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A RELATION BETWEEN THE DISCONTINUOUS
PETROV–GALERKIN METHOD AND THE DISCONTINUOUS

GALERKIN METHOD

TAN BUI-THANH † , OMAR GHATTAS †‡§ , AND LESZEK DEMKOWICZ †

Abstract. This paper is an attempt in seeking a connection between the discontinuous Petrov–
Galerkin method of Demkowicz and Gopalakrishnan [13,15] and the popular discontinuous Galerkin
method. Starting from a discontinuous Petrov–Galerkin (DPG) method with zero enriched order
we re-derive a large class of discontinuous Galerkin (DG) methods for first order hyperbolic and
elliptic equations. The first implication of this result is that the DG method can be considered as
the least accurate DPG method. The second implication is that the DPG method can be viewed
as a systematic way to improve the accuracy of the DG method when nonzero enriched orders are
employed. A detailed derivation of the upwind DG, the local DG, and the hybridized DG from a
DPG method with optimal test norms will be presented.

Key words. discontinuous Petrov–Galerkin methods; discontinuous Galerkin methods; well-
posedness; partial differential equations; inf–sup condition;
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1. Introduction. The discontinuous Petrov–Galerkin (DPG) framework intro-
duced by Demkowicz and Gopalakrishnan [13,15] has been evolving as a new numerical
methodology for partial differential equations (PDEs). The method has been success-
fully applied to a wide range of PDEs including scalar transport [5,13,15], Laplace [14],
convection-diffusion [14,15], Helmholtz [16,17,27], Burgers and Navier-Stokes [8], and
linear elasticity [4] equations. The DPG framework starts by partitioning the domain
of interest into non-overlapping elements. Variational formulations are posed for each
element separately and then summed up to form a global variational statement. Ele-
mental solutions are connected by introducing hybrid variables (also known as fluxes
or traces) that live on the skeleton of the mesh. This is therefore a mesh-dependent
variational approach in which both bilinear and linear forms depend on the mesh
under consideration.

In general, the trial and test spaces are not related to each other. In the standard
Bubnov–Galerkin (also known as Galerkin) approach, the trial and test spaces are
identical, while they differ in a Petrov–Galerkin scheme. Traditionally, one chooses
either Galerkin or Petrov–Galerkin approaches, then proves the consistency and sta-
bility in both infinite and finite dimensional settings (if possible). The DPG method
introduces a new paradigm in which one selects both trial and test spaces at the same
time to satisfy well-posedness. In particular, one can select trial and test function
spaces for which the continuity and inf–sup constants are unity. Given a finite dimen-
sional trial subspace, the finite dimensional test space is constructed in such a way
that the well-posedness of the finite dimensional setting is automatically inherited
from the infinite dimensional counterpart.

For example, the DPG method in [15] starts with a given norm in the trial space
and then seeks a norm in the test space in order to achieve unity continuity and inf–
sup constants. Another DPG method in [16] achieves the same goal but reverses the
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process, i.e., it looks for a norm in the trial space corresponding to a given norm in
the test space. Clearly, this is one of the advantages of the DPG methodology, since it
allows one to choose a norm of interest to work with, while rendering the error optimal,
i.e., smallest in that norm. Furthermore, the DPG methodology provides a natural
framework for constructing robust versions of the method for singular perturbation
problems, enabling automatic adaptivity. We shall not discuss the advantages of the
DPG methods any further here, and the readers are referred to the original DPG
papers [13–16] for more details.

The discontinuous Galerkin (DG) method, on the other hand, was originally devel-
oped by Reed and Hill [25] for the neutron transport equation, and has been extended
to other partial differential equations (PDEs) [1, 9–11]. Roughly speaking, DG com-
bines advantages of classical finite volume and finite element methods. In particular,
it has the ability to treat solutions with large gradients including shocks, it provides
the flexibility to deal with complex geometries, and it is highly parallelizable due to
its compact stencil. The DG literature is vast and an extensive review is out of the
scope of the paper.

It has been observed that the DPG method seems to be more accurate than the
DG method for the transport equation, given the same polynomial order for the finite
dimensional trial subspace [5,13,15]. In particular, the numerical results in [5,13,15]
show that the DPG method is more accurate, more stable, and does not seem to
have any noticeable dispersion compared to the DG method for several one- and two-
dimensional examples. Moreover, the DG method has sub-optimal h convergence rate
on Peterson’s meshes [24] for p < 3 [5], while h convergence rate of the DPG method
is uniformly optimal for all p. This paper is the first attempt in understanding why
the DPG methodology could provide a numerical solution that is more accurate than
that of the DG method.

Section 2 gives a short introduction to the mathematical theory behind the discon-
tinuous Petrov–Galerkin framework. Section 3 shows in which sense the DG method
corresponds the least accurate DPG method for the first order hyperbolic equations.
In particular, we re-derive a large class of DG methods from a DPG method with
zero enriched order (to be defined). In the similar manner, we re-derive the local DG
method and the hybridized DG method from a DPG method with zero enriched order
for elliptic equations in Sections 4 and 5, respectively. Finally, Section 6 concludes
the paper.

2. A brief review of the discontinuous Petrov–Galerkin theory. In this
section, we review the discontinuous Petrov–Galerkin framework presented in [5]. Let
U and V be Hilbert spaces over the real line (generalization of our theory to the
complex field is straightforward). Consider the following variational problem,{

Seek u ∈ U such that
a(u, v) = `(v), ∀v ∈ V, (2.1)

where ` (·) is a linear form on V , a(·, ·) is a bilinear form satisfying the continuity
condition with continuity constant M ,

|a (u, v)| ≤M ‖u‖U ‖v‖V , (2.2)

the inf–sup condition with the inf–sup constant γ,

∃γ > 0 : inf
u∈U

sup
v∈V

a (u, v)

‖u‖U ‖v‖V
≥ γ, (2.3a)
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and the injectivity of the adjoint operator (to be defined),

(a (u, v) = 0, ∀u ∈ U)⇒ (v = 0) . (2.3b)

If (2.2) and (2.3) hold, then by the generalized Lax-Milgram theorem [3,23] (also
known as the Banach-Nečas-Babuška theorem [19]), (2.1) has a unique solution and
the solution is stable in the following sense,

‖u‖U ≤
1

γ
‖`‖V ′ ,

where V ′ is the topological dual of V . Note that for convenience in writing, we have
abused the notation supv∈V instead of supv∈V,v 6=0 (and similarly for inf).

Now let Uh ⊂ U and Vh ⊂ V be two finite dimensional trial and test spaces, and
consider the following finite dimensional approximation problem,{

Seek uh ∈ Uh such that
a(uh, vh) = `(vh), ∀vh ∈ Vh.

(2.4)

If dimUh = dimVh = n, and the following discrete inf–sup condition

∃γh > 0 : inf
uh∈Uh

sup
vh∈Vh

a (uh, vh)

‖uh‖U ‖vh‖V
≥ γh (2.5)

holds, then the finite dimensional problem (2.4) is well-posed by an application of
the generalized Lax-Milgram theorem for finite dimensional problems (also known as
the Babuška’s Theorem [2, 3]). In general, however, the finite dimensional problem
(2.4) does not inherit the well-posedness of the infinite dimensional counterpart (2.1)
except for some special circumstances. One, therefore, has to prove the non-trivial
discrete inf–sup condition [19].

Our goal is to construct finite dimensional approximations that are guaranteed
to be trivially well-posed with unity continuity and inf–sup constants. Here, trivial
well-posedness means that the well-posedness of the finite dimensional problems is
trivially inherited from their infinite dimensional counterparts. We begin by a result
on the error between the exact and the finite dimensional approximate solutions.

Theorem 2.1 (Babuška [2]). Suppose that both the continuous problem (2.1) and
discrete problem (2.4) are well-posed, then

‖u− uh‖U ≤
M

γh
inf

wh∈Uh

‖u− wh‖U .

Proof. A standard proof can be found in [12,26].
The following best approximation error result immediately follows from Theorem

2.1.
Corollary 2.2. If M = γh, then

‖u− uh‖U = inf
wh∈Uh

‖u− wh‖U .

In particular, M = γh = 1 satisfies Corollary 2.2. That is, if the continuity constant
and the discrete inf–sup constant are unity, then the error incurred from the discrete
approximation (2.4) is the best, i.e., it is smallest. As can be seen, there are two
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spaces to work with, namely the trial and test spaces, respectively. The first DPG
method [15] starts with a given norm in the trial space U , and then seeks a norm in
the test space V so that M = γ = 1. In the second DPG method [16], on the other
hand, one defines a norm in U from a given norm in V such that M = γ = 1. Clearly,
this is one of the advantages of the DPG methodology since it allows one to choose a
norm of interest to work with while making the error optimal, i.e. smallest, in that
norm.

On the other hand, it is not necessary to prescribe either norms in the spaces
U and V . Indeed, we let the problem speak out its “natural” energy norms, thus
which norms to be chosen to work with is out of the question in our new approach.
Nevertheless, care must be taken since our idea may not be applicable for cases in
which one prefers to work with particular norms.

The following useful result will be used as guidelines to construct the “natural”
norms in U and V spaces such that M = γ = 1.

Theorem 2.3. Suppose the continuity condition holds with unity continuity con-
stant, i.e.,

a (u, v) ≤ ‖u‖U ‖v‖V .

Then there holds M = γ = 1 if either of the following conditions holds

i) For each u ∈ U \ {0}, there exists vu ∈ V \ {0} such that

a (u, vu) = ‖u‖U ‖vu‖V .

ii) For each v ∈ V \ {0}, there exists uv ∈ U \ {0} such that

a (uv, v) = ‖uv‖U ‖v‖V .

Proof. A proof can be found in [5].

Remark 2.4. In general, the continuity and the inf–sup conditions are not related
to each other, and it is typically more difficult to establish the later. However, Theorem
2.3 shows that if the continuity constant is unity and the equality is attainable, then the
continuity condition actually implies the inf–sup condition and the inf–sup constant is
unity as well. To the end of the paper, we call the norms in U and V spaces optimal
norms if both continuity and inf–sup constants are unity in these norms. Moreover,
we also call the pair u and vu (and hence for uv and v) as the optimal trial and test
functions, respectively. Here, optimality is in the sense of Corollary 2.2.

We are now in position to construct the approximation subspaces Uh and Vh such
that the discrete continuity and inf–sup constants are unity.

Theorem 2.5. Define the map T : U 3 u 7→ Tu ∈ V ′ as 〈Tu, v〉V ′×V = a(u, v).
Denote vTu as the Riesz representation of Tu in V . Suppose a (·, ·) is continuous with
unity constant and assumption i) of Theorem 2.3 holds. Take Uh ⊂ U and define

Vh = span {vTuh
∈ V : uh ∈ Uh} .

Then, the following hold,

(i) Mh = γh = 1.
(ii) Let Uh = span {ϕi}i=1, where ϕi ∈ U, i = 1, . . . , n. Then {vTϕi

}ni=1 is a basis
of Vh.

(iii) The discrete problem (2.4) is well-posed.
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Proof. A proof can be found in [5].

At this point, it is important to point out that while the finite dimensional trial
space Uh = span {ϕi}ni=1 is designed for good approximability, the test basis Vh =
span {vTϕi

}ni=1 is constructed for well-posedness of the discrete problem (2.4) via the
Banach-Nečas-Babuška theorem (which is a re-statement of the closed range and the
open mapping theorems [23]).

To the rest of the paper, we shall not distinguish vu and vTu since we shall work
exclusively with the Riesz representations.

3. A relation between DPG and DG for first order hyperbolic PDEs.
The model problem in this section is the first order scalar linear hyperbolic equation
of the form

β · ∇u+ µu = f, in Ω, (3.1a)

u = g, on Γ, (3.1b)

where Γ = {x ∈ ∂Ω : n (x) · β < 0} is the inflow boundary; n (x) denotes the outward

normal vector at x on the boundary ∂Ω. Assume β ∈
[
W 1,∞ (Ω)

]d
with d ∈ {1, 2, 3}

denoting the dimension of the problem, µ ∈ L∞ (Ω), f ∈ L2 (Ω), and g ∈ L2
β·n (Γ)

with

L2
β·n (Γ) =

{
w : ‖w‖2L2

β·n(Γ) =

∫
Γ

|β · n| |w|2 dΓ <∞
}
,

and u ∈ H1
β with

H1
β (Ω) =

{
u ∈ L2 (Ω) : β · ∇u ∈ L2 (Ω)

}
.

We partition the polygonal domain Ω into N el non-overlapping elements Kj , j =

1, . . . , N el such that Ωh = ∪Nel

j=1Kj and Ω = Ωh and that the mesh is assumed to be
affine. Here, h is defined as h = maxj∈{1,...,Nel} diam (Kj). In addition, we denote by

Eh the mesh skeleton, with cardinal number N ed, which consists of all unique faces
in the mesh, each of which comes with a normal vector ne. In this paper, the term
“faces” is used to indicate boundary points of 1D elements, edges of 2D elements,
or faces of 3D elements. Finally, we require β · ne ∈ L∞ (e) for e = 1, . . . , N ed.
Multiplying (3.1a) by a test function v, integrating by parts, and introducing the
single-valued flux q ∈ L2

β·n (Eh) at the element interfaces, we have,

Nel∑
j=1

∫
Kj

[−u∇ · (βv) + µuv] dx +

∫
∂Kj

1∂Kj\Γβ · nqv ds

=

Nel∑
j=1

∫
Kj

fv dx−
∫
∂Kj∩Γ

β · ngv ds, (3.2)

with 1∂Kj\Γ denoting the indicator function (also known as the characteristic func-
tion) of ∂Kj \Γ. Clearly, for elements with characteristic faces, i.e., β ·n = 0 on ∂Kj ,
the boundary integrals corresponding to these faces simply drop out and q is allowed
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to be undefined on these boundaries. Next, integrating by parts one more time gives

Nel∑
j=1

∫
Kj

(β · ∇u+ µu) v dx +

∫
∂Kj

β · n
(
1∂Kj\Γq − u

)
v ds

=

Nel∑
j=1

∫
∂Kj

fv dx−
∫
∂Kj∩Γ

β · ngv ds. (3.3)

If we choose v|Kj
∈ L2 (Kj), then the trace v|∂Kj

is not defined. Therefore, we

introduce a new hybrid variable r that lives in the space ΠNel

j=1L
2
β·n (∂Kj). Unlike q,

which is single-valued on a face of the skeleton, r is allowed to have double values
depending on the side of that face. With the introduction of r, (3.3) can be rewritten
as

a (u,v) =

Nel∑
j=1

∫
Kj

(β · ∇u+ µu) v dx +

∫
∂Kj

β · n
(
1∂Kj\Γq − u

)
r ds

= ` (v) =

Nel∑
j=1

∫
Kj

fv dx−
∫
∂Kj∩Γ

β · ngr ds, (3.4)

As shown in [5], applying the DPG framework in Section 2 to the weak form
(3.4), obtained by integrating by parts twice, recovers an existing hp least-squares DG
(LSDG) method presented in [21]. Thus, the DPG framework can be considered as a
different, but constructive, methodology to derive hp LSDG methods. In particular,
starting from the requirement of having unity continuity and inf–sup constants, and
choosing the weak formulation (3.4) to apply our theory developed in Section 2, we
constructively (and accidentally) derive a LSDG method from a well-posed infinite
dimensional setting. The distinct feature of our method is that the flux is introduced
as a new unknown, and then found by fulfilling stability. It should be pointed out
that our theory is general in the following sense. If it is applied to different weak
formulations, one will constructively obtain different numerical methods, again, with
trivial well-posedness for the finite dimensional approximation problem, as we now
show.

The starting point is the weak formulation (3.2) obtained by integrating (3.1) by
parts once. This formulation can be written in a more compact form as

Nel∑
j=1

∫
Kj

u [−∇ · (βv) + µv] dx +
1

2

∫
∂Kj

qβ · [[v]] ds

=

Nel∑
j=1

∫
Kj

fv dx−
∫
∂Kj∩Γ

β · ngv ds, (3.5)

with [[v]] = v−n− + v+n+. In this section, we conventionally define v+n+ = v−n−

on the outflow, and on the inflow v+n+ = −v−n−. We allow the arbitrariness in
assigning “-” and “+” quantities on a common face of two adjacent elements Ki and
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Kj . We define the trial and test spaces as

U =
{

u : u|Kj
∈ L2 (Kj)× L2

β·n (∂Kj) , j = 1, . . . , N el
}

= L2 (Ωh)× L2
β·n (Eh) ,

V =
{
v : v|Kj

∈ H1
β (Kj) , j = 1, . . . , N el

}
= H1

β (Ωh) .

Guided by Theorem 2.3, we are looking for natural norms in spaces U and V
such that the continuity constant is unity and the equality in the continuity condi-
tion is achievable. An approach to obtain this goal is to apply the Cauchy–Schwarz
inequality, i.e.,

a (u, v) ≤
Nel∑
j=1

‖−∇ · (βv) + µv‖L2(Kj) ‖u‖L2(Kj)

+
1

2
‖q‖L2

β·n(∂Kj) ‖[[v]]‖L2
β·n(∂Kj)

≤


Nel∑
j=1

‖−∇ · (βv) + µv‖2L2(Kj) +

∥∥∥∥ 1√
2

[[v]]

∥∥∥∥2

L2
β·n(∂Kj)


1
2

︸ ︷︷ ︸
‖v‖V

×


Nel∑
j=1

‖u‖2L2(Kj) +

∥∥∥∥ 1√
2
q

∥∥∥∥2

L2
β·n(∂Kj)


1
2

︸ ︷︷ ︸
‖u‖U

. (3.6)

Equalities in (3.6) are achievable if we use the Riesz representations, i.e., given
u = (u, q) ∈ U ,

u = −∇ · (βvu) + µvu, in Kj , (3.7a)

q = sgn (β · n) n · [[vu]], on ∂Kj . (3.7b)

Once we know that the equality is obtainable under condition (3.7), the consistency
and well-posedness of (3.5) with respect to the norms defined in (3.6) are readily
available by Theorem 2.5 [5] or by a general DPG theory [7].

We next use (3.7) to find optimal pairs of trial and (corresponding) test basis
functions. For basis functions of the form φ = (0, φ) ∈ U , where φ is a function in
L2
β·n (Eh), the corresponding basis functions in V are given by, for j = 1, . . . , N el,

−∇ · (βvφ) + µvφ = 0, in Kj , (3.8a)

n · [[vφ]] = sgn (β · n)φ, on ∂Kj . (3.8b)

Similarly, for basis functions of the form ϕ = (ϕ, 0) ∈ U , where ϕ ∈ L2 (Ωh), the
corresponding basis functions in V are given by, for j = 1, . . . , N el,

−∇ · (βvϕ) + µvϕ = ϕ, in Kj , (3.9a)

n · [[vϕ]] = 0, on ∂Kj . (3.9b)

Once the test functions are found using (3.8) or (3.9), we can substitute them into
(3.5) to establish equations to solve for the unknowns u = (u, q). Let us proceed with
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the generic test basis in (3.8) first. If φ is different from zero on e ∈ Eh and zero
elsewhere on the skeleton, then testing (3.5) with v = (0, vφ) yields,∫

e

|β · n| q φ ds =

∫
Ωh

f vφ dx−
∫

Γ

β · n g vφ ds. (3.10)

As can be seen in (3.10), for each φ ∈ L2
β·n (e) , e ∈ Eh, q ∈ L2

β·n (e) can be locally
solved independently of u.

Now if ϕ|Kj is a nonzero function in Kj but zero elsewhere, then testing (3.5)
with v = (0, vϕ) gives,∫

Kj

uϕ dx =

∫
Ωh

f vϕ dx−
∫

Γ

β · n g vϕ ds, (3.11)

which shows that the unknown u can also be computed locally element-by-element
and independently of q. The detailed discussion on this DPG method can be found
in [5].

As shown in the existing literature, the DPG methodology can provide different
DPG methods depending the norm in the test space (and hence the corresponding
norm in the trial space) [5, 6, 13–18, 27]. Typically, the chosen norms are equivalent
with small (e.g., order one) constants. Most of DPG methods therefore share several
attractive features including stability and accuracy due to the (quasi-)minimization
of the approximation error.

In this paper, we choose to work with the DPG framework with optimal norms
of the type defined in (3.6) to demonstrate the DPG stability and accuracy. More
importantly, it allows us to recover several existing DG methods as its least accurate
versions. To begin, we first need to address the question on how to solve for the
optimal test functions in (3.8) and (3.9). Since we are only interested in the original
variable u, we simply ignore (3.8), and hence the computation of the hybrid variable
q. Denote Pp as the space of polynomials of order at most p, we seek uh|Kj

in the
following finite dimensional piecewise polynomial subspace

Uh (Kj) =
{
ϕ ∈ L2 (Kj) : ϕ ∈ Ppj

}
,

such that ∫
Kj

uhϕ dx =

∫
Ωh

f vϕ dx−
∫

Γ

β · n g vϕ ds, ∀ϕ ∈ Uh (Kj) .

Clearly, given ϕ ∈ Uh (Kj), it is not possible to solve for the optimal test function
in (3.9) exactly, and one has to resort to numerical approximations. This in fact
provides the flexibility in choosing the accuracy of the computed test functions, and
hence the accuracy of the approximation solution uh, as we shall show. In particular,
we choose to approximate the optimal test functions vϕ, the solution of (3.8), by vhϕ
in the following finite dimensional test subspace

V ∆p
h =

{
v ∈ V : v|Kj

∈ Ppj+∆pj , j = 1, . . . , N el
}
⊂ V,

with ∆pj , j = 1, . . . , N el, as the enriched orders. As can be observed, V ∆p
h asymptot-

ically approaches V as ∆pj → ∞, j = 1, . . . , N el, owing to the density of the space
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of polynomials. That is, vhϕ ∈ V
∆p
h is increasingly accurate as ∆pj , j = 1, . . . , N el,

increase. The discrete equation for uh reads∫
Kj

uhϕ dx =

∫
Ωh

f vhϕ dx−
∫

Γ

β · n g vhϕ ds, ∀ϕ ∈ Ppj . (3.12)

Next, any reasonable numerical method for hyperbolic equations can be used to
solve (3.9) for vhϕ. Here, we choose a class of DG methods with the following numerical
flux

n ·
(
βvhϕ

)∗
= β · n{{vhϕ}} −

(1− α)

2
sgn (β · n)β · [[vhϕ]], (3.13)

with {{v}} denoting the average 1
2 (v− + v+), and α ∈ [0, 1]. Note that α = 0 cor-

responds to the downwind flux and α = 1 the central flux. The DG scheme to
approximate (3.9) reads, for each j ∈

{
1, . . . , N el

}
and for each ϕ ∈ Ppj ,

∑
Ki∈Ωj

∫
Ki

vhϕβ · ∇φdx−
∫
∂Ki\∂Ω+

j

n ·
(
βvhϕ

)∗
φds =

∫
Kj

ϕφdx, ∀φ ∈ Ppj+∆pj ,

(3.14)

where Ωj involves only elements downstream of the adjoint flow starting from element
Kj , and ∂Ω+

j = {x ∈ ∂Ωj : −β · x < 0} is the adjoint inflow of the boundary of Ωj .
Moreover, the approximate solution on Kj satisfies the discrete equation (3.12). Since
Ppj ⊆ Ppj+∆pj , we can take φ = uh so that (3.14) becomes

∑
Ki∈Ωj

∫
Ki

vhϕβ · ∇uh dx −
∫
∂Ki\∂Ω+

j

n ·
(
βvhϕ

)∗
uh ds =

∫
Kj

ϕuh dx. (3.15)

The following useful identity is easy to inspect for any vector τ and scalar w∑
Ki∈Ωj

∫
∂Ki\∂Ωj

n · τw ds =
∑
e∈Ejh

∫
e\∂Ωj

{{τ}} · [[w]] ds+
∑
e∈Ejh

∫
e\∂Ωj

[[τ ]]{{w}} ds, (3.16)

where Ejh is the skeleton of Ωj , and the jump for vector-valued quantity is defined as
[[τ ]] = τ− · n− + τ+ · n+.

Now integrating the first term on the left side of (3.15) by parts, applying identity
(3.16) to the second term on the left side of (3.15), substituting the adjoint numerical
flux (3.13) into the left side of (3.15), and substituting (3.12) into the right side of
(3.15) we can rewrite (3.15) as

−
∑
Ki∈Ωj

∫
Ki

uh∇ ·
(
βvhϕ

)
dx +

∫
∂Ki\Γ

n · (βuh)
∗
vhϕ ds =

∑
Ki∈Ωj

∫
Ki

f vhϕ dx−
∫

Γ

β · n g vhϕ ds, j = 1, . . . , N el, (3.17)

where

n · (βuh)
∗

= β · n{{uh}}+
(1− α)

2
sgn (β · n)β · [[uh]]. (3.18)
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Here comes the important point. If ∆pj = 0, j = 1, . . . , N el, then (3.17) is
equivalent to the following single variational equation

−
∑
Kj∈Ω

∫
Ki

uh∇ · (βvh) dx +

∫
∂Ki\Γ

n · (βuh)
∗
vh ds =

∫
Ωh

f vh dx−
∫

Γ

β · n g vh ds, ∀vh ∈ V ∆p=0
h = Uh (Ωh) . (3.19)

At this point, a closer look tells us that (3.19) and (3.18) embrace a class of
DG discretizations for the original equation (3.1). In particular, α = 0 corresponds
to the DG method with upwind numerical flux [22, 25] while α = 1 corresponds to
the DG method with central numerical flux. On the other hand, as shown in [5],
∆pj = 0, j = 1, . . . , N el correspond to the least accurate DPG method. In practice,
one typically takes ∆pj ≥ 1. The above analysis is therefore the first attempt in
explaining why the DPG method can be more accurate than the DG method using
the same solution order pj , j = 1, . . . , N el, though this has already been observed
numerically in [5, 13, 15]. Indeed, these papers show that the DPG is more accurate,
more stable, and does not seems to have any noticeable artificial dispersion compared
to the DG for several one- and two-dimensional examples. Moreover, the DG method
has sub-optimal h convergence rate on Peterson’s meshes [24] for p < 3, while the
DPG h convergence rate is uniformly optimal for all p.

Let us now provide more numerical results to support the above analysis. For
the first example, we take Ω = (0, 1), β = 1, µ = 0, g = 0.5 exp

(
−0.82/σ2

)
, and the

forcing function f is chosen such that the exact solution is given by

u (x) =
x(

1 +
√

1/ exp (1/(λa))
)

exp (x2/ (4λ))
+ 0.5 exp

(
− (x− 0.8)

2

λa

)
,

where a = 6, λ = 0.00045, and σ = 0.05. The optimal test functions can be computed
exactly as in [5]. The solution order is chosen to be 4, and the mesh is uniform with 50
elements, i.e., h = 1/50. Figure 3.1 shows that both upwind DG and DPG solutions
are comparable in the linear part of the solution while the DG solution has more over-
shootings in the sharp gradient region. In the smooth region with x ≥ 0.6, the DPG
solution is on top of the exact one whereas the DG solution is inaccurate. The better
accuracy is due to the fact that the DPG solutions minimize the error in the energy
norm (3.6), a component of which is the error in the L2 norm. Therefore, oscillations
with big amplitude that have significant L2 norm are not allowed in the DPG solutions.
The DG method, however, does not have such a property. The better stability reflects
the fact that while most of numerical methods for hyperbolic equations introduce
numerical dissipation either explicitly or implicitly (e.g., through the numerical fluxes
as in many DG methods) to gain stability, and hence may not be enough (e.g., large
over-shootings), the DPG stability comes directly from the functional setting through
the Banach-Nečas-Babuška theorem on the infinite dimensional level.

In the second example, we study the dispersion error. To this end, we take
Ω = (0, 1), β = 1, µ = 0, g = 1, and the forcing function f is chosen such that the
exact solution is given by

u (x) = cos (4πx) .

For the numerical solution, we use eight linear elements. Figure 3.2 plots the up-
wind DG, the DPG, and the exact solutions. Compared to the DPG, the DG is less
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Fig. 3.1. DPG and upwind DG solutions for the first example.

accurate not only in magnitude but also in phase. On the other hand, the DPG
solution does not seems to have any noticeable dispersion error. More importantly,
the DPG approximability is uniform across the whole domain while the DG solution
undershoots and overshoots at the negative and the positive peaks, respectively. This
indicates that the upwind numerical flux introduces not only non-uniform dissipation
but also unphysical dispersion.

For the first two examples, we have computed the optimal test functions exactly.
A more general and practical approach is to solve for them approximately, as described
above. Several two-dimensional examples using the upwind DG method to compute
the optimal test functions with enriched exponent ∆pj = 1 can be found in [5]. The
observations are the same as in the case with exact test functions including better
accuracy, better stability, no noticeable dispersion, and uniform optimal convergence
rates. The reader is referred to [5] for several two dimensional examples and the
corresponding detailed comparison between DPG and DG methods.

We have shown that the DPG methodology provides flexibility in approximating
the optimal test functions. The more accurately the test functions are computed, the
more accurate the DPG approximation is, at least asymptotically. It is interesting to
see that the least accurate DPG methods, i.e., with ∆pj = 0, j = 1, . . . , N el, recover a
class of DG discretizations. Note that negative ∆pj is not allowable, since otherwise
the dimension of the test space is less than that of the trial space, and hence the
approximate solution would not be unique.
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Fig. 3.2. DPG and DG solutions for the second example.

4. A relation between DPG and DG for elliptic PDEs. In this section,
the model PDE we consider is the Poisson equation

−∆u = f, in Ω, (4.1a)

u = 0, on Γ = ∂Ω, (4.1b)

where f ∈ L2 (Ω). We first rewrite the equation in the first order form as

σ +∇u = 0 in Ω, (4.2a)

∇ · σ = f in Ω, (4.2b)

u = 0 on Γ = ∂Ω. (4.2c)

Multiply (4.2) by the pair of test function (τ , v) and integrate by parts we obtain

(σ, τ )Ωh
− (u,∇ · τ )Ωh

+ 〈u, τ · n〉∂Ωh
− (σ,∇v)Ωh

+ 〈v,σ · n〉∂Ωh
= (f, v)Ωh

,

where (·, ·)Ωh
is the broken L2 inner product on Ωh, and 〈·, ·〉∂Ωh

the broken duality

pairing H
1
2 (∂Ωh)×H− 1

2 (∂Ωh) with ∂Ωh = ΠNel

j=1∂Kj . Next, introduce single-valued
unknown trace û and flux σ̂ on the skeleton, the weak formulation can be rewritten
as

a ((σ, u, û, σ̂) , (τ , v)) = (σ, τ )Ωh
− (u,∇ · τ )Ωh

+ 〈û, [[τ ]]〉Eh − (σ,∇v)Ωh
+ 〈[|v|], σ̂〉Eh

= ` (τ , v) = (f, v)Ωh
, (4.3)
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where

[|v|] = v−sgn
(
n−
)

+ v+sgn
(
n+
)
,

with

sgn
(
n±
)

=

{
1 if n± = ne
−1 if n± = −ne

.

Here, we conventionally define [[τ ]] = τ ·n and [|v|] = v sgn (n) on the domain boundary.
Following [7, 14], we choose the trial space as

U =
[
L2 (Ωh)

]d × L2 (Ωh)×H
1
2
0 (Eh)×H− 1

2 (Eh) ,

and the test space as

V = H (div,Ωh)×H1 (Ωh) .

For each face e ∈ Eh, we use the Riesz representation theorem to express a duality
pairing as an equivalent inner product, i.e.,

〈û, [[τ ]]〉e = (û,R[[τ ]])
H

1
2 (e)

, 〈[|v|], σ̂〉e = ([|v|],Rσ̂)
H

1
2 (e)

,

where R : H−
1
2 (e) → H

1
2 (e) is the Riesz map, and (·, ·)

H
1
2 (e)

denotes the inner

product in H
1
2 (e). The variational problem (4.3) can be equivalently rewritten as

a ((σ, u, û, σ̂) , (τ , v)) = (σ, τ −∇v)Ωh
− (u,∇ · τ )Ωh

+ (û,R[[τ ]])
H

1
2 (Eh)

+ ([|v|],Rσ̂)
H

1
2 (Eh)

= ` (τ , v) = (f, v)Ωh
. (4.4)

Similar to Section 3 we apply the Cauchy–Schwarz inequality to obtain

a ((σ, u, û, σ̂) , (τ , v)) ≤ ‖u‖U ‖v‖V ,

with the optimal norms given by

‖u‖2U =

Nel∑
j=1

‖σ‖2L2(Kj) + ‖u‖2L2(Kj) +
1

2
‖û‖2

H
1
2 (∂Kj)

+
1

2
‖Rσ̂‖2

H
1
2 (∂Kj)

,

‖v‖2V =

Nel∑
j=1

‖τ −∇v‖2L2(Kj) + ‖∇ · τ‖2L2(Kj) +
1

2
‖R[[τ ]]‖2

H
1
2 (∂Kj)

+
1

2
‖[|v|]‖2

H
1
2 (∂Kj)

,

where we have defined u = (σ, u, û, σ̂) and v = (τ , v). Given u ∈ U , by virtue of
Theorem 2.5 the optimal test functions can be found by solving the following systems
of PDEs

τ −∇v = σ, in Kj , (4.5a)

∇ · τ = −u, in Kj , (4.5b)

R[[τ ]] = û, on ∂Kj , (4.5c)

[|v|] = Rσ̂, on ∂Kj , (4.5d)
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for j = 1, . . . , N el. Since we are interested in the original unknown u, let us focus on
trial basis functions of the form ϕ = (0, ϕ, 0, 0), where ϕ ∈ L2 (Ωh). The correspond-
ing optimal basis functions in V are given by, for j = 1, . . . , N el,

τϕ −∇vϕ = 0, in Kj , (4.6a)

∇ · τϕ = −ϕ, in Kj , (4.6b)

R[[τϕ]] = 0, on ∂Kj , (4.6c)

[|vϕ|] = 0, on ∂Kj . (4.6d)

Once the test functions are found using (4.6), we can substitute them into (4.4) to
establish equations to solve for the unknowns u. If ϕ is a nonzero function in Kj but
zero elsewhere, then testing (4.4) with v = vϕ = (τϕ, vϕ) gives∫

Kj

uϕ dx =

∫
Ωh

f vϕ dx, (4.7)

which shows that the unknown u can be computed locally element-by-element inde-
pendently by simply inverting the local mass matrix.

We seek uh|Kj
in the following finite dimensional piecewise polynomial subspace

Uh (Kj) =
{
uh ∈ L2 (Kj) : uh ∈ Ppj

}
,

such that ∫
Kj

uhϕ dx =

∫
Ωh

f vϕ dx, ∀ϕ ∈ Uh (Kj) , j = 1, . . . , N el.

Given ϕ ∈ Uh (Kj), we choose to approximate the corresponding optimal test function
in (4.6) using the following finite dimensional test subspace

V ∆p
h =

{
(τ , v) ∈ V : (τ , v)|Kj

∈
[
Ppj+∆pj

]d × Ppj+∆pj , j = 1, . . . , N el
}
⊂ V.

At this point, one can choose a method of interest to solve the adjoint problem (4.6)

for an approximation of the optimal test functions (τϕ, vϕ) in V ∆p
h . Here we choose

the local discontinuous Galerkin method (LDG) [11] to look for a finite dimensional

approximation
(
τhϕ, v

h
ϕ

)
∈ V ∆p

h of (τϕ, vϕ). Testing (4.6) with (λ, φ) ∈ V ∆p
h , integrat-

ing by parts, and introducing the following adjoint LDG numerical flux

n ·
(
τhϕ
)∗

= n · {{τhϕ}}+ n · ξ[[τhϕ]] + αn · [[vhϕ]],(
vhϕ
)∗

= {{vhϕ}} − ξ · [[vhϕ]],

with some constants ξ and α, we obtain

(
τhϕ,λ

)
Ωh

+
(
τhϕ,∇φ

)
Ωh

+
(
vhϕ,∇ · λ

)
Ωh
−
Nel∑
i=1

(
n ·
(
τhϕ
)∗
, φ
)
∂Ki

−
Nel∑
i=1

(
n · λ,

(
vhϕ
)∗)

∂Ki

= (ϕ, φ)Kj
, ∀ (λ, φ) ∈ V ∆p

h . (4.8)
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Since Ppj ⊆ Ppj+∆pj , we can take (λ, φ) = (σh, uh) in (4.8) to have

(
τhϕ,σh

)
Ωh

+
(
τhϕ,∇uh

)
Ωh

+
(
vhϕ,∇ · σh

)
Ωh
−

Nel∑
i=1

(
n ·
(
τhϕ
)∗
, uh

)
∂Ki

−
Nel∑
i=1

(
n · σh,

(
vhϕ
)∗)

∂Ki

= (ϕ, uh)Kj
, (4.9)

Now integrating the second and third terms on the left side of (4.9) by parts,
applying identity (3.16) to the fourth and fifth terms on the left side of (4.9), using
the adjoint LDG numerical flux, and substituting (4.7) to the right side of (4.9) we
can rewrite (4.9) as

(
τhϕ,σh

)
Ωh
−
(
∇ · τhϕ, uh

)
Ωh

+

Nel∑
i=1

(
n · τhϕ, (uh)

∗)
∂Ki

−
(
∇vhϕ,σh

)
Ωh

+

Nel∑
i=1

(
n · (σh)

∗
, vhϕ
)
∂Ki

= (ϕ, f)Ωh
, (4.10)

where

n · (σh)
∗

= n · {{σh}} − n · ξ[[σh]]− αn · [[uh]],

(uh)
∗

= {{uh}}+ ξ · [[uh]].

It should be pointed out that (4.10) holds for each ϕ ∈ Uh (Kj), and each j ∈{
1, . . . , N el

}
. Now if we take ∆pj = 0, j = 1, . . . , N el, then (4.10) can be written as

a single variational formulation,

(τ ,σh)Ωh
− (∇ · τ , uh)Ωh

+

Nel∑
j=1

(
n · τ , (uh)

∗)
∂Kj

−(∇v,σh)Ωh
+

Nel∑
j=1

(
n · (σh)

∗
, v
)
∂Kj

= (ϕ, f)Ωh
, ∀ (τ , v) ∈ V ∆p=0

h = [Uh (Ωh)]
d+1

,

which is exactly the LDG discretization [11] of the original problem (4.2).
We have shown that the DPG method with zero enriched exponent, i.e., ∆pj = 0,

j = 1, . . . , N el coincides with the LDG method for elliptic PDEs. Generally, following
the same reasoning as above, one can show that if one of the DG discretizations
for elliptic problems summarized in [1] is used to solve (4.6) for the optimal test
functions, the DPG method with zero enriched exponent is exactly the corresponding
DG method for the original problem (4.2). In practice, one chooses ∆pj ≥ 1 [14, 20]
to obtain more accurate optimal test functions

(
τhϕ, v

h
ϕ

)
. As a result, the approximate

solution uh from (4.7) is more accurate as ∆pj , j = 1, . . . , N el, increase.

5. A relation between DPG and the hybridized DG for elliptic PDEs.
In this section, we will derive a relation between the hybridized DG method [9] and
our DPG method. For simplicity in the exposition, let us assume that the polynomial
order, pj , is the same on all elements, i.e., pj = p, j = 1, . . . , N el. Unlike Section 4, we
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use the hybridized DG to solve for an approximation
(
τhϕ, v

h
ϕ

)
∈ V ∆p

h of the optimal
test functions. Given ϕ ∈ Uh (Kj), we choose to approximate the corresponding
optimal test function in (4.6) using the following finite dimensional test subspace

V ∆p
h =

{
(τ , v) ∈ V : (τ , v)|Kj

∈
[
Pp+∆p

]d × Pp+∆p, j = 1, . . . , N el
}
⊂ V.

We also need the following piecewise polynomial space on the skeleton

M∆p
h =

{
q ∈ L2 (Eh) : q|e ∈ P

p+∆p, e ∈ Eh
}
.

Testing (4.6) with (λ, φ) ∈ V ∆p
h , integrating by parts, and introducing the unknown

trace v̂hϕ ∈ M∆p
h and the unknown flux τ̂hϕ = τhϕ − α

(
vhϕ − v̂hϕ

)
n, give the adjoint

version of the hybridized DG discretization [9] of (4.6) as follows,

(
τhϕ,λ

)
Ωh

+
(
vhϕ,∇ · λ

)
Ωh
−

Nel∑
i=1

(
n · λ, v̂hϕ

)
∂Ki

+
(
τhϕ,∇φ

)
Ωh
−

Nel∑
i=1

(
n · τ̂hϕ, φ

)
∂Ki

+

Nel∑
i=1

(
n · τ̂hϕ, ûh

)
∂Ki

= (ϕ, φ)Kj
, ∀ (λ, φ) ∈ V ∆p

h , ûh ∈M∆p
h . (5.1)

Since Pp ⊆ Pp+∆p, we can take (λ, φ) = (σh, uh) in (5.1) and then substitute (4.7)
into the right side of (5.1) to obtain

(
τhϕ,σh

)
Ωh

+
(
vhϕ,∇ · σh

)
Ωh
−
Nel∑
i=1

(
n · σh, v̂hϕ

)
∂Ki

+
(
τhϕ,∇uh

)
Ωh
−
Nel∑
i=1

(
n · τ̂hϕ, uh

)
∂Ki

+

Nel∑
i=1

(
n · τ̂hϕ, ûh

)
∂Ki

=

∫
Ωh

f vϕ dx, ∀ûh ∈M∆p
h ,∀ϕ ∈ Uh (Kj) , j = 1, . . . , N el.

(5.2)

Now integrating by parts the second and fourth terms on the left side of (5.2),
we can rewrite (5.2) as

(
τhϕ,σh

)
Ωh
−
(
∇ · τhϕ, uh

)
Ωh

+

Nel∑
i=1

(
n · τhϕ, ûh

)
∂Ki

−
(
∇vhϕ,σh

)
Ωh

+

Nel∑
i=1

(
n · σ̂h, vhϕ

)
∂Ki
−

Nel∑
i=1

(
n · σ̂h, v̂hϕ

)
∂Ki

=

∫
Ωh

f vϕ dx, ∀ûh ∈M∆p
h ,∀ϕ ∈ Uh (Kj) , j = 1, . . . , N el, (5.3)

where we have introduced σ̂h = σh + α (uh − ûh) n.

Next, if we choose ∆pj = 0, j = 1, . . . , N el, then (5.3) can be written as a single
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variational formulation,

(τ ,σh)Ωh
− (∇ · τ , uh)Ωh

+

Nel∑
i=1

(n · τ , ûh)∂Ki

− (∇v,σh)Ωh
+

Nel∑
i=1

(n · σ̂h, v)∂Ki
−

Nel∑
i=1

(n · σ̂h, µ)∂Ki

=

∫
Ωh

f vϕ dx, ∀µ ∈M∆p=0
h ,∀ (τ , v) ∈ V ∆p=0

h = [Uh (Ωh)]
d+1

,

which is exactly the hybridized DG discretization [9] of the original problem (4.2).
We have shown that the DPG method with zero enriched exponent, i.e., ∆pj = 0,

j = 1, . . . , N el coincides with the hybridized DG method for elliptic PDEs. In practice,
one chooses ∆pj ≥ 1 to obtain more accurate optimal test functions

(
τhϕ, v

h
ϕ

)
. As a

result, the DPG approximate solution uh from (4.7) is more accurate than that of the
hybridized DG method using the the same polynomial order for Uh.

6. Conclusions. We have shown that starting from a discontinuous Petrov–
Galerkin (DPG) method with zero enriched order one can re-derive a large class of
discontinuous Galerkin (DG) methods for first order hyperbolic and elliptic equations.
The first implication of this result is that the DG method can be considered as the
least accurate DPG method. The second implication is that the DPG method can be
viewed as a systematic way to improve the accuracy of the DG method when nonzero
enriched orders are employed. A detailed derivation of the upwind DG, the local DG,
and the hybridized DG from a DPG method with optimal test norms is presented,
and one can obtain similar results for other existing DG methods.
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