωh

+
∥∥∥εh

p̂

∥∥∥2

ΓD,τ
+

∥∥∥εh
p

∥∥∥2
ΓD,τ

+
∥∥∥εh

p − ε
h
p̂

∥∥∥2

∂Ωh\ΓD,τ
.

Lemma 3 (Error equation). It holds that

E2
h = −

(
φ−

1
2 εI

p,∇ ·
(
dεh

u

))
Ωh︸                      ︷︷                      ︸

A

+
〈
φ−

1
2 dεI

p̂, ε
h
u · n

〉
∂Ωh\ΓD︸                      ︷︷                      ︸

B

−
(
dεI

u,∇
(
φ−

1
2 εh

p

))
Ωh︸                    ︷︷                    ︸

C

+
〈(
φ−

1
2 d − α

)
εI

u · n, ε
h
p − ε

h
p̂

〉
∂Ωh\ΓD

+
〈(
φ−

1
2 d − α

)
εI

u · n, ε
h
p

〉
ΓD︸                                                                            ︷︷                                                                            ︸

D

(40)

Proof. The proof is straightforward by first adding and subtracting appropriate projections in the Galerkin orthog-
onality equation (35), second using the definition of the projections (39), and finally taking v = εh

u, q = εh
p, and

q̂ = εh
p̂.

The next step is to estimate A, B,C and D. To that end, we define α on faces of an element K as

α :=

 φ−
1
2 d if φ−

1
2 d , 0

1 otherwise
, (41)

where φ−
1
2 d is the average of φ−

1
2 d on the element K.

8
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Lemma 4 (Estimation for A). There exists a positive constant c = c (φ, d) such that

|A| ≤ c
∥∥∥εI

p

∥∥∥
Ωh

∥∥∥εh
u

∥∥∥
Ωh
.

Proof. We have
|A| ≤

∣∣∣∣(εI
p, φ

− 1
2∇d · εh

u

)
Ωh

∣∣∣∣ +
∣∣∣∣(εI

p, φ
− 1

2 d∇ · εh
u

)
Ωh

∣∣∣∣
Bounding the first term is straightforward:∣∣∣∣(εI

p, φ
− 1

2∇d · εh
u

)
Ωh

∣∣∣∣ ≤ c
∥∥∥∥φ− 1

2∇d
∥∥∥∥
∞

∥∥∥εI
p

∥∥∥
Ωh

∥∥∥εh
u

∥∥∥
Ωh
.

For the second term, we have∣∣∣∣(εI
p, φ

− 1
2 d∇ · εh

u

)
Ωh

∣∣∣∣ =

∣∣∣∣∣(εI
p,

(
φ−

1
2 d − φ−

1
2 d

)
∇ · εh

u

)
Ωh

∣∣∣∣∣ ≤ ch
∥∥∥εI

p

∥∥∥
Ωh

∥∥∥∥φ− 1
2 d

∥∥∥∥
W1,∞(Ωh)

∥∥∥∇ · εh
u

∥∥∥
Ωh

≤ c
∥∥∥εI

p

∥∥∥
Ωh

∥∥∥∥φ− 1
2 d

∥∥∥∥
W1,∞(Ωh)

∥∥∥εh
u

∥∥∥
Ωh
,

where we have used (39b) in the first equality, the Cauchy-Schwarz inequality and the Bramble–Hilbert lemma (see,
e.g., [54]) in the first inequality, and Lemma 8 (in the appendix) in the last inequality. Here, W1,∞ is a standard Sobolev
space.

Lemma 5 (Estimation for B). There exists a positive constant c = c (φ, d) such that

|B| ≤ ch
1
2
∥∥∥εI

p

∥∥∥
∂Ωh

∥∥∥εh
u

∥∥∥
Ωh
.

Proof. We have

|B| =
∣∣∣∣∣〈εI

p̂,
(
φ−

1
2 d − φ−

1
2 d

)
εh

u · n
〉
∂Ωh\ΓD

∣∣∣∣∣ ≤ ∥∥∥εI
p̂

∥∥∥
∂Ωh

∥∥∥∥∥φ− 1
2 d − φ−

1
2 d

∥∥∥∥∥
L∞(∂Ωh)

∥∥∥εh
u

∥∥∥
∂Ωh

≤ ch
∥∥∥∥φ− 1

2 d
∥∥∥∥

W1,∞(Ωh)

∥∥∥εI
p̂

∥∥∥
∂Ωh

∥∥∥εh
u

∥∥∥
∂Ωh

,

where we have used the property of L2-projection Πp̂e in the first equality, the Cauchy-Schwarz inequality in the
first inequality, and the Bramble–Hilbert lemma in the last inequality. Now the best approximation of Π p̂e implies
‖εI

p̂‖∂Ωh ≤ ‖ε
I
p‖∂Ωh and (A.4) gives the result.

Lemma 6 (Estimation for C). There exists a positive constant c = c (φ, d) such that

|C| ≤ c
∥∥∥εI

u

∥∥∥
Ωh

∥∥∥εh
p

∥∥∥
Ωh
.

Proof. We have

|C| ≤

∣∣∣∣∣∣
(

1
2
φ−

3
2 d∇φ · εI

u, ε
h
p

)
Ωh

∣∣∣∣∣∣ +
∣∣∣∣(εI

u, φ
− 1

2 d∇εh
p

)
Ωh

∣∣∣∣ .
The rest of the proof is similar to that of Lemma 4 by using (39a).

Lemma 7 (Estimation for D). There exists a positive constant c = c (φ, d) such that

|D| ≤ cβ
∥∥∥εI

u

∥∥∥
∂Ωh,τ−1

(∥∥∥εh
p − ε

h
p̂

∥∥∥
∂Ωh\ΓD,τ

+
∥∥∥εh

p

∥∥∥
ΓD,τ

)
,

where

β :=

 h if φ−
1
2 d , 0 ∀K ∈ Ωh

1 otherwise
.

9
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Proof. Employing similar techniques as in estimating B, we have

|D| ≤
∥∥∥∥φ− 1

2 d − α
∥∥∥∥

L∞(∂Ωh)

∥∥∥εI
u

∥∥∥
∂Ωh,τ−1

(∥∥∥εh
p − ε

h
p̂

∥∥∥
∂Ωh\ΓD,τ

+
∥∥∥εh

p

∥∥∥
ΓD,τ

)
.

Now using the definition of α in (41) and the Bramble–Hilbert lemma,∥∥∥∥φ− 1
2 d − α

∥∥∥∥
L∞(∂Ωh)

≤

∥∥∥∥φ− 1
2 d − α

∥∥∥∥
L∞(Ωh)

≤ cβ,

and this ends the proof.

Now comes the main result of this section.

Theorem 1. Suppose ue ∈
[
Hk+1 (Ωh)

]dim
and pe ∈ Hk+1 (Ωh). Then∥∥∥εh

u

∥∥∥
Ωh

+
∥∥∥εh

p

∥∥∥
Ωh

+
∥∥∥εh

p̂

∥∥∥
ΓD,τ

+
∥∥∥εh

p

∥∥∥
ΓD,τ

+
∥∥∥εh

p − ε
h
p̂

∥∥∥
∂Ωh\ΓD,τ

≤ c
(
‖ue‖k+1,Ωh

+ ‖pe‖k+1,Ωh

)
×

 hk+1 if φ−
1
2 d , 0 ∀K ∈ Ωh

hk+ 1
2 otherwise

,

where c = c (φ, d, τ) is a positive constant independent of h.

Proof. Using the results in Lemmas 3—7 and the Cauchy-Schwarz inequality, we have

E2
h ≤ c

(∥∥∥εI
p

∥∥∥2
Ωh

+ βh
∥∥∥εI

p

∥∥∥2
∂Ωh

+
∥∥∥εI

u

∥∥∥2
Ωh

+ β
∥∥∥εI

u

∥∥∥2
∂Ωh,τ−1

) 1
2
×(∥∥∥εh

u

∥∥∥2
Ωh

+
∥∥∥εh

p

∥∥∥2
Ωh

+
∥∥∥εh

p − ε
h
p̂

∥∥∥2

∂Ωh\ΓD,τ
+

∥∥∥εh
p

∥∥∥2
ΓD,τ

) 1
2

≤ c
(∥∥∥εI

p

∥∥∥2
Ωh

+ βh
∥∥∥εI

p

∥∥∥2
∂Ωh

+
∥∥∥εI

u

∥∥∥2
Ωh

+ β
∥∥∥εI

u

∥∥∥2
∂Ωh,τ−1

) 1
2
× Eh. (42)

The estimate for
∥∥∥εI

p

∥∥∥2
Ωh

and
∥∥∥εI

u

∥∥∥2
Ωh

can be obtained directly from Lemma 2. Now using Lemma 9 in the appendix and
approximation properties of Pue,Ppe in Lemma 2 gives

∥∥∥εI
p

∥∥∥2
∂Ωh
≤ c

∑
K

(∥∥∥∇εI
p

∥∥∥
0,K

+ h−1
∥∥∥εI

p

∥∥∥
0,K

) ∥∥∥εI
p

∥∥∥
0,K
≤ ch2k+1

(
max

K

1
τmax

K
‖ue‖k+1,Ωh

+ ‖pe‖k+1,Ωh

)2

. (43)

Similarly we can obtain ∥∥∥εI
u

∥∥∥2
∂Ωh,τ−1 ≤ ch2k+1 max

K

1
τ

(
‖ue‖k+1,Ωh

+ max
K

τ∗K ‖p
e‖k+1,Ωh

)2
. (44)

The assertion is now ready by combing the inequalities (42)—(44), the definition of β, and the Cauchy-Schwarz
inequality.

Remark 1. When the system is degenerate, but the exact solution is piecewise smooth, the convergence rate is sub-
optimal by half order. The above proof, especially inequality (44), shows that this suboptimality may not be improved
by using τ = O

(
h−1

)
. The reason is that the gain by half order from maxK

1
τ

is taken away by the loss of half order
from maxK τ

∗
K . This will be confirmed in our numerical studies of the sensitivity of τ on the convergence rate in Section

4.4.

10
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4. Numerical results

In this section, we present numerical examples to support the HDG approach and its convergence analysis. For a
non-degenerate case, we consider a sine solution test, while for degenerate cases, we choose smooth and non-smooth
solution tests [17]. We take the upwind based parameter τ = φ−

1
2 d for a non-degenerate case, and the generalized

parameter

τ =

{
φ−

1
2 d for φ > 0,

1/h for φ = 0
for degenerate cases. We also conduct several numerical computations to understand if the stabilization parameter τ
can affect the accuracy of the HDG solution and its convergence rate. We assume that porosity φ is known and d = φ
in all the numerical examples. The domain Ω is chosen as Ω = (0, 1)dim or Ω = (−1, 1)dim, which is either uniformly
discretized with ne rectangular tensor product elements in each dimension (so that the total number of elements is
Ne = ndim

e ), or Ne triangular elements. Though we have rigorous optimal convergence theory for only simplicial
meshes (see Theorem 1), a similar result is expected for quadrilateral/hexahedral meshes (see the numerical results in
the following sections). Since rectangular meshes are convenient for all problems in this paper with simple interfaces
between the fluid melt and the solid matrix, we use rectangular meshes hereafter, except for the test in Section 4.1.

4.1. Non-degenerate case
We consider a non-degenerate case on Ω = (0, 1)2 with the porosity given by φ = exp(2(x + y)). We choose the

pressure to be p̃e = exp(−(x + y)) sin(mxπx) sin(myπy). The corresponding manufactured scaled solutions are given as

pe = sin(mxπx) sin(myπy), (45a)
ue

x = exp(x + y) sin(myπy) (sin(mxπx) − mxπ cos(mxπx)) , (45b)

ue
y = exp(x + y) sin(mxπx)

(
sin(myπy) − myπ cos(myπy)

)
. (45c)

Here, we take mx = 2 and my = 3.

0 0.5 1

0

0.2

0.4

0.6

0.8

1

(a) Rectangular elements

0 0.5 1

0

0.2

0.4

0.6

0.8

1

(b) Triangular elements

Figure 1. Coarse grids for non-degenerate case with (a) rectangular and (b) triangular elements.

Table 1 shows h-convergence results in the L2(Ωh)-norm using a sequence of nested meshes with Ne = {82, 322, 1282}

for rectangular and Ne = {104, 416, 1664} for triangular elements, respectively. The corresponding coarse meshes are
shown in Figure 1. We observe approximately the optimal convergence rates of (k + 1) for both scaled pressure p and
scaled velocity u for both mesh types.

11
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Table 1. Non-degenerate case: the results show that the HDG solutions for scaled pressure p and scaled velocity u converge to the exact solution
with optimal order of k + 1 for both triangular and rectangular meshes. The upwind based parameter τ = φ−

1
2 d is used.

Rectangular elements Triangular elements

k h ‖pe − p‖Ωh
‖ue − u‖Ωh h ‖pe − p‖Ωh

‖ue − u‖Ωh

error order error order error order error order

1

0.0312 3.628E-02 − 8.546E-01 1.395 0.1400 6.521E-01 − 5.021E+00 −

0.0156 1.159E-02 1.646 2.878E-01 1.570 0.0700 1.813E-01 1.847 1.436E+00 1.806
0.0078 3.389E-03 1.775 8.804E-02 1.709 0.0350 4.726E-02 1.940 3.794E-01 1.920

2

0.0312 1.067E-03 − 2.734E-02 − 0.1400 9.445E-02 − 8.312E-01 −

0.0156 1.597E-04 2.741 4.272E-03 2.678 0.0700 1.245E-02 2.924 1.071E-01 2.956
0.0078 2.226E-05 2.843 6.170E-04 2.791 0.0350 1.587E-03 2.971 1.354E-02 2.984

3

0.0312 1.970E-05 − 4.691E-04 − 0.1400 8.929E-03 − 6.658E-02 −

0.0156 1.405E-06 3.809 3.478E-05 3.753 0.0700 5.865E-04 3.928 4.570E-03 3.865
0.0078 9.480E-08 3.890 2.414E-06 3.848 0.0350 3.728E-05 3.976 2.942E-04 3.957

4

0.0312 3.327E-07 − 8.829E-06 − 0.1400 8.015E-04 − 7.305E-03 −

0.0156 1.168E-08 4.832 3.211E-07 4.781 0.0700 2.571E-05 4.963 2.292E-04 4.995
0.0078 3.906E-10 4.903 1.115E-08 4.848 0.0350 8.124E-07 4.984 7.199E-06 4.992

4.2. Degenerate case with a smooth solution
Following [17] we consider the smooth pressure of the form p̃e = cos(6xy2) on Ω = (−1, 1)2 and the following

degenerate porosity

φ =

0, x ≤ − 3
4 or y ≤ − 3

4 ,

(x + 3
4 )α(y + 3

4 )2α, otherwise.
(46)

We note that φ−
1
2∇φ ∈ [L∞(Ω)]2 for α ≥ 2, and we take α = 2. The one-phase region is denoted as Ω1 := {(x, y) :

x ≤ − 3
4 or y ≤ − 3

4 } with φ = 0, and the two-phase region is given by Ω2 := {(x, y) : − 3
4 < x < 1 and − 3

4 < y < 1}
with φ > 0. We define the intersection of these two regions by ∂Ω12 := Ω1 ∩ Ω2. In Ω1, the exact scaled pressure and
scaled velocity vanish. In Ω2, the exact solutions are given by

pe =

(
x +

3
4

) α
2
(
y +

3
4

)α
cos(6xy2), (47a)

ue
x = 6y2

(
x +

3
4

)α (
y +

3
4

)2α

sin
(
6xy2

)
, (47b)

ue
y = 12xy

(
x +

3
4

)α (
y +

3
4

)2α

sin(6xy2). (47c)

In Figure 2 are the contours of the pressure p̃ and the scaled pressure p computed from our HDG method using
Ne = 642 rectangular elements and solution order k = 4. We observe that the pressure p̃ changes smoothly in the two-
phase region Ω2, but abruptly becomes zero in the one-phase region Ω1. The sudden pressure jump on the intersection
Ω12 is alleviated with the use of the scaled pressure p.

For a convergence study, we use a sequence of meshes with ne = {16, 32, 64, 128} and with k = {1, 2, 3, 4}. Here
we choose an even number of elements so that the mesh skeleton aligns with the intersection ∂Ω12. As can be seen
in Figure 3, the convergence rate of

(
k + 1

2

)
is observed more or less for both the scaled pressure p and the scaled

velocity u, and this agrees with Theorem 1 for the degenerate case with a piecewise smooth solution.
12
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(b) Scaled pressure p

Figure 2. Degenerate case with a smooth solution: (a) contour plot of the pressure p̃ field and (b) contour plot of the scaled pressure p with
Ne = 642 and k = 4. The pressure field changes smoothly in the two-phase region Ω2, but suddenly becomes zero in the one-phase region Ω1. The
abrupt change near the intersection Ω12 between the one- and two-phase regions is alleviated with the use of the scaled pressure p.
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Figure 3. Degenerate case with a smooth solution: convergence study for (a) the scaled pressure p field and (b) the scaled velocity u field. The(
k + 1

2

)
convergence rates are obtained approximately for both the scaled pressure p and the scaled velocity u.
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4.3. Degenerate case with low solution regularity

Similar to [17], we choose the exact pressure to be p̃e = y(y − 3x)(x + 3
4 )β with β = − 1

4 or − 3
4 , and the porosity φ

is defined in (46). Similar to Section 4.2, we take α = 2. The exact solutions then read

pe = y(y − 3x)
(
x +

3
4

) α
2 +β (

y +
3
4

)α
, (48a)

ue
x = y

(
β(3x − y) + 3

(
x +

3
4

)) (
x +

3
4

)α+β−1 (
y +

3
4

)2α

, (48b)

ue
y = (3x − 2y)

(
x +

3
4

)α+β (
y +

3
4

)2α

. (48c)

The pressure and the scaled pressure fields are simulated with Ne = 642 and k = 4 for the two different cases: β = − 1
4

and β = − 3
4 in Figure 4. As can be seen from (48) and Figure 4 that smaller β implies lower solution regularity. The

pressure field with β = − 3
4 is less regular than that with β = − 1

4 . For both cases, we also observe that the pressure
p̃ fields become stiffer (stiff “boundary layer”) near the intersection at x = − 3

4 , while the scaled pressure p fields are
much less stiff.
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(c) p̃ with β = − 3
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(d) p with β = − 3
4

Figure 4. Degenerate case with low solution regularity: simulated with Ne = 642 and k = 4 are (a) pressure p̃ for β = − 1
4 , (b) scaled pressure p for

β = − 1
4 , (c) pressure p̃ with β = − 3

4 , and (d) scaled pressure p for β = − 3
4 . The pressure field with β = − 3

4 is less regular than that with β = − 1
4 . In

both the cases, the pressure fields have low regularity near the intersection Ω12.

When β = − 1
4 , the scaled pressure p and the scaled velocity u reside in H1.25−ε for ε > 0 [17]. In order to see how

the HDG solution behaves for this case, we perform a convergence study with ne = {16, 32, 64, 128} and k = {1, 2, 4, 8}.
As shown in Figure 5, the scaled pressure p and the scaled velocity u converge to the exact counterparts with the rate
of about 1.25. Note that though our error analysis in Section 3.3 considers exact solutions residing in standard Sobolev
spaces with integer powers, it can be straightforwardly extended to solutions in fractional Sobolev spaces. For this
example, the convergence rate is bounded above by 1.25 − ε regardless of the solution order. However, the high order
HDG solutions are still beneficial in terms of accuracy, for example, the HDG solution with k = 8 is 4.5 times more
accurate than that with k = 4.

When β = − 3
4 , the scaled pressure p and the scaled velocity u lie in H0.75−ε for ε > 0 [17]. We conduct a

convergence study with ne = {16, 32, 64, 128} and k = {1, 2, 4, 8}. As shown in Figure 6, the convergence rate of about
0.75 is observed for both the scaled pressure p and the scaled velocity u. Similar to the case of β = − 1

4 , high order
HDG solutions, in spite of more computational demand, are beneficial from an accuracy standpoint. For instance, the
HDG solution with k = 8 is 2.5 times more accurate than that with k = 4.

4.4. Sensitivity of τ for the degenerate case with smooth solution

In this section we assess numerically whether the sub-optimality in Theorem 1 is sharp. To that end, we consider
the degenerate example with smooth solution in Section 4.2 again here. Recall that the generalized parameter τ is
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Figure 5. Degenerate case with low solution regularity: a convergence study with β = − 1
4 for (a) the scaled pressure p field and (b) the scaled

velocity u field.
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Figure 6. Degenerate case with low solution regularity: a convergence study with β = − 3
4 for (a) the scaled pressure p field and (b) the scaled

velocity u field.

given by

τ :=
{
φ−

1
2 d for φ > 0,

γ for φ = 0.
(49)

We first compare the convergence rates for three different values of γ, namely γ ∈ {1/h, 1, 10}, and the numerical
results (not shown here) show that the convergence rates are the same and are sub-optimal by half order. For that
reason we show only the case when γ = 1/h in the fourth column of Tables 2 and 3, in which we report the convergence
rates of p and u, respectively.

We now present convergence rates for the cases where we use a single value for τ over the entire mesh skeleton
Eh. We consider three cases: τ = (1/h, 1, 10). The convergence rates of p and u for these parameters are shown in
the sixth, eighth, and tenth columns of Tables 2 and 3. The results for τ = 1 and τ = 10 show the convergence rate
of about

(
k + 1

2

)
. The cases with τ = 1

h initially have the convergence rate of (k + 1) for both the scaled pressure p

and the scaled velocity u, then approach the predicted asymptotic rate of
(
k + 1

2

)
as the grid is refined. If we look at
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the value of the errors at any grid level, the cases with τ = 1/h have the smallest errors compared to the other cases
(including the cases with τ given in (49)). It could be due to the initial higher-order convergence and/or smaller error
constants. We thus recommend that τ = 1/h should be used.

Table 2. Degenerate case with a smooth solution: the errors ‖pe − p‖Ωh and the convergence rates for the scaled pressure. Four cases are presented:
τ given (49), τ = 1

h , τ = 1 and τ = 10.

k h
τ =

{
φ−

1
2 d for φ > 0

1/h for φ = 0
τ = 1

h τ = 1 τ = 10

error order error order error order error order

1

0.1250 7.534E-01 − 1.752E-01 − 2.606E+00 − 3.827E-01 −

0.0625 2.188E-01 1.784 4.107E-02 2.093 4.809E-01 2.438 1.228E-01 1.639
0.0312 7.323E-02 1.579 9.138E-03 2.168 1.424E-01 1.756 4.098E-02 1.584
0.0156 2.403E-02 1.608 2.306E-03 1.987 5.002E-02 1.509 1.312E-02 1.643

2

0.1250 1.004E-01 − 3.313E-02 − 1.642E-01 − 6.442E-02 −

0.0625 1.819E-02 2.465 3.315E-03 3.321 3.283E-02 2.322 1.115E-02 2.531
0.0312 3.083E-03 2.561 3.887E-04 3.092 6.316E-03 2.378 1.791E-03 2.638
0.0156 4.907E-04 2.651 6.161E-05 2.658 1.154E-03 2.453 2.713E-04 2.723

3

0.1250 1.016E-02 − 2.815E-03 − 1.823E-02 − 5.781E-03 −

0.0625 8.531E-04 3.574 1.651E-04 4.092 1.705E-03 3.419 4.683E-04 3.626
0.0312 6.857E-05 3.637 1.098E-05 3.910 1.540E-04 3.469 3.630E-05 3.690
0.0156 5.239E-06 3.710 8.459E-07 3.698 1.317E-05 3.547 2.694E-06 3.752

4

0.1250 7.243E-04 − 2.445E-04 − 1.177E-03 − 4.613E-04 −

0.0625 3.700E-05 4.291 7.196E-06 5.086 6.741E-05 4.126 2.298E-05 4.327
0.0312 1.615E-06 4.518 2.170E-07 5.051 3.288E-06 4.358 9.600E-07 4.581
0.0156 6.562E-08 4.621 8.533E-09 4.669 1.508E-07 4.447 3.730E-08 4.686

4.5. Non-degenerate case in three dimensions
We consider finally a non-degenerate case on Ω = (0, 1)3 with the positive porosity φ = exp(2(x + y + z)). Let the

pressure p̃e = sin(mxπx) sin(myπy) sin(mzπz) exp (−(x + y + z)). The corresponding manufactured scaled solutions are
given as

qe = sin(mxπx) sin(myπy) sin(mzπz), (50a)
ue

x = exp(x + y + z) sin(myπy) sin(mzπz) (sin(mxπx) − mxπ cos(mxπx)) , (50b)

ue
y = exp(x + y + z) sin(mxπx) sin(mzπz)

(
sin(myπy) − myπ cos(myπy)

)
, (50c)

ue
z = exp(x + y + z) sin(mxπx) sin(myπy) (sin(mzπz) − mzπ cos(mzπz)) . (50d)

Table 4 shows h-convergence results in the L2(Ωh)-norm using a sequence of nested meshes with ne = {8, 12, 16, 20}.
Here we take mx = my = mz = 1 and use the upwind based parameter τ = φ−

1
2 d. We observe the convergence rates

between
(
k + 1

2

)
and (k + 1) for both scaled pressure p and scaled velocity u. Recall that the optimal convergence rate

of k + 1 is proved for only simplices, though similar results for quadrilaterals and hexahedra are expected. Indeed,
Table 4 shows that as the solution order increases, the convergence rate is above k + 1

2 .

5. Conclusions and future work

In this paper, we developed numerical methods for both glacier dynamics and mantle convection. Both phenomena
can be described by a two-phase mixture model, in which the mixture of the fluid and the solid is described by the

16



S. Kang, T. Bui-Thanh, and T. Arbogast / Computer Methods in Applied Mechanics and Engineering 00 (2018) 1–20 17

Table 3. Degenerate case with a smooth solution: the errors ‖ue − u‖Ωh and the convergence rates for the scaled velocity. Four cases are presented:
τ given (49), τ = 1

h , τ = 1 and τ = 10.

k h
τ =

{
φ−

1
2 d for φ > 0

1/h for φ = 0
τ = 1

h τ = 1 τ = 10

error order error order error order error order

1

0.1250 1.251E+01 − 7.416E+00 − 1.515E+01 − 1.028E+01 −

0.0625 5.714E+00 1.130 2.229E+00 1.734 7.362E+00 1.041 4.479E+00 1.199
0.0312 2.386E+00 1.260 5.664E-01 1.977 3.334E+00 1.143 1.784E+00 1.329
0.0156 9.371E-01 1.348 1.505E-01 1.912 1.449E+00 1.202 6.660E-01 1.421

2

0.1250 2.911E+00 − 1.656E+00 − 3.649E+00 − 2.361E+00 −

0.0625 5.996E-01 2.279 2.372E-01 2.804 8.361E-01 2.126 4.566E-01 2.371
0.0312 1.154E-01 2.378 3.575E-02 2.730 1.821E-01 2.199 8.247E-02 2.469
0.0156 2.080E-02 2.472 5.949E-03 2.587 3.770E-02 2.272 1.408E-02 2.550

3

0.1250 2.551E-01 − 1.237E-01 − 3.595E-01 − 1.876E-01 −

0.0625 2.635E-02 3.275 9.486E-03 3.705 4.001E-02 3.168 1.885E-02 3.315
0.0312 2.542E-03 3.374 6.954E-04 3.770 4.232E-03 3.241 1.763E-03 3.418
0.0156 2.316E-04 3.456 5.436E-05 3.677 4.236E-04 3.321 1.565E-04 3.494

4

0.1250 2.951E-02 − 1.710E-02 − 3.615E-02 − 2.437E-02 −

0.0625 1.717E-03 4.103 6.531E-04 4.710 2.348E-03 3.944 1.344E-03 4.181
0.0312 8.585E-05 4.322 2.274E-05 4.844 1.321E-04 4.152 6.358E-05 4.402
0.0156 3.994E-06 4.426 8.741E-07 4.701 6.999E-06 4.238 2.813E-06 4.498

porosity φ (i.e., φ > 0 implies the fluid-solid two-phase and φ = 0 means the solid single-phase region). The challenge
is when the porosity vanishes because the system degenerates, which make the problem difficult to solve numerically.
To address the issue, following [17], we start by scaling variables to obtain the well-posedness. Then we spatially
discretize the system using the upwind HDG framework. The key feature is that we have modified the upwind HDG
flux to accommodate the degenerate (one-phase) region. When the porosity vanishes, the unmodified HDG system
becomes ill-posed because the stabilization parameter associated with the HDG flux disappears. For this reason, we
introduce the generalized stabilization parameter that is composed of the upwind based parameter τ = φ−

1
2 d in the

two-phase region and a positive parameter τ = 1
h > 0 in the one-phase region. This enabled us to develop a high-order

HDG method for a linear degenerate elliptic equation arising from a two-phase mixture of both glacier dynamics and
mantle convection.

We have shown the well-posedness and the convergence analysis of our HDG scheme. The rigorous theoretical
results tell us that our HDG method has the convergence rates of (k + 1) for a non-degenerate case and

(
k + 1

2

)
for a

degenerate case with a piecewise smooth solution.
Several numerical results confirm that our proposed HDG method works well for linear degenerate elliptic equa-

tions. For the non-degenerate case, we obtain the (k + 1) convergence rates of both the scaled pressure p and the
scaled velocity u in two dimensions, whereas in three dimensions we observe the convergence rates above

(
k + 1

2

)
.

For the degenerate case with a smooth solution, the convergence rate of
(
k + 1

2

)
is observed for both the scaled pres-

sure p and the scaled velocity u. For the degenerate case with low solution regularity, the convergence rates of the
numerical solutions are bounded by the solution regularity, but the high-order method still shows a benefit in terms
of accuracy. Through a parameter study, we found that using a positive parameter on the one-phase region does not
affect the accuracy of a numerical solution. We also found that τ = 1/h showed slightly better performance in terms
of error levels and convergence rates for the degenerate case with smooth solution.

In order for our proposed method to work in two-phase flows, the interfaces between matrix solid and fluid melt
17
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Table 4. Non-degenerate case in three dimensions: the results show that the HDG solutions for scaled pressure p and scaled velocity u converge to
the exact solutions with the rate in above k + 1

2 .The upwind based parameter τ = φ−
1
2 d is used.

k h ‖pe − p‖2 ‖ue − u‖2
error order error order

1

0.1250 2.553E-02 − 5.895E-01 −

0.0833 1.473E-02 1.356 3.527E-01 1.267
0.0625 9.754E-03 1.433 2.399E-01 1.340
0.0500 6.994E-03 1.491 1.757E-01 1.396

2

0.1250 1.405E-03 − 4.408E-02 −

0.0833 5.274E-04 2.417 1.712E-02 2.333
0.0625 2.576E-04 2.491 8.579E-03 2.402
0.0500 1.460E-04 2.545 4.961E-03 2.455

3

0.1250 4.872E-05 − 1.477E-03 −

0.0833 1.183E-05 3.491 3.684E-04 3.425
0.0625 4.234E-06 3.572 1.348E-04 3.495
0.0500 1.885E-06 3.626 6.105E-05 3.550

4

0.1250 1.100E-06 − 2.741E-05 −

0.0833 1.705E-07 4.598 4.428E-06 4.496
0.0625 4.447E-08 4.672 1.188E-06 4.573
0.0500 1.551E-08 4.720 4.235E-07 4.622

need to be identified and grids should be aligned with the interfaces. In other words, the degeneracies are always
required to lie on a set of measure zero. Note that we do not consider the full set of dynamical equations (1), (4), (7),
(8) yet. We will tackle this challenge in a future work.

Appendix A. Auxiliary results

In this appendix we collect some technical results that are useful for our analysis.

Lemma 8 (Inverse Inequality [55, Lemma 1.44]). For v ∈ Pk(K) with K ∈ Ωh, there exists c > 0 independent of h
such that

‖∇v‖0,K ≤ ch−1
K ‖v‖0,K . (A.1)

Lemma 9 (Trace inequality [55, Lemma 1.49]). For v ∈ H1(Ωh) and for K ∈ Ωh with e ⊂ ∂K, there exists c > 0
independent of h such that

‖v‖20,e ≤ c
(
‖∇v‖0,K + h−1

K ‖v‖0,K
)
‖v‖0,K . (A.2)

Applying the arithmetic-geometric mean inequality to the right side, we can derive

‖v‖0,e ≤ c
(
h

1
2
k ‖∇v‖0,K + h−

1
2

K ‖v‖0,K
)
. (A.3)

If v ∈ H1(Ωh) is in a piecewise polynomial space, we can derive the following inequality from Lemma 9 and the
inverse inequality (Lemma 8):

‖v‖0,e ≤ ch−
1
2

K ‖v‖0,K . (A.4)
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