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Proper Orthogonal Decomposition Extensions
and Their Applications in Steady Aerodynamics

by

Bui Thanh Tan

In Partial Fulfillment of the Requirements for the
Degree of Master of Engineering in High Performance

Computation for Engineered Systems (HPCES)

ABSTRACT

The development and application of model reduction techniques have been
widely investigated for problems in unsteady aerodynamic systems, driven mainly
by the need to develop effective economical computational models capturing as
much flow physics as possible. These techniques which have been based on a
number of approaches such as balanced truncation, Arnoldi, proper orthogonal
decomposition etc are designed to obtain a reduced-order model for both linear
and nonlinear systems. However there has been a paucity in the application of
these techniques in the area of steady aerodynamics. The work reported in this
thesis demonstrates how the proper orthogonal decomposition (POD) technique
can be extended to a number of applications in steady aerodynamics.

In the first instance the POD approach is coupled with a cubic spline in-
terpolation procedure to develop reliable fast, low-order models for accurately
predicting steady aerodynamic flowfields for arbitrary values or variation in flow
parameters such as the angle of attack or inflow Mach number. Results on the
prediction of steady transonic aerodynamic flowfield solution past an airfoil at
arbitrary values of angle of attack or Mach number show that accurate flow-
field predictions can be obtained, including cases that were not sampled in the
ensemble of snapshots.

The second extension concerns a “gappy” POD technique for the recon-
struction of incomplete or inaccurate aerodynamic flowfield data. The first case
corresponds to the complete reconstruction of pressure field around an airfoil
from the knowledge of pressure data defined only at the airfoil surfaces. The
second case corresponds to the one in which POD snapshots are reconstructed
from an incomplete set of aerodynamic data. Gappy POD is shown to be an
effective technique for reconstruction of complete aerodynamic flow field data
from limited measurements or incomplete data. This approach demonstrates an
effective way in which experimental and computational aerodynamic data can
be combined to predicate accurate aerodynamic flow fields cheaply.

Finally it is shown how an extension of the gappy POD can be used to
formulate and cast inverse airfoil shape design and flowfield prediction for an
arbitrary airfoil problems, in which steady aerodynamic plays a role, as gappy
data problems. The extension of the methodology to constrained airfoil shape
design problem is also discussed. The gappy design methodology has been shown
to be a simple, effective and an efficient airfoil shape design technique.
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Chapter 1

Introduction

1.1 Motivation

The development of reduced-order models is primarily motivated by the desire

to have detailed knowledge of the physics of the problem being investigated

at the expense of fast, cheap and reliable prediction tools. Efforts at deriving

reduced-order modelling techniques have been successful in many areas, includ-

ing thermal chemical processing in Newman [1], steady analysis and design of

inviscid airfoils in LeGresley and Alonso [2], and derivation of reduced-order

dynamical models as in Holmes et al. [3].

Antoulas et al. [4] have classified model reduction methods into two broad

categories, namely methods based on the singular value decomposition (SVD)

and methods based on moment matching based methods. The SVD based meth-

ods consist of Hankel-norm approximation, balanced truncation, singular per-

turbation, cross grammian and proper orthogonal decomposition (POD) while

the moment matching based methods are the families of Lanczos and Arnoldi

procedures. In the first category, POD turns out to be a popular method for

1



nonlinear systems. In the second category, one of the approaches for nonlin-

ear systems is to use the Arnoldi type projection based on quadratic or even

higher degree approximation as in Chen [5]. However most of these attempts

are designed either for some specific types of nonlinear systems or have not

been practically applied to general nonlinear model order reduction problems.

In view of this then it may be safe to say that for highly nonlinear systems in

aerodynamics governed by Euler or Navier-Stokes equations, the POD could be

an appropriate choice for model order reduction.

The computation of non-linear unsteady aerodynamic flows by numerically

solving the Euler and Navier-Stokes equations is a computationally intensive

task even when implemented on modern state-of-the art computing platforms.

The development of reduced-order models provides a more efficient as well as

a computationally economic way for investigating these problems. So far, most

of the current efforts in model reduction have been focused mainly on unsteady

aerodynamics. However it is also possible to use model-order reduction methods

for a number of application problems in steady aerodynamics as well.

This thesis will address a number of applications of model-order reduction in

steady compressible flow. The first application has implications for the efficient

computation of steady aerodynamic flow fields for variation in flow parameters

such as angle of attack and flow Mach number. Although Euler and Navier-

Stokes flow solvers based on computational fluid dynamics technology turn out

to be useful tools for providing accurate numerical result, they are generally

of a high order and generally expensive and hence may not be very efficient

for certain cases. The second application considered in this work deals with

2



the reconstruction of incomplete aerodynamic data obtained experimentally or

damaged data (due to technical or natural circumstances some data is marred).

Finally model-order reduction via gappy POD technique is shown to be a simple,

fast and an efficient way for modelling inverse and constrained airfoil shape

design optimization problems which are normally very expensive computational

tasks in which the flow solver is deployed during each design iteration to evaluate

the objective function which is being minimized during the optimization process.

Model order reduction techniques in airfoil shape design can be used to overcome

this computationally expensive part of the design task. As this research work

aims to demonstrate the benefits of model-order reduction for these problems

in steady compressible aerodynamics, steady aerodynamic flow fields around an

airfoil are considered to illustrate all these three applications. Euler equations of

fluid motion are solved numerically to model the compressible flowfields around

an airfoil and to generate the ensemble of aerodynamic flowfield snapshots which

forms the basis for the application of POD method. POD is selected as the

model-order reduction technique of choice for this study in view of the nonlinear

nature of the Euler equations.

The proper orthogonal decomposition, also known as Karhunen Loève expan-

sion and principle components analysis, has been widely used for a wide range of

applications. POD analysis yields a set of empirical modes, which describes the

dominant behavior or dynamics of given problem. Sirovich [6] introduced the

method of snapshots as a way for efficiently determining the POD basis vectors

(modes) for large problems. This technique can be used for a variety of applica-

tions, including derivation of reduced-order dynamical models for fluid dynamic

3



applications as in Holmes et al. [3]. In particular, the method of snapshots has

been widely applied in conjunction with computational fluid dynamic (CFD)

formulations to obtain reduced-order models for unsteady aerodynamic appli-

cations as in Dowell et al. [7], Hall et al. [8], Romanowski [9] and Beran and

Silva [10]. A set of instantaneous flow solutions (snapshots) is obtained using

the CFD method. The POD process then computes a set of basis functions from

these snapshots, which is optimal in the sense that, for any given basis size, the

error between the original and reconstructed data is minimized. Reduced-order

models can be derived by projecting the CFD model onto the reduced space

spanned by the POD modes. The original CFD model is usually governed by

the nonlinear partial differential equations (PDEs), i.e. Navier-Stokes or Euler

equations, which are very computationally expensive especially for a flow past

a complex configuration such as an airplane. Moreover, the model is compu-

tationally intensive and hence unsuitable if coupling of the CFD model with

another disciplinary model is required, for example real-time feedback control

scheme as in Lassaux [11]. The reduced-order model, however, is just a small

system of ordinary differential equations (ODEs) which can be solved efficiently.

In view of this, the application of POD method for obtaining a model of reduced

complexity has been extended to many other applications. Typical examples are

a number of heat transfer problems in Newman [1], steady analysis and design

of inviscid airfoils in LeGresley and Alonso [2], and derivation of reduced-order

dynamical models as in Holmes et al. [3].

As a common practice in dealing with nonlinear PDEs, the linearized approx-

imate equations are studied under some assumptions such as small disturbances

4



of the inflow parameters as in Hall et al. [8]. Although these linearized models

are significantly simple compared to the original nonlinear models, they usu-

ally have a prohibitively high number of states and hence they are still very

expensive to simulate. Recently, Hall et al. [8], Kim [12] and Willcox et al.[13]

have developed efficient POD methods for linearized systems. For the case of

problems exhibiting spatial symmetry, instead of obtaining the snapshots from

a time-dependent simulation which is computational expensive, the linearized

system in time domain can first be transformed to frequency domain and then

the POD snapshots are computed efficiently and accurately over the frequency

range of interest. However the major restriction of the linearized model is the

assumption of small perturbation unsteady flow and hence it is not suitable for

the cases in which the nonlinear effect may be important and perturbations are

large.

While the use of POD to capture the time variation of fluid dynamic prob-

lems has been widespread, the development of reduced-order models to capture

parametric variation is less commonly available in technical literature. Epureanu

et al. [14] has used POD to develop reduced-order models for turbomachinery

flows with sampling in both time and over a range of interblade phase angles.

The resulting reduced models were then applied to flows at varying Mach num-

bers, although the snapshot ensemble is computed at a single Mach number

condition. Accurate results were obtained for Mach numbers close to that used

in the snapshots. In another example that addresses parametric variation, Ly

and Tran [15] have developed a fast computation that uses a POD basis to

predict the steady-state temperature distribution of flow in a square cavity as

5



the Rayleigh number is varied and in this case each snapshot is the steady

temperature distribution corresponding with each value of Rayleigh number.

This method is a simple combination of the POD basis and an interpolation

procedure but shown to be effective and accurate.

In the context of the characterization of human faces, Sirovich and Kirby

[16] have employed the POD procedure as a useful tool for human face compres-

sion. In this application, each distinguishable digital picture of a human face

(snapshot) is mapped to be a rectangular matrix whose elements are integers

in the interval [0, 255]. The POD procedure is then performed to obtain the

POD modes. For any given face which is not a member of ensemble is projected

onto the reduced space spanned by the dominant POD basis vectors to calcu-

late the POD coefficients. This small number of POD coefficients is used to

represent the face with a small error instead of a big matrix. The results show

that roughly 100 : 1 compression ratio (ratio between the number of elements of

a matrix representing a face and the number of POD coefficients corresponding

with that face) is obtained. A further question in the characterization of human

faces is: How much damage, by deletion of pixels, can such an image suffer and

still be recovered accurately? Such a question arises due to technical or natural

circumstances in which the available data is incomplete or partial. Everson and

Sirovich [17] have presented a variation of the basic POD method that handles

incomplete or “gappy” data sets. This method actually makes use of the conven-

tional POD method for solving an unconstrained optimization problem which

approximately reconstructs the full data from the incomplete one. Given a set

of POD modes, an incomplete data vector can be reconstructed accurately by

6



solving a small linear system of equations derived from the optimal conditions.

Moreover, if the snapshots themselves are damaged or incomplete, an iterative

method can be used to derive the POD basis. The POD basis is in turn used

to reconstruct the incomplete data. This method has been successfully applied

for reconstruction of images, such as human faces, from partial data.

In the field of airfoil design, Lighthill [18] was the pioneer in airfoil inverse

design using the method of conformal mapping. This method was limited to

only incompressible flow. The extension of this method to compressible flow was

presented later in McFadden [19]. By introducing the finite-difference method

to evaluate the sensitivity derivatives, Hicks and Henne [20] first attempted to

solve the constrained aerodynamic optimization problem. Since then, gradient-

based methods have been used for aerodynamic design. Recently, Jameson [21]

has applied control theory in the context of airfoil shape design optimization

using Euler and Navier-Stokes problems. In this method, although an adjoint

equation needs to be solved to obtain the gradient, the total cost for computing

the gradients is independent of the number of design variables and hence it is

better than finite-difference methods. Since no reduction was employed in the

conformal mapping or the gradient-based methods, the cost for the design task

is still enormous. In order to reduce the cost in the design work, LeGresley

and Alonso [2] have used the POD technique for both direct and inverse airfoil

design problems. In the present work, a set of aerodynamic flowfield solutions

corresponding to the airfoil profiles created by perturbing the airfoil shape design

variables from the parametric representation of base airfoil shape is computed

using the Euler solver. The POD basis is then computed and used to construct

7



a reduced order model for Euler equations to compute a new, approximate

solution for an arbitrary airfoil at significantly lower computational costs. In this

manner, both direct and inverse airfoil design problems can be done efficiently

using a gradient-based optimization procedure with the information from the

reduced order model.

1.2 Objectives

Applications of POD technique and its extensions for steady aerodynamics prob-

lems considered in this study, to the best of the author’s knowledge, have not

been abundantly available in technical literature. Though a simple combination

of the POD basis and interpolation procedure could serve as a straightforward

method for estimating steady aerodynamic flow problems, it has not been ap-

plied for such cases yet. Therefore the first extension is to couple the conven-

tional POD approach with a cubic spline interpolation in order to develop fast,

low-order models that accurately capture the variation in parameters such as

the angle of attack (AOA) or inflow Mach number in which the application of

the conventional POD is not obvious. The results will show that the steady

state transonic flow solution for an arbitrary of parameter, i.e. angle of attack

or Mach number, can be obtained efficiently without running the CFD solver

again though the ensemble of snapshots consists of the solutions from the CFD

solver over a parameter range of interest.

The second extension is a “gappy” POD technique for the reconstruction of

incomplete or inaccurate aerodynamic data. For the first time, the proper or-

thogonal decomposition for incomplete (gappy) data is applied successfully to a

8



range of aerodynamic problems. Incomplete aerodynamic data may arise in sev-

eral situations. Firstly, a limited set of data may be available from experimental

measurements. The gappy POD provides a way to reconstruct full flowfield in-

formation, using a combination of the available experimental and supplemental

computational data. As a typical example in this work, an incomplete flowfield

whose values are only partially distributed on an airfoil will be reconstructed.

From the results, the reconstruction of the flowfield is accurately obtained even

if a large amount of incomplete data is considered. Secondly, certain data may

be missing because it is not known. For example, one may have a set of snap-

shots which corresponds to a set of airfoil shapes and their respective flowfields.

Given a new airfoil shape, the gappy POD provides a way to quickly estimate

the corresponding flowfield.

Conversely, the gappy POD can be used as a new approach to solve the

problem of inverse design: given a target pressure distribution, the optimal

airfoil shape can be determined by appropriate interpolation of known designs.

In order to support the gappy POD in inverse design problem, a key modification

to the conventional way of constructing the ensemble of snapshots is introduced

where the snapshots are augmented to contain both airfoil coordinates and

pressure distribution. It will be shown that, this new extension, which allows

one to cast an airfoil inverse design task as a gappy data problem, is simple,

efficient, and is found to work well on a range of examples, including both

subsonic and transonic cases. It is natural to extend the POD method for

constrained airfoil design problem. Although further refinement is necessary,

the POD-based method is a promising method to solve the constrained airfoil

9



design problem.

1.3 Outline

Chapter 2 briefly reviews the numerical method for the flow solver based on finite

volume formulation proposed by Jameson et al. [22] for the solution of inviscid

compressible aerodynamic flow. This flow solver is to generate the ensemble of

aerodynamic flowfield snapshots, for both subsonic and transonic flows, which

forms the basis for the application of POD. Chapter 3 gives a brief summary of

the theoretical background on proper orthogonal decomposition technique and

its extensions to parametric application and data reconstruction. Chapter 4

presents a number of application problems in steady aerodynamics investigated

in this work in which the theory elucidated in Chapter 3 is employed using the

snapshots of computed aerodynamic flowfield as outlined in Chapter 2. The first

set of applications consists of one and two-parameter dependent aerodynamic

problems in which the angle of attack and Mach number are varying parameters

and the task at hand is to predict a steady state solution for specific values

of these parameters which are not used to generate the ensemble of flowfield

snapshots. Additional problems such as estimation of the greatest lift coefficient

for a given angle of attack range and tracking the angle of attack for a given

flowfield around an airfoil (defined later) are also presented to demonstrate

the robustness of the POD extensions for a range of applications. The second

set application problems focuses on reconstruction of damaged aerodynamic

flowfield data. The first case considered is the reconstruction of the complete

flow pressure field around the airfoil from the knowledge of values of pressure
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defined at discrete points on the airfoil surface. The second case considered

corresponds to the reconstruction of POD snapshots from an incomplete set

of aerodynamic data. The final set of applications considered deals with the

solution of inverse airfoil shape design optimization and flowfield prediction for

an arbitrary airfoil problems within the framework of the gappy POD method.

The extension of the methodology to a simple constrained airfoil shape design

problem is also discussed. Chapter 5 presents the results and discussions of all

the problems addressed in this thesis while Chapter 6 concludes this inquiry

with recommendations for future work in this area.
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Chapter 2

Compressible Aerodynamic

Flow Simulation

2.1 Introduction

The application of reduced order modelling such as POD in compressible aero-

dynamics requires the generation of an ensemble of aerodynamic flowfield snap-

shots. Flowfield snapshots can be generated by way of computation or by

experimental techniques. In this work the ensemble of aerodynamic flowfield

snapshots has been generated numerically using a compressible flow solver. As

this work is primarily concerned with POD applications in compressible airfoil

aerodynamics, the flow model used for generating the snapshots corresponds to

steady inviscid compressible flow past an airfoil governed by Euler equations.

In this chapter, a well-known finite volume multi-stage time-stepping numerical

scheme for solving the steady inviscid compressible flow proposed by Jameson

et al. [22] (extension for unsteady compressible aerodynamics can be found in

Damodaran [23]) is briefly outlined.
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2.2 Flow Model for Inviscid Flow

The two dimensional inviscid flows are governed by the Euler equations as fol-

lows

∂U

∂t
+
∂f

∂x
+
∂g

∂y
= 0 (2.1)

where
U = (ρ, ρu, ρv, ρE)T ,

f = (ρu, ρu2 + p, ρuv, ρuH)T ,

g = (ρv, ρuv, ρv2 + p, ρvH)T

(2.2)

where p, ρ, u, v, E,H denote the pressure, density, Cartesian velocity compo-

nents, total energy and total enthalpy respectively. For a perfect gas

E =
p

(γ − 1)ρ
+

1
2
(u2 + v2), H = E +

p

ρ
(2.3)

where γ is the ratio of specific heats of air.

2.3 Finite Volume Formulation

Figure 2.1: Structured C-grid for finite volume scheme

A C-grid is generated around the airfoil to discretize the flow domain into
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quadrilateral cells to implement the numerical algorithm. A structured C-grid in

the vicinity of the airfoil is shown in Figure 2.1. The upstream inflow boundary

is placed at about 100 chords from the leading edge of the airfoil while the

downstream boundary is about 20 chords from the trailing edge of the airfoil.

The computational domain is divided into quadrilateral cells whose cell cen-

ters are denoted by the subscripts i, j as in Figure 2.2. The values of the

dependent variables are assumed to be uniform in the cell and stored at the

center of the cell. Application of the integral of conservation laws (2.1) i.e.

∂

∂t

∫ ∫
D

U dxdy +
∮

∂D

(fdy − gdx) = 0 (2.4)

leads to a system of ordinary differential equations (ODEs)

d

dt
(hi,j Ui,j) +Qi,j = 0 (2.5)

where hi,j is the cell area, and Qi,j is the net flux of the cell which is given by

4∑
k=1

(∆ykfk − ∆xkgk) (2.6)

where ∆xk and ∆yk are the increments of x and y along the edge with appro-

priate signs, fk and gk are the values of flux vectors f and g on the kth edge

and the sum is over the four edges of the cell. Each element of the flux vectors

is calculated as the average of the values in the cells on either side of each edge.

For example

f4 =
1
2
(fi−1,j + fi,j) (2.7)
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The flux balance for the x-momentum is then

d

dt
{(ρu)i,j hi,j} +

4∑
k=1

{Qk(ρu)k + ∆ykpk} = 0 (2.8)

The numerical scheme has second order accuracy spatially.

i+1, j 
i, j i−1, j 

i, j+1 

i, j−1 

1 

2 

3 

4 

Figure 2.2: Discretization in space

In order to suppress the tendency for odd and even point decoupling and to

limit undesirable overshoots near discontinuities such as shock waves, equation

(2.5) has to be supplemented with artificial viscosity terms Dij i.e.

d

dt
(hi,j Ui,j) +Qi,j −Di,j = 0 (2.9)

The artificial viscosity terms are a blend of the second and fourth differences

in flow variables. For example, the artificial viscosity terms for the density

equation is

Di,j = di+1/2,j − di−1/2,j + di,j+1/2 − di,j−1/2 (2.10)
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where the dissipative flux di+1/2,j is defined by

di+1/2,j =
hi+1/2,j

∆t

{
ε
(2)
i+1/2,j(ρi+1,j − ρi,j) − ε

(4)
i+1/2,j(ρi+2,j − 3ρi+1,j + 3ρi,j − ρi−1,j)

}

(2.11)

where ε(2) and ε(4) are adaptive parameters. They are defined as

ε
(2)
i+1/2,j = k(2)max(υi+1,j , υi,j) (2.12)

and

ε
(4)
i+1/2,j = max(0, k(4) − ε

(2)
i+1/2,j) (2.13)

where

υi,j =
|pi+1,j − 2pi,j + pi−1,j |

|pi+1,j | + 2|pi,j | + |pi−1,j | (2.14)

As pointed out in Jameson et al. [22], typical values of the constants k(2) and

k(4) are

k(2) =
1
4
, k(4) =

1
256

(2.15)

Similarly, the dissipative terms for the momentum and energy equations are

constructed by replacing ρ by ρu, ρv or ρH. Note that ρH is used rather than

ρE in the energy equation because the difference equation will converge to the

solution H = H∞ in the steady state.
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2.4 Time Stepping Scheme

Equation (2.9) is advanced in time from a set of initial conditions using a multi-

stage time stepping scheme as follows

U (0) = U (n)

U (1) = U (0) − ∆t
2hQU

(0) + ∆t
2hDU

(0)

U (2) = U (0) − ∆t
2hQU

(1) + ∆t
2hDU

(0)

U (3) = U (0) − ∆t
h QU

(2) + ∆t
h DU

(0)

U (4) = U (0) − ∆t
6h

(
QU (0) + 2QU (1) + 2QU (2) +QU (3)

)
+ ∆t

h DU
(0)

U (n+1) = U (4)

(2.16)

The dissipative values are frozen at the values in the first stage for computational

economy while preserving a second order temporal accuracy. The bound on the

time step is ∆t ≤ λ∆x, where λ is the CFL number. The scheme above is stable

for the CFL number of 2
√

2 [22].

2.5 Convergence Acceleration Strategies

Local time steps are used in the code but it is not enough to speed up the

convergence to a steady state. Some novel mechanisms to accelerate numerical

solution to the steady state are discussed in this section. It will be shown that

the steady state can be obtained within some hundred time steps by using these

techniques together with local time-stepping.

2.5.1 Enthalpy Damping

It is well known that the total specific enthalpy is constant along each streamline

in the steady state for Euler equations. This constant value is known from the

inflow condition. Therefore one can add artificial terms to each equation that
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depend on the deviation of the local enthalpy from the steady state enthalpy.

Note that these forcing terms are zero in the steady state and hence do not

affect the steady state solution. These terms are chosen so as to speed up the

convergence to a steady state. In particular, the Euler equations with enthalpy

damping are given

∂ρ
∂t + ∂(ρu)

∂x + ∂(ρv)
∂y + αρ(H −H∞) = 0

∂(ρu)
∂t + ∂(ρu2+p)

∂x + ∂(ρuv)
∂y + αρu(H −H∞) = 0

∂(ρv)
∂t + ∂(ρuv)

∂x + ∂(ρv2+p)
∂y + αρv(H −H∞) = 0

∂(ρE)
∂t + ∂(ρuH)

∂x + ∂(ρvH)
∂y + α(H −H∞) = 0

(2.17)

2.5.2 Implicit Residual Smoothing

The CFL number is one of the most important parameter in any numerical

scheme in fluid dynamics applications. It is proportional to the time step and

hence one way to speed up the convergence is to find a way to increase the

allowable Courant number. This can be done by smoothing the residuals. At

each stage of the time stepping scheme, one could replace the residual Ri by R̄i

by an implicit residual smoothing procedure given by

−εR̄i−1 + (1 + 2ε)R̄i − εR̄i+1 = Ri (2.18)

where

ε =
r

(1 − r)2
, r < 1 (2.19)

For an infinite interval, equation (2.18) has the explicit solution

R̄i =
1 − r

1 + r

∞∑
q=−∞

r|q| Ri+q (2.20)
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2.5.3 Multigrid Strategies

Originally, the multigrid scheme is designed to accelerate the elliptic system to

a steady state. However, it was shown to be possible to speed up the evolution

of a hyperbolic system by using large time steps on coarse grids (because the

same Courant number is used for all grids), so that the disturbances will pass

through the outer boundary more rapidly. It is from the fact that the time

step for a coarser mesh is larger than the one for a fine mesh in an explicit

scheme, therefore a wave travels further for a given number of time steps. For

the multistage scheme above, a simple multigrid scheme can be implemented by

doubling the mesh spacing. Values of the flow variables U are transferred to a

coarser grid by the rule

U
(0)
2h =

∑ Vh Uh

V2h
(2.21)

where the subscripts denote values of the mesh interval, V is the cell area and

the sum is over the four cells on the fine grid constructing each cell of the coarse

grid. A good point of this transformation is that it conserves mass, momentum

and energy. Next a forcing function is defined as

P2h =
∑

Rh(Uh) −R2h(U (0)
2h ) (2.22)

where R is the residual of the difference scheme. The solution on a coarser grid

is then constructed as

U
(1)
2h = U

(0)
2h − α1∆t[R

(0)
2h + P2h],

...

U
(m+1)
2h = U

(0)
2h − αm∆t[R(m)

2h + P2h]

(2.23)
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where αm are constants, R(m) is the residual at the mth stage. In the first stage

of the scheme, P2h cancels R(0)
2h , therefore the evolution of the coarse grid is

driven by the residuals on the fine grid. As a result, the final solution on the

fine grid is independent of the choice of boundary conditions on the coarse grids.

Finally, the correction calculated on each grid is passed back to the next finer

grid by bilinear interpolation.

In the code, a simple saw-tooth cycle is used for multigrid strategy such

that an intermediate Euler calculation is never needed for the correction back

from each grid to the next finer grid. The details of these steps are outlined in

Jameson [24].

2.6 Boundary Conditions

In any numerical scheme, one has to update the boundary conditions on the

airfoil surface and at the far-field boundaries which simulate flow conditions far

away from the airfoil after each iteration towards the solution. Since the normal

component of the velocity on the airfoil surfaces is zero, only the pressure on

the airfoil surface needs to be known in the finite volume scheme. This pressure

can be estimated from the normal momentum equation. For subsonic flows, one

needs to fix three characteristic variables based on flow conditions at infinity and

extrapolate one characteristic variable from the interior of the computational

domain at the inflow boundary and one characteristic variable is fixed using

flow conditions at infinity and three characteristic variables are extrapolated

from the interior of the computational domain at the outflow boundary. This

is because there are three incoming characteristics at the inflow and one at the
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outflow. For supersonic flow all characteristic variables are fixed based on flow

conditions at infinity at the inflow boundary while all characteristic variables

are extrapolated from the interior of the computational domain at the outflow

boundary. For nonlinear systems such as Euler equations, it is also possible to

use one-dimensional Riemann variables based on normal and tangential velocity

components at the far-field in place of characteristic variables and use two other

parameters such as the measure of entropy and tangential velocity component at

the far-field boundary as the four variables which are to be fixed or extrapolated.

Therefore, at the inflow and outflow boundaries the measure of the entropy

S = p/ργ , the tangential velocity qt, the Riemann invariant corresponding to

the incoming waves qn−2c/(γ−1) and the Riemann invariant corresponding to

the outgoing wave qn + 2c/(γ − 1), where qn is the normal velocity and c is the

speed of sound, can be used to specify inflow and outflow boundary conditions.

For example, at the outflow boundary, the Riemann invariant corresponding

to the incoming wave is fixed and the other variables are extrapolated. From

these equations the values of the flow variables at all the boundaries can be

determined.

2.7 Numerical Solution

Transonic flow past a NACA 0012 airfoil at Mach number of 0.8 and at angle

of attack of 0.45 is computed for validating the code in transonic regime. The

initial condition with ρ = 1 and p = 1 is used for all examples in this thesis.

The results are output after 200 iterations. Figure 2.3 shows that the residual

which here is the log of the RMS value of the density in the computational
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domain decreases rapidly to the order of about 10−5 after only 200 iterations.

Figure 2.3 also shows the convergence of the number of supersonic points in the

flowfield i.e. the supersonic pockets which form in the vicinity of the airfoil in

transonic flow. The convergence of lift (CL) and drag (CD) coefficients is shown

in Figure 2.4(a). Figure 2.5(a) shows the computed pressure contours. Figure

2.4(b) shows that the entropy increases on both upper and lower surfaces where

strong shock waves form on both surfaces thereby confirming entropy rise across

shock waves. The presence of the shock waves can also be seen very clearly in

Figure 2.5(b), where C∗
p is the sonic line.
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Figure 2.3: The convergence of the number of supersonic points and residual
for the NACA 0012 with M = 0.8 and AOA = 0.45
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Figure 2.4: The convergence of lift and drag coefficients and entropy contours
for the NACA 0012 with M = 0.8 and AOA = 0.45
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Chapter 3

Proper Orthogonal

Decomposition Extensions

3.1 Introduction

The well-known proper orthogonal decomposition (POD) technique which ap-

pears in different forms such as Karhunen-Loève decomposition (KLD), principal

component analysis (PCA), and singular value decomposition (SVD) has been

used in many physical applications. The connections and the equivalence of

these methods have been discussed in Liang et al. [25]. In this chapter, the

basic POD method will first be outlined, followed by a description of the ex-

tensions with interpolation and incomplete data sets. The origin of the POD

procedure for fluid dynamic applications is mainly based on the study of Holmes

et al. [3] which also provides insight into details and proofs. More details on

POD from the second order stochastic process point of view can also be found

in Wong [26], and Newman [1]. The treatment of reconstruction of missing data

is a detailed version of the gappy POD method from Everson and Sirovich [17].
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3.2 Proper Orthogonal Decomposition (POD)

The basic POD procedure is summarized briefly here. The optimal POD basis

vectors Φ are chosen to maximize the cost:[3]

max
Ψ

〈
|(U,Ψ)|2

〉

(Ψ,Ψ)
=

〈
|(U,Φ)|2

〉

(Φ,Φ)
(3.1)

where (U,Φ) is the inner product of the basis vector Φ with the field U(x, t),

x represents the spatial coordinates, t is time, and <> is the time-averaging

operation. It can be shown that the POD basis vectors are eigenfunctions of

the kernel K given by

K(x, x′) = 〈U(x, t), U∗(x′, t)〉 (3.2)

where U∗ denotes the hermitian of U . The method of snapshots, introduced by

Sirovich [6], is a way of determining the modes Φ without explicitly calculating

the kernel K. Consider an ensemble of instantaneous field solutions, or “snap-

shots”. It can be shown that the eigenfunctions of K are linear combinations of

the snapshots as follows

Φ =
m∑

i=1

βiU
i (3.3)

where U i is the solution at a time ti and the number of snapshots, m, is large.

For fluid dynamic applications, the vector U i contains the flow unknowns at a

given time at each point in the computational grid. The coefficients βi can be

shown to satisfy the eigen-problem

Rβ = Λβ (3.4)
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where R is known as the correlation matrix

Rik =
1
m

(
U i, Uk

)
(3.5)

The eigenvectors of R determine how to construct the POD basis vectors [using

(3.3)], while the eigenvalues of R determine the importance of the basis vectors.

These eigenvalues may be interpreted as “the mean energy of the flow field

U(x, t) projected on the Φi axis in the subspace spanned by POD basis vectors

{
Φi

}m

i=1
”. The relative “energy” (measured by the 2-norm) captured by the ith

basis vector is then given by λi/
∑m

j=1 λj . The approximate prediction of the

field U is then given by a linear combination of the eigenfunctions

U ≈
p∑

i=1

αiΦi (3.6)

where p << m is chosen to capture the desired level of energy, Φi is the ith POD

basis vector, and the POD coefficients αi must be determined as a function of

time.

The basic POD procedure outlined above considers time-varying flows by

taking a series of flow solutions at different instants in time. The procedure can

also be applied in parameter space i.e. obtaining flow snapshots while allowing

a parameter to vary as in Epureanu et al. [14]. The parameter of interest could,

for example, be the flow freestream Mach number, airfoil angle of attack or

airfoil shape.

Two properties of POD are outlined here. The first property states that the

linear subspaces spanned by the POD basis vectors
{
Φk

}m

k=1
and the snapshots

{
U i

}m

i=1
coincide exactly [3]. This implies that, the POD basis functions can
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represent exactly the observed phenomena described by the snapshots. The

second property states that the POD basis vectors are optimal in a sense that

the first p POD basis vectors always capture more energy on average than p

vectors of any other orthonormal basis [3]. In other words, let

U =
p∑

i=1

aiΦi

be the decomposition with respect to the POD basis
{
Φi

}m

i=1
and let

U =
p∑

i=1

biψ
i

be the decomposition with respect to any other arbitrary orthonormal basis

{
ψi

}m

i=1
, then

p∑
i=1

〈∣∣(U,Φi)
∣∣2〉 =

p∑
i=1

λi ≥
p∑

i=1

〈∣∣(U,ψi)
∣∣2〉 (3.7)

This property is exploited in this thesis to obtain a fast computational algorithm

in many of the applications in compressible aerodynamics.

3.3 POD with Interpolation (PODI)

The basic POD procedure outlined in the previous section considered time-

varying flows by taking a series of flow solutions at different instants in time.

The procedure could also be applied in parameter space, that is, obtaining flow

snapshots while allowing a parameter to vary. Assuming that the parameter of

interest is denoted by δ which could be, for example, the flow freestream Mach

number or airfoil angle of attack.
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A procedure for rapid prediction of the flow solution U for any value of δ is

as follows:

1. Let
{
U δi

}m

i=1
be the set of snapshots corresponding to the set of parameter

values {δi}m
i=1.

2. Perform the basic POD procedure described above on
{
U δi

}m

i=1
to obtain

the orthonormal POD basis
{
Φk

}m

k=1
.

3. The reconstruction of each snapshot is given by

U δi =
p∑

j=1

αδi
j Φj (3.8)

where p < m is the number of modes used in the reconstruction. The

POD coefficients αδi
j are given by

αδi
j =

(
Φj , U δi

)
(3.9)

4. If
{
αδi

j

}m

i=1
is a smooth function of δ, interpolation can be used to de-

termine the POD coefficients for intermediate values of δ that were not

included in the original ensemble. The prediction of U δ at any value of δ

via the POD expansion is given by (3.6)

U δ =
p∑

j=1

αδ
jΦ

j (3.10)

where the coefficients αδ
j are found by cubic spline interpolation of the set

{
αδi

j

}m

i=1
. Note that no discussion of a smoothness requirement was given

in Ly and Tran [15]; however, this is important for the interpolated result

to be reliable.
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3.4 POD for Reconstruction of Missing Data

(Gappy POD)

In CFD applications, POD has predominantly been used for deriving reduced-

order models via projection of the governing equations onto the reduced space

spanned by the POD basis vectors. Here, a different application of the method is

considered, which is based on the gappy POD procedure developed by Everson

and Sirovich [17] for the reconstruction of human face images from incomplete

data sets. In this thesis, the gappy POD methodology will be extended for

consideration of fluid dynamic applications. The gappy POD procedure is first

described.

The first step is to define a “mask” vector which describes for a particular

flow vector where data is available and where data is missing. For example, for

the flow solution Uk, the corresponding mask vector nk is defined as follows:

nk
i = 0 if Uk

i is missing or incorrect

nk
i = 1 if Uk

i is known

where Uk
i denotes the ith element of the vector Uk. For convenience in formula-

tion and programming, zero values are assigned to the elements of the vector Uk

where the data is missing, and pointwise multiplication is defined as
(
nk, Uk

)
i
=

nk
i U

k
i . Then the gappy inner product is defined as (u, v)n = ((n, u), (n, v)), and

the induced norm is (‖v‖n)2 = (v, v)n.

Let
{
Φi

}m

i=1
be the POD basis for the snapshot set

{
U i

}m

i=1
, where all

snapshots are completely known. Let g be another solution vector that has
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some elements missing, with corresponding mask vector n. Assume that there

is a need to reconstruct the full or “repaired” vector from the incomplete vector

g. Assuming that the vector g represents a solution whose behavior can be

characterized with the existing snapshot set, an expansion of the form (3.6) can

be used to represent the intermediate repaired vector g̃ in terms of p POD basis

functions as follows:

g̃ ≈
p∑

i=1

biΦi (3.11)

To compute the POD coefficients bi, the error, E, between the original and

repaired vectors must be minimized. The error is defined as

E = ‖g − g̃‖2
n (3.12)

using the gappy norm so that only the original existing data elements in g are

compared. The coefficients bi which minimize the error E can be found by

differentiating (3.12) with respect to each of the bi in turn. This leads to the

linear system of equations of the form

Mb = f (3.13)

where Mij =
(
Φi,Φj

)
n

and fi =
(
g,Φi

)
n
. Solving equation (3.13) for b and

using (3.11), the intermediate repaired vector g̃ can be obtained. Finally, the

complete g is reconstructed by replacing the missing elements in g by the cor-

responding repaired elements in g̃, i.e. gi = g̃i if ni = 0.
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3.5 POD with an Incomplete Snapshot Set (It-

erative gappy POD)

The gappy POD procedure can be extended to the case where the snapshots

themselves are not completely known. In this case, the POD basis can be

constructed using an iterative procedure. Consider a collection of incomplete

data
{
gk

}m

k=1
, with an associated set of masks

{
nk

}m

k=1
. The first step is to fill

in the missing elements of the snapshots using average values as follows:

hk
i (0) =




gk
i if nk

i = 1

ḡi if nk
i = 0

(3.14)

where ḡi = 1
Pi

∑m
k=1 g

k
i , Pi =

∑m
k=1 n

k
i and hk(l) denotes the lth iterative guess

for the vector hk. A set of POD basis vectors can now be computed for this

snapshot set, and iteratively used to refine the guess for the incomplete data.

The procedure can be summarized as follows, beginning with l = 0:

1. Use the basic POD procedure on the snapshot set
{
hk(l)

}m

k=1
to obtain

the POD basis vectors for the current iteration,
{
Φk(l)

}m

k=1
.

2. Use the first p of these POD basis vectors to repair each member of the

snapshot ensemble, as described in the previous section. The intermediate

repaired data for the current iteration is given by

h̃k(l) =
p∑

i=1

bki (l)Φi(l) (3.15)

3. The values from these intermediate repaired data are now used to recon-
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struct the missing data for the next iteration as follows

hk
i (l + 1) =




hk
i (l) if nk

i = 1

h̃k
i (l) if nk

i = 0
(3.16)

4. Set l = l + 1 and go to step 1.

The above iterative procedure should be repeated until the maximum num-

ber of iterations is reached or until the algorithm has converged. When eval-

uating convergence, one can consider both the POD eigenvalues and the POD

eigenvectors as will be demonstrated in the results in Chapter 5. It is important

to know that in this procedure the POD modes are constructed at the same

with the reconstruction of the incomplete snapshot set. Once the POD modes

are found, the gappy POD method in section 3.4 can be used for reconstructing

missing data in any new incomplete snapshot, which is not a member of the

incomplete snapshot set.
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Chapter 4

Application Problems in

Steady Aerodynamics Using

POD Extensions

4.1 Introduction

In this chapter, a set of application problems in steady aerodynamics is ad-

dressed to demonstrate how the POD extensions developed in chapter 3 are

applied to the ensemble of aerodynamic flowfield snapshots generated using the

compressible flow solver described in chapter 2. The first set of problems deals

with one and two-parameter dependent aerodynamic problems in which the an-

gle of attack and Mach number are the parameters which are allowed to vary

and the goal is to predict a steady state solution with prescribed values of the

parameters which are not used to generate the ensemble of flowfield snapshots.

Additional problems such as estimation of the greatest lift coefficient for a given

angle of attack range and tracking the angle of attack for a given flowfield around
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an airfoil are also presented in the first set to demonstrate the robustness of the

POD extensions for a range of applications. The second set of problems concerns

the problem of reconstruction of damaged data in aerodynamic flowfield data

sets. The first example considered here is the case in which the complete flow

pressure field is reconstructed from the knowledge of pressure values defined

only on the airfoil surface. The second example concerns the reconstruction

of POD snapshots from an incomplete set of aerodynamic data. The final set

of problems concerns the airfoil shape design problem using the gappy POD

method where it will be shown that the gappy POD offers a very simple and

efficient approach for airfoil design problems. In this chapter these problems

will be described in detail while the results and discussion pertaining to these

problems will be presented in chapter 5.

4.2 Parametric Applications in Steady Transonic

Aerodynamics

The first application of POD extension for parametric applications in transonic

aerodynamics concerns the prediction of the flow field around the NACA 0012

airfoil at an arbitrary angle of attack (AOA) and Mach number (M). In this

problem, M and AOA are the parameters which vary and the goal of this exercise

is to predict the flow field (pressure field for example) at an arbitrary M or AOA

which is not a member of ensemble of flowfield snapshots generated from the

CFD solver over a range of M or AOA.

The second application concerns the determination of the angle of attack

such that CL, the lift coefficient of the airfoil, is maximized. It will be shown
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that this problem can also be solved efficiently by coupling PODI method and

the well known Golden Section search method outlined in Krishnamurty [28].

The last example considered for parametric applications is the tracking prob-

lem which is to find a value of AOA such that the Mach number field distribution

in the vicinity of the airfoil estimated from the POD expansion Vp =
∑p

i=1 αiΦi
V

is close to the given Mach field V , where
{
Φi

V

}m

i=1
is the POD basis for the Mach

field V . The formulation is then to find an AOA which minimizes the cost func-

tional

J = ‖V − Vp‖2
2 (4.1)

Once again, PODI method coupled with the Golden Section Search method

appears to be one of the suitable methods for solving this problem.

4.3 Reconstruction of Missing Aerodynamic Data

Incomplete or damaged aerodynamic data may occur in a variety of situations

discussed in Chapter 1. For example, a limited set of data may be available

from experimental measurements such as the pressure measurements at discrete

pressure tapping locations on the surface of an airfoil. Stored aerodynamic

flowfield data from CFD simulations may be damaged due to computer storage

device failures and these data may be required for other subsequent flowfield

simulations. POD and its extensions offer an attractive way for reconstructing

the missing or lost data and this application is considered by way of a few

illustrative examples. The goal of this application is to show that the missing

(damaged) aerodynamic data can be reconstructed (or repaired) efficiently using

the gappy POD method. The first example considered is the case in which the
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complete pressure field is reconstructed from pressure values known only on

the airfoil surface. The second example considered is the one in which the POD

snapshots are constructed from an incomplete set of aerodynamic data i.e. some

elements of each flow field data are missing or lost.

4.4 Airfoil Design Optimization

POD and its extensions also offer a new approach for handling inverse airfoil

shape design and constrained airfoil shape design optimization and the approach

is outlined here briefly.

4.4.1 Inverse Design Using the Gappy POD Method

Gappy POD approach can be extended to handle the inverse airfoil shape de-

sign problem. In particular, a new variant of the method is proposed for the

inverse design of a two-dimensional airfoil, i.e. given a target airfoil surface

pressure distribution P ∗, the inverse airfoil design problem corresponds to the

determination of an optimal airfoil shape whose surface pressure distribution P

minimizes the cost

J = ‖P ∗ − P‖2
2 (4.2)

In order to solve this inverse airfoil shape design problem using the gappy

POD method, the ensemble of flowfield snapshots is first redefined. Instead

of having the ensemble simply containing only flow variables, each snapshot is

augmented to also contain airfoil coordinates in view of the fact that the shape

of the target airfoil sought is unknown and there must be a mechanism for POD

to generate that unknown. The augmented snapshot set is defined as
{
V i

}m

i=1
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where each snapshot contains airfoil surface pressure distribution P i and the

corresponding set of airfoil coordinates Ci:

V i =


 Ci

P i


 (4.3)

The target vector V ∗ = [C∗T P ∗T ]T can then be considered as an incomplete

data vector, where P ∗ is known and C∗ is unknown and yet to be determined.

Thus, the gappy POD procedure can be used to determine the optimal airfoil

shape, using the procedure outlined in section 3.4 and minimizing the cost in

(4.2) with respect to the gappy norm

J = ‖V ∗ − Ṽ ‖2
n (4.4)

where n is the mask vector corresponding to V ∗ and the intermediate repaired

vector Ṽ is represented by a linear combination of basis vectors as in equation

(3.11).

The inverse airfoil shape design problem has been transformed to a problem

involving the reconstruction of missing data. In order to determine the airfoil

shape, a system of linear equations (3.13) must be solved, with size equal to

the number of POD basis functions. The gappy POD method will then produce

not only the optimal airfoil shape, but also the corresponding surface pressure

distribution. If additional flow field information is desired, such as pressure

distribution off the surface or other flow variables, these data could also be

included in the augmented snapshots set.

The POD eigenvalues provide guidance as on the number of POD modes

that should be included in the basis. Typically, one will include p basis vectors
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so that the relative energy captured, i.e.
∑p

i=1 λi/
∑m

j=1 λj , is greater than some

threshold, typically taken to be 99% or higher. This energy measure determines

how accurately a snapshot in the original ensemble can be reconstructed using

the POD basis; however, it does not provide any information regarding the

accuracy of reconstructing a new vector. For the inverse airfoil shape design

problem, it is therefore important to monitor the value of the cost function J .

One may choose enough POD basis functions to capture 99% or more of the

snapshot energy, but the optimal value of J remains unacceptably high. This

indicates that the subspace spanned by the chosen snapshots is not sufficiently

adequate enough to capture the desired design airfoil. Approaches for addressing

this issue will be discussed in the chapter 5.

4.4.2 Constrained Airfoil Design Optimization

The gappy POD method, outlined in section 3.4 is a good method for solving

the inverse airfoil shape design or unconstrained optimization problem using

POD based method in which a system of linear equations is obtained by setting

the first derivatives of the objective function to zero. However the gappy POD

method cannot be used for a constrained airfoil design optimization problem

in view of the imposed constraints which have to be taken into consideration

for the optimization process. However, POD can still be used for solving the

constrained design problem rapidly and this is outlined in below.

A simple constrained airfoil design optimization can be defined as follows.

minimize CD

subject to : CL ≥ CLo
(4.5)
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where CD and CL are the drag and lift coefficients respectively, CLo
is the

lift coefficient corresponding to the initial airfoil. The goal here is to alter the

shape of the airfoil to reduce the drag yet still maintaining the lift coefficient.

Many methods have been used to solve this problem. Here, a method which is

developed based on a compact way of constructing the ensemble of aerodynamic

flowfield snapshots discussed in section 4.4.1 is used to construct the ensemble

defined as

V i =


 Ci

P i


 (4.6)

where Ci and P i are the airfoil coordinates and pressure distribution, respec-

tively. The POD procedure is then applied on this ensemble of snapshots to

obtain the POD basis functions

Φi =


 Φi

C

Φi
P


 (4.7)

where Φi
C and Φi

P are the coordinate and pressure parts of POD basis vector

Φi. The vector containing the optimal airfoil and its corresponding pressure

distribution of interest is a linear combination of POD basis vectors i.e.


 C

P


 =

p∑
i=1

ai


 Φi

C

Φi
P


 (4.8)

where POD coefficients ai are unknown and are treated as the design variables.

It is important to note here that both airfoil coordinates and its corresponding

pressure distribution are a function of the design variables ai. Hence the state-

ment of the constrained airfoil optimization (4.5) is equivalent to the following
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statement:

minimize CD = f(a1, . . . , ap)

subject to : CL = g(a1, . . . , ap) ≥ CLo
(4.9)

The advantage here is that the design variables are now functioning as the POD

coefficients and the constrained optimization problem (4.9) is transformed into

a nonlinear convex programming problem which can be solved efficiently using

any commercial software such as AMPL [29]. The most important aspect of

this approach is that no further CFD simulations are required for executing the

process of solving the optimization problem (4.9). Once the design variables

are found, the airfoil and its corresponding pressure are obtained immediately

using equation (4.8).

4.5 Prediction of Flowfield for an Arbitrary Air-

foil

As a final application problem, the gappy POD method is used for predicting

the aerodynamic flow field around an arbitrary airfoil. The mathematical model

is exactly the same as the one in section 4.4.1 except that the available data

now corresponds to coordinates C∗ of a given airfoil shape while the pressure

distribution P ∗ (or the grid coordinates G∗ if the grid generation is of interest)

is now treated as missing data. As a result, each snapshot consists of two parts,

airfoil coordinates and pressure field or airfoil coordinates and grids. Once again,

the other flow fields can be added to the snapshots so that the pressure field or

grids and the other fields can be obtained at the same time.
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Chapter 5

Results and Discussion

5.1 Introduction

This chapter presents the results and discussion for all the problems described

in chapter 4 to demonstrate the utility of POD and its extensions for various

useful applications in steady aerodynamic flows. The first set of results concerns

the prediction of a steady state solution in which the angle of attack and Mach

number act as variable parameters. Next set of results corresponds to estimation

of the greatest lift coefficient for a given angle of attack range and tracking

the angle of attack for a given flowfield around an airfoil. This is followed by

results dealing with examples of reconstruction of damaged aerodynamic data

corresponding to the case in which the complete pressure field in the vicinity of

the airfoil is reconstructed from pressure values defined only on the airfoil surface

and the case in which the POD snapshots are reconstructed from an incomplete

set of aerodynamic data. The final set of results pertains to applications of POD

and its extensions to the airfoil design problem and prediction of flow field for

an arbitrary airfoil.
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5.2 Parametric Applications in Transonic Aero-

dynamics

In this section, results obtained using POD and its extensions are presented

for a variety of cases to demonstrate the interpolation technique for parametric

applications. The steady transonic flow past a NACA 0012 airfoil at a baseline

freestream Mach number of 0.8 is considered for all examples considered here.

5.2.1 Flowfield Prediction at an Arbitrary Angle of Attack

The flow field chosen to demonstrate here is the pressure field, the application for

the other flowfields is straightforward. The ensemble of aerodynamic flowfield

snapshots contains 26 pressure field solutions (generated using the compressible

flow solver outlined in Chapter 2) corresponding to 26 values of angle of attack

in the interval [0, 1.250] with angle step 0.05 degrees. The prediction of pressure

field at angle of attack of α = 0.77 degrees which is not a member of the

ensemble of the flowfield snapshots is considered. Figures 5.1(a) to (c) compare

the predicted pressure (shown in solid contour lines) and the exact pressure

(shown in dotted contours) corresponding to the use of two, five and six POD

modes respectively. Here the term “exact” refers to the solution computed using

the flow solver by setting the angle of attack to 0.77. It can be clearly seen

that by using six POD modes good agreement between the predicted pressure

contours and the numerically computed exact pressure field could be reached.

Figure 5.2 shows the convergence of the predicted lift coefficient to the exact

one computed from the CFD solver when the number of POD modes increases.

The convergent value can be obtained only with seven POD modes, showing
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Figure 5.1: Comparison of predicted pressure contours (dash) and CFD pressure
contours (solid) for a Mach number of 0.8 and angle of attack of 0.77◦.
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Figure 5.2: The convergence of lift coefficient versus the number of POD modes
for a Mach number of 0.8 and angle of attack of 0.77◦.

that in the case when the angle of attack is the only varying parameter, the

PODI method can give accurate results with a small number of POD modes.

Flow field prediction for an arbitrary Mach number for steady transonic

aerodynamic flow can also be done in the same manner. Results for this case,

though not shown here, can be computed in a straightforward manner.

5.2.2 Flowfield Prediction for an Arbitrary Pair of Angle

of Attack and Mach Number

The problem considered in this section corresponds to the prediction of steady

flow when variations in both angle of attack and Mach number are considered.

For this case, the Mach number interval [0.75, 0.85] is divided into 20 uniform

intervals, and the angle of attack interval [0◦, 1.25◦] is divided into 10 uniform

intervals. Hence, the total number of snapshots in the ensemble is 231 which

is the product of 21 values of Mach number and 11 values of angle of attack.

Based on this ensemble of flowfield snapshots, interpolation is used to predict
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the flow at any arbitrary Mach number and angle of attack within the range

considered. For demonstration, POD will be applied to the pressure field only;

the procedure for the other flow fields is straightforward.

The first prediction considered is for the pair (α = 0.45, M = 0.8),

in which M = 0.8 is one of the values used to generate the snapshots while

α = 0.45 is not. Figures 5.3 compares the pressure field (shown by dashed

contour lines) computed using POD with the exact or computed pressure field

(in solid contour lines) corresponding to (α = 0.45,M = 0.8). It can be seen

from Figure 5.3(a), that using five POD modes results in large discrepancies in

many regions of the flowfield when compared with the exact pressure contours

corresponding to this case. However, as the number of POD modes is increased

to 25, as in Figure 5.3(c), the predicted pressure contours match closely with

the exact ones. It should be noted that the cost for pressure prediction with

20, as in Figure 5.3(b), or 25 modes does not differ greatly, since the method

requires only interpolation of the scalar POD coefficients. The number of modes

can therefore be increased to obtain the desired level of accuracy.

Figure 5.4 compares the distribution of surface pressure coefficients on the

upper and lower surfaces of the airfoil corresponding to each of the predicted

pressure field shown in Figure 5.3. One interesting point to note from the

pressure contour plots here is that when a small number of POD modes are used,

the pressure contours far away from the airfoil surface show large deviations

from the exact contours while the pressure distribution on the airfoil surface

appears to be in agreement with the exact one. This can be seen clearly by

comparing Figure 5.3(b) and Figure 5.4(b). Therefore, beyond a certain point,
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Figure 5.3: Comparison of predicted pressure contours (dash) and exact pressure
contours (solid) for a Mach number of 0.8 and angle of attack of 0.45◦.
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Figure 5.4: Comparison of predicted upper pressure coefficients (square), pre-
dicted lower pressure coefficients (circle), exact upper pressure coefficients
(dash) and exact lower pressure coefficients (solid) for M = 0.8 and AOA =
0.45◦. Cp∗ is the sonic pressure coefficient.
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increasing the number of POD modes only contributes to the improvement in

the agreement of the farfield predicted pressure fields with the exact one and

does not result any major effect on the surface pressure distribution.

Assume that the discrepancy or error between the predicted and exact quan-

tities is expressed as

e = max|(U − Up)./U | = ‖(U − Up)./U‖∞ (5.1)

which is the the maximum percentage error between two corresponding elements

of the CFD solution U and pth-order reconstructed solution Up and “./” means

elementwise division. Figure 5.5(a) shows the log value of the maximum per-

centage error versus the number of POD modes used to predict the pressure

distribution. It can be seen that the error decreases rapidly as the number of

modes is increased from one to 25.

The next prediction considered is for the pair (α = 0.5, M = 0.812),

in which α = 0.5 is one of the values used to generate the snapshots but M =

0.812 is not. Figure 5.6 compares the predicted pressure field contours (dashed

lines) with the exact pressure field contours (solid lines) corresponding to (α =

0.5,M = 0.812). Experimentation with POD modes by the author during

the course of this work has shown that POD prediction is more sensitive for

variations in Mach number than with variations in angle of attack. Hence it is

expected that more POD modes are required to attain results comparable to

exact solutions for this case. Figures 5.6(c) and 5.5(b) show that 30 modes are

required to achieve a close agreement between the predicted flow field and the

exact flow field.
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Figure 5.5: Variation of percentage error versus the number of POD modes in
log scale.
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Figure 5.6: Comparison of predicted pressure contours (dash) and exact pressure
contours (solid) for a Mach number of 0.812 and angle of attack of 0.5◦.
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Figure 5.7: Comparison of predicted pressure contours (dash) and exact pressure
contours (solid) for a Mach number of 0.812 and angle of attack of 1.1◦.
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The final example considered for this set is the prediction for the pair

(α = 0.45,M = 0.812) in which both α = 0.45 and M = 0.812 are not val-

ues used to generate the snapshots. Therefore, it is expected that a greater

number of POD modes are needed to obtain close agreement with the exact

predictions. Figure 5.7 compares the predicted pressure field contours (dashed

lines) with the exact pressure field contours (solid lines) for this case. As ex-

pected, Figure 5.7(b) shows that using 30 modes leads to discrepancies which

are larger than that shown in Figure 5.6(c) with the same number of modes.

It can be seen in Figure 5.5(c) that at least 40 modes are required to get the

same level of agreement and accuracy with the exact flowfield obtained in the

previous two examples.

These results show that the POD method combined with interpolation en-

ables one to derive simple low-order models that accurately predict steady-state

pressure fields over a range of parameter values such as Mach number and angle

of attack. The approach can be extended to the case where more than two pa-

rameters vary. For example, one might wish to include geometric properties of

the airfoil in order to apply these models in an airfoil shape design optimization

context. While the number of snapshots in this case might be large, the method

is straightforward to apply.

5.2.3 Estimation of the Greatest Lift Coefficient for a Given

Angle of Attack Range

Here the problem of estimating the greatest lift coefficient in a given range of

angle of attack is considered within the framework of POD and its extensions.

The NACA 0012 airfoil is considered at its baseline freestream Mach number of
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0.8, and 51 aerodynamic flowfield snapshots are computed for uniformly spaced

values of angle of attack in the interval [−1.25◦, 1.25◦] with a step of 0.05◦.

As a demonstration, the values of the angle of attack in the interval [-1.25,

1.25] are used to find the largest value of the lift coefficient CL in that range.

Fifteen modes are used for this case. As the the flow model used is inviscid, it is

expected that in the given range of the angle of attack, the largest lift coefficient

corresponds to the case when the angle of attack is 1.25 degrees while in the

general case the maximum may be at some value inside the interval.

Tolerance 0.1 0.01 0.001 0.0001
No. of iterations 6 11 15 20

AOA 1.1936 1.2449 1.2492 1.2499

Table 5.1: The tolerance and corresponding result by Golden Search method
for greatest lift coefficient problem.

Table 5.1 shows that the solution converges to the expected value 1.25 as the

tolerance level for the desired level of accuracy is refined. The same approach

can be used to estimate the maximum lift coefficient for viscous aerodynamic

flowfields predicted using an ensemble of flowfield snapshots computed by solv-

ing the Navier-Stokes equations for the span of angle of attack which includes

the stall angle.

5.2.4 Tracking the Angle of Attack for a Given Flowfield

Around an Airfoil

For demonstration purposes, the flowfield of interest in this example is the Mach

field V around the NACA 0012 airfoil corresponding to AOA = 0.77, assuming

that the flowfield information and other data corresponding to AOA of 0.77 are

unknown and undefined in the ensemble of flowfield snapshots.
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The NACA 0012 airfoil is considered at its baseline freestream Mach number

of 0.8, and 51 snapshots are computed corresponding to uniformly spaced values

of angle of attack in the interval [−1.25◦, 1.25◦] with a step of 0.05◦. The Golden

Section Search method together with the interpolation-based POD are used here

to find the minimum cost function defined in (4.1). The angle of attack spans

the interval [-1.25, 1.25], and 15 POD modes are used. It is noted that the

minimum cost function and the angle of attack corresponding the given Mach

field are obtained at the same time.

Tolerance 0.1 0.01 0.001 0.0001
No. of iterations 7 12 17 21

AOA 0.7815 0.7723 0.7699 0.7700

Table 5.2: The tolerance and corresponding result by Golden Search method
for the angle of attack tracking problem.

Table 5.2 shows that the result converges to the expected AOA = 0.77 as the

tolerance level is refined. Once the AOA is determined, all other flow variable

fields corresponding to the Mach field can be obtained immediately by applying

the method in the section 5.2.2. The application of the tracking problem for

the other fields operates in the same manner and is straightforward.

5.3 Reconstruction of Missing Aerodynamic Data

5.3.1 Reconstruction of Aerodynamic Flowfield Data

The case considered is the NACA 0012 airfoil at a freestream Mach number of

0.8. To create the POD basis, 51 snapshots are computed at uniformly spaced

values of angle of attack in the interval α = [−1.25◦, 1.25◦] with a step of 0.05◦.

An aerodynamic flowfield is then generated by computing the flow solution at
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α = 0.77◦ and at the same Mach number as the base Mach number of 0.8

(which is not one of the snapshots). An incomplete aerodynamic data field is

then created by only retaining the pressure values on the surface of the air-

foil. This mimics the situation of a typical wind-tunnel airfoil surface pressure

measurement which consists of available data only at discrete locations on the

airfoil surface. The total number of pressure values in the complete flowfield

is 6369 and the number of pressure values on the airfoils surface is 121, hence

for this case about 98% of the data is considered missing. The goal is then

to reconstruct the entire pressure flowfield in the vicinity of the airfoil using

the gappy POD method and to compare the prediction with the exact solution

corresponding to the original CFD solution. The gappy POD method can also

be viewed as an approach that provides a way to combine experimental data

with computational results in order to reconstruct the entire aerodynamic flow-

field. Figure 5.8(a) shows the points on the NACA 0012 airfoil surface where

pressure field values are made available. Figures 5.8(b) and (c) compare the

reconstructed pressure field contours using four and five POD modes, respec-

tively, with the complete flowfield contours obtained from the original CFD

solution. As expected, the greater the number of modes used, the more accu-

rate is the quality of the reconstructed flowfield. With the knowledge of limited

surface pressure data available, the complete pressure field in the vicinity of the

airfoil can be determined very accurately with only five POD modes, showing

that the gappy POD methodology for data reconstruction works effectively for

aerodynamic flowfield data.

A question of interest is whether or not the complete pressure field can be
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Figure 5.8: The reconstruction of the pressure field from the airfoil surface
pressure distribution (dash), compared with the original contours (solid).
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Figure 5.9: The 2-norm of the pressure reconstruction error versus the number
of POD modes. For all four cases, the pressure measurement points were equally
spaced over the airfoil surface.

accurately reconstructed with knowledge of surface data at a fewer data points

than that considered earlier. Figure 5.9 shows the variation of the 2-norm of

the error between the exact and reconstructed pressure field for different cases

corresponding to different number of available surface data points. In each case,

the number of available surface measurements is evenly distributed around the

airfoil surface. It can be seen from Figure 5.9 that when the number of available

data points is reduced by half or even when only 31 surface pressure measure-

ments are available, the complete pressure field can be constructed accurately

using about ten POD modes. If the number of available data points is reduced

to say 16 surface data points, then it can be seen that the prediction becomes

unreliable. It can also be noted that, given N measurements, a uniformly-

spaced distribution is unlikely to yield the best reconstruction of the flowfield.

The question on the best distribution of the surface data points for collecting

surface pressure measurements is being addressed in ongoing research to see
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how the gappy POD method can be used to determine optimal pressure sensor

locations on the airfoil surface to determine the complete pressure field in the

vicinity of the airfoil effectively and economically.

5.3.2 Incomplete Flowfield Snapshot Set

In the second example, the construction of a set of POD basis vectors from an

incomplete set of aerodynamic flowfield snapshots and the reconstruction of the

incomplete set itself are considered. This problem may again be of interest if

coarse or partial flow field data is available from experimental results. Using the

gappy POD methodology, experimental and computational data with differing

levels of resolution can be combined effectively to determine dominant flow

modes. Once the POD basis vectors are constructed, any incomplete data which

does not belong to the incomplete set can be reconstructed as in section 5.3.1.

Again, the NACA 0012 airfoil is considered at a freestream Mach number of

0.8. An ensemble consisting of 26 flowfield snapshots corresponding to steady

pressure flowfields at angles of attack in the range α = [0◦, 1.25◦], uniformly

spaced with an interval of 0.05◦ is used for this study. To create the incomplete

snapshot set for this example, 30% of the pressure data of each snapshot is

discarded randomly. The iterative gappy POD algorithm is then used to repair

the data as follows. By first repairing the missing data points in each snapshot

with the average over available data at that point, a new ensemble of data which

has no missing values is created. Using this new ensemble, a first approximation

to the POD basis is constructed. Then, each snapshot in the ensemble is repaired

using the first approximation of the POD basis. This repaired ensemble is then
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used to construct a second approximation to the POD basis. For the example in

this section, the iterative procedure above is stopped after about 50 iterations.

In Figure 5.10, the second snapshot with 30% pressure field data missing

is repaired using the procedure described above with five POD modes, which

contain 99.99% of the flow energy. Figure 5.10(a) shows the original damaged

snapshot. After one iteration, the repaired snapshot in Figure 5.10(b) begins

to resemble the CFD solution; however, large discrepancies remain at various

spatial locations. Figure 5.10(c) shows the repaired snapshot after 25 iterations

and the resulting pressure field resembles closely with the original flowfield. Fig-

ure 5.11 shows the repairing process for the 23rd snapshot. Compared with the

pressure contours corresponding to the one in which 30% of the data has been

assumed missing as shown in Figure 5.11(a), the reconstruction in Figure 5.11(c)

appears to be in very close agreement with the original CFD result and this has

been accomplished using only seven iterations. It can be seen that the con-

vergence of the reconstruction process depends on the details of the particular

snapshot under consideration. In particular, it depends on the structure of the

flowfield snapshot and how much data is missing. For the 23rd snapshot shown

in Figure 5.11, the convergence rate for reconstruction is much faster than that

of the second snapshot shown in Figure 5.10.

The convergence of the POD eigenvalue spectrum of the incomplete ensem-

ble is shown in Figure 5.12. It can be seen that after one iteration the first

two eigenvalues have converged, while convergence of subsequent eigenvalues

requires more iterations. For example, after 45 iterations, it can be seen that

only the first five eigenvalues have converged; however, these five modes account
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Figure 5.10: Reconstruction of the second snapshot (dash), compared with the
original contours (solid).
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for almost all of the flow energy (99.99%).
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Figure 5.12: The eigenvalue spectrum for construction of the POD basis from
an incomplete snapshot set. Shown are the POD eigenvalues at various stages
in the iterative process.

The rate of convergence for the construction of the POD modes is also in-

vestigated. This is done by comparing the POD basis vectors constructed using

a complete data set with those constructed from the incomplete set. In Fig-

ure 5.13(a), it can be seen that, after just two iterations, the first mode con-

structed with incomplete data matches well with the desired result. However,

in Figure 5.13(b), the construction of the second mode after ten iterations still

shows significant deviation from the actual mode. At least 31 iterations are

needed to obtain the second mode accurately. Figure 5.13(c) shows that after

50 iterations the estimate of the third POD mode is reasonable but not fully

converged.

It is observed that the more energetic a POD mode, the faster the rate

of construction from a given patial flowfield data set. The first mode, which

captures about 90.65% energy, requires only two iterations to converge very
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Figure 5.13: Construction of POD modes from an incomplete snapshot set.
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closely to the desired result; however, the second and the third modes, which

capture about 7.7% and 1.4%, require about 31 and 50 iterations, respectively.

This trend is observed for subsequent modes and may be related to the fact

that successive POD modes often correspond to higher spatial frequency flow

structures. For example, it can be seen in Figure 5.13 that the second and third

modes contain progressively more high-frequency shock structure. It is therefore

not surprising that construction of higher modes requires more iterations.

Finally, the computational cost of the iterative gappy POD procedure is

considered. At each iteration, the reconstruction of m snapshots, requires the

solution of m systems of the form (3.13). Furthermore, at each iteration, an

eigenvalue problem of size m must also be solved to determine the POD modes.

Implementation of the method using five POD modes for each iteration on a 1.6

GHz Pentium 4 personal computer, took less than two seconds.

5.4 Airfoil Design Optimization

5.4.1 Inverse Design Using Gappy POD Method

In this section, a set of examples demonstrates how the gappy POD method can

be applied to the problem of inverse airfoil design. An ensemble of snapshots

is first generated as in (4.3) by choosing a set of airfoil shapes and obtaining

their corresponding surface pressure distributions. (Other flowfield quantities

can also be included to form the snapshots if they are of interest.) Here these

two quantities are chosen because they are of prime interest for airfoil shape

design problems which are concerned with the determination of airfoil shapes

which can produce prescribed airfoil surface pressure distributions or which can
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satisfy specific constraints on aerodynamic force and moment coefficients. While

in this thesis, CFD results were used to create the snapshots, in practice, the flow

data could be obtained from computational simulations, experimental results,

tabulated data, or a combination thereof. The goal here is to apply the gappy

POD method to determine the optimal airfoil shape that can produce a given

target pressure distribution, which is not contained in the snapshot collection.

Here a set of airfoil shape design optimization problems is considered in the

subsonic and transonic regimes using the framework outlined in section 4.4.

Subsonic Regime

The first example considered is that of inverse airfoil design in the subsonic

regime. An ensemble of airfoil profiles is created by considering the base RAE

2822 airfoil and adding a series of Hicks-Henne bump functions [20], which

permit one to render smooth changes in the airfoil profile geometry. These

functions are traditionally used for parametric representation of airfoil sections

in airfoil design optimization problems. The Hicks-Henne bump functions are

defined as

y(x) = A
{

sin
[
πxlog(1/2)/log(t1)

]}t2
, 0 ≤ x ≤ 1 (5.2)

where A is the magnitude of the maximum bump amplitude, t2 is used to

control the width of the bump and x = t1 is the location of the maximum bump

amplitude. Thirty one bump functions are created using t2 = 4, A = 0.005 and

added to points on each of the upper and lower surfaces of the RAE 2822 airfoil

to create a total of 63 airfoil snapshots, some of which are shown in Figure

5.14(a). The aerodynamic flowfields around these airfoils inclined at zero angle
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of attack and at a freestream Mach number of 0.5 are then computed using the

flow solver. These airfoils and their corresponding surface pressure distributions

extracted from the computed flowfield solutions are used to form the ensemble

of snapshots.
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Figure 5.14: The airfoil snapshots from baseline RAE 2822 (dash) and the Korn
airfoil (solid) and corresponding POD eigenvalues.

The airfoil surface pressure distribution around the Korn airfoil whose ge-

ometry is shown in Figure 5.14(a) and which is inclined at the same angle of

attack and Mach number as the ensemble of airfoils is computed using the flow
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Figure 5.15: Korn airfoil design.
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solver and specified as the design target airfoil surface pressure distribution P*

as defined in section 4.4. It can be seen in Figure 5.14(a) that, while the Korn

airfoil shares some similarities with the RAE 2822-based snapshot set, its cam-

ber and thickness are quite distinct. This example thus represents a challenge

to test the effectiveness of the gappy POD to carry out reliable inverse airfoil

design tasks. The first 32 POD eigenvalues corresponding to the snapshot set

are shown in Figure 5.14(b). It can be seen that the first 21 POD modes contain

99% of the system energy. Figure 5.15(a) shows the points on the Korn airfoil

where target pressure values P* are specified. The inverse airfoil design prob-

lem then corresponds to the determination of an optimal airfoil shape whose

surface pressure distribution P minimizes the cost function defined by equation

4.2. Using the gappy POD procedure outlined in section 4.4, the corresponding

optimal airfoil shape can then be determined easily. Figures 5.15(b), (c) and (d)

compare the designed airfoil and surface pressure distribution using the gappy

POD using one, 15 and 29 POD modes, respectively with the exact Korn airfoil.

It can be seen that as the number of POD modes is increased, the predicted

shape and its pressure distribution agree more closely with the exact solutions.

The corresponding values of the cost J are given in Table 5.3. By using 29 POD

modes, which accounts for 99.97% of the snapshot energy, it can be seen that

the error in the pressure distribution is very small. It is noted that if more than

29 POD modes are used, the improvement is negligible.

Additional inverse design optimization problems using the same ensemble of

snapshots as in the previous inverse design problem for three different specifi-

cation of target pressure distributions are considered to illustrate certain other
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Airfoil Number of POD modes Cost, J
Korn-63 snapshots 1 0.022
Korn-63 snapshots 15 0.0047
Korn-63 snapshots 29 2.9426e-004

Table 5.3: Optimal cost versus number of POD modes for the subsonic inverse
design of Korn airfoil.

Airfoil Number of POD modes Cost, J
NACA 63212-63 snapshots 29 6.2673e-004

HQ 2010-63 snapshots 29 0.0061
GOE 117-63 snapshots 29 0.0056

NACA 63212-90 snapshots 29 1.9532e-004
HQ 2010-90 snapshots 29 2.5858e-004
GOE 117-90 snapshots 29 0.0014

NACA 63212 with restart 43 1.7435e-004
HQ 2010 with restart 32 2.0622e-004
GOE 117 with restart 39 6.8127e-004

Table 5.4: Optimal cost versus number of POD modes for subsonic inverse
design cases of NACA 63212, HQ 2010 and GOE 117 airfoils.

features of the gappy POD application in inverse airfoil design optimization

problems. Target airfoil surface pressure distributions corresponding to the

NACA 63212, Quabeck 2.0/10 R/C sailplane HQ 2010, and GOE 117 airfoils

[27] at the same angle of attack and Mach number are computed and specified

for the inverse airfoil design practice. The inverse airfoil design shapes and their

surface pressure distributions resulting from the application of gappy POD are

compared with the target airfoil shapes and the pressure distributions corre-

sponding to the target airfoils in Figure 5.16. Although 29 POD modes are

used for the NACA 63212 in Figure 5.16(a), there is still a small region on the

upper surface near the leading edge which cannot be resolved accurately. The

situation is worse for the HQ 2010 airfoil. As shown in Figure 5.16(b), there are

slight differences in the shape in some regions on the upper and lower surfaces.
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These slight discrepancies need to be improved further so that the agreement

with the target HQ 2010 airfoil will be better. For the case corresponding to the

target airfoil GOE 117, as can be seen from Figure 5.16(c), the designed airfoil

shape is still far away from the exact shape of the GOE 117 airfoil, indicating

that this geometry, which differs considerably from the baseline RAE 2822 air-

foil, is not contained in the subspace spanned by the snapshot set considered.

From Table 5.4, the values of the cost J can be seen to be larger than those

corresponding to the Korn airfoil in Table 5.3, especially in the case of the HQ

2010 and GOE 117 airfoils. Hence further explorations to improve the designed

airfoil shape need to be developed.

One approach to improve the resulting airfoil shapes from inverse design to

correspond to those of the target airfoil is to increase the richness of the sub-

space spanned by the POD basis vectors. This can be achieved by including

more snapshots in the ensemble. One could for example include additional airfoil

snapshots. Here 27 airfoil shapes parameterized from the NACA 64A410 airfoil

are added to the ensemble with 63 airfoils considered in the previous example

to form a new ensemble of 90 airfoils and the corresponding computed surface

pressure snapshots. The 64A410 airfoil has been chosen for some similarities

which exist with the three target airfoils hoping that this would add some geo-

metrical richness into the ensemble so as to improve the resulting inverse design

shapes. As shown in Figures 5.17(a) and (b), by using this new ensemble and

by using the same number of basis vectors i.e 29 POD modes as in the previous

cases, the designed airfoil shapes are now almost identical to the exact NACA

63212 and HQ 2010 airfoils. However, the design airfoil in Figure 5.17(c) still
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(a) The exact NACA 63212 airfoil (solid) and the de-
sign airfoil (dash) with 29 POD modes.
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(b) The exact HQ 2010 airfoil (solid) and the design
airfoil (dash) with 29 POD modes.
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(c) The exact GOE 117 airfoil (solid) and the design
airfoil (dash) with 29 POD modes.

Figure 5.16: The design (dash) airfoils from 63 RAE 2822 based snapshots.
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(a) The design NACA 63212 airfoil with 29 POD
modes.
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(b) The exact HQ 2010 airfoil (solid) and the design
airfoil (dash) with 29 POD modes.
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(c) The exact GOE 117 airfoil (solid) and the design
airfoil (dash) with 29 POD modes.

Figure 5.17: The design airfoils (dash) airfoils from 90 snapshots with baseline
RAE 2822 and NACA 64A410.
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shows some discrepancies with the exact GOE 117 airfoil. The better behavior

of the new ensemble is also shown in Table 5.4 by the smaller values of the cost

J . The exact airfoil could be obtained if further snapshots are added to the

set; however, this implies some a priori knowledge of the desired result so that

appropriate snapshots may be chosen.

A better way to improve the design airfoil is proposed in Legresley and

Alonso [2], where an available designed airfoil at some iteration is used as an in-

termediate baseline shape, to which some bump functions are added to generate

a new set of snapshots. This new snapshot collection is then used to compute a

new set of POD modes and thus restarts the design procedure. Here, a similar

method for the gappy POD procedure can be done. For the case corresponding

to the target airfoil NACA 63212, the designed airfoil reached using 29 POD

modes as shown in Figure 5.16(a) is used as an intermediate baseline airfoil, to

which 60 bump functions using t2 = 4, A = 0.005 are added to obtain a new en-

semble of 61 airfoil snapshots. A similar procedure is used for the intermediate

design airfoils shown in Figures 5.16(b) and (c) for the HQ 2010 and GOE 117

cases, respectively. It can be seen in Figure 5.18 that the designed airfoils now

match the exact airfoils very well. In order to obtain a cost function reduction

on the order 10−4, it is found that about 43, 32 and 39 POD modes are required

for the NACA 63212, HQ 2010, and GOE 117 airfoils, respectively. The cost

function values attained using the restart procedure are shown in Table 5.4. The

results from this restarted gappy POD procedure are much better than those

obtained from using the 90-snapshot ensemble above. Moreover, by allowing

multiple restarts, this procedure enables the consideration of an inverse design
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(a) The exact NACA 63212 airfoil (solid) and the de-
sign airfoil (dash) with 43 POD modes.
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(b) The exact HQ 2010 airfoil (solid) and the design
airfoil (dash) with 32 POD modes.
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(c) The exact GOE 117 airfoil (solid) and the design
airfoil (dash) with 39 POD modes.

Figure 5.18: The design (dash) airfoils from restarted gappy POD method.
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whose geometry differs significantly from that of the baseline airfoil.

Transonic Regime

All the examples in the previous section are at a freestream Mach number of

M = 0.5 which is subsonic and free of shock waves. It is envisaged that in

the transonic regime, the inverse airfoil design task using gappy POD will be

more difficult due to the presence of shocks and this motivates the current

investigation for inverse transonic airfoil design using gappy POD.

The ensemble consisting of 63 airfoils based on the RAE 2822 airfoil used

in the example on the inverse airfoil design corresponding to Korn airfoil target

pressure distribution is used for this study but the corresponding flow solutions

are now computed at a freestream Mach number of M = 0.8. Figures 5.19(a)-

(c) compare the shapes of the designed airfoil attained using the gappy POD

inverse design corresponding to the Korn airfoil target pressure distribution at

M = 0.8 using different POD modes ranging from one, 20 and 36. It can be seen

that, in the transonic case, even when 36 POD modes, which capture 99.997% of

the energy, are used, the lower surface of the designed airfoil cannot be resolved

accurately and the cost function J which has reduced to a value of 0.0230 is still

large. However, the shape of the designed airfoil can be improved by restarting

the gappy POD method as described in the previous section. The designed

airfoil shown in Figure 5.19(c) is now used as the intermediate baseline airfoil

shape and a new set of airfoil snapshots is created using 60 bump functions

with t2 = 4, A = 0.001. Figures 5.20(a)-(c) compare the shapes of the designed

airfoil for one, 20 to 29 POD modes created from the new ensemble with the

original target Korn airfoil. Figure 5.20(a) shows that using just one of the new
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(a) One POD mode.
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(b) Twenty POD modes.
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(c) Thirty six POD modes.

Figure 5.19: The exact Korn (solid) and the design (dash) airfoils from 63 RAE
based airfoils in transonic regime.
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(a) One POD mode.
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(b) Twenty POD modes.
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(c) Twenty nine POD modes.

Figure 5.20: The exact Korn (solid) and design (dash) airfoils from new ensemble
of snapshots based on the intermediate airfoil in transonic flow (restart).
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POD modes yields a result which is very similar to the intermediate baseline

airfoil shown in Figure 5.19(c). The designed airfoil with 20 POD modes is

significantly improved as can be seen in Figure 5.20(b). If the design process

uses 29 POD modes then it can be seen from Figure 5.20(c) that the designed

airfoil is in good agreement with the Korn airfoil shape. This example shows

that the design of an airfoil using gappy POD requires considerably more effort

in the transonic regime than in a subsonic regime. Although the restarted gappy

POD procedure can be used to obtain more accurate results, i.e. smaller values

of the cost function J ; the gappy design procedure becomes more expensive with

more restarts.

In general, several restarts of the gappy POD could be required in order

to obtain the desired target pressure distribution, especially if the designed

airfoil shape is significantly different from those included in the snapshot set,

or if significant nonlinearities exist in the flow. For each restart, the CFD

solver must be used to obtain the flow solutions corresponding to the new set

of parameterized airfoils and this constitutes the most expensive part of the

computation. One could also utilize different approaches to generate the new

airfoil set. For example, the parameters A, t1 and t2 for the bump functions

could be varied. Considering more bump functions would result in a larger

snapshot set, but may reduce the number of restarts required.

5.4.2 Constrained Airfoil Design Optimization

For the constrained airfoil design optimization problem outlined in section 4.4.2

an initial guess of an airfoil shape is required to start the design optimization
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process. In this section, the baseline RAE 2822 airfoil at AOA of 0 degree

and Mach number of 0.5 is parameterized by 20 Hick-Henne bump functions

to create 21 airfoil snapshots including the baseline. The initial airfoil guess is

assumed to be the airfoil corresponding to the average of all the airfoil snapshots

in the ensemble. Figure 5.21 compares the designed airfoil with the initial airfoil

to show the shape alteration to the initial profile to attain the satisfaction of

the cost function and constraints defined by Equation 4.9 using the procedure

outlined in Equations 4.5-4.9 and based on five POD basis functions. Table 5.5

compares the lift and drag coefficients of the initial and the designed airfoils.

It can be seen that drag reduction has been obtained for the designed airfoil

compared with the initial airfoil while the lift coefficient is maintained according

to the constraint requiring the preservation of the lift coefficient while reducing

the drag coefficient. The number of design variables used here is five and the

converged solution to the designed airfoil shape problem (4.9) is reached after

about 24 iterations in 0.04 seconds (CPU time) using a 1.6 GHz Pentium 4

personal computer.

initial airfoil optimal airfoil
CL 0.2966 0.2969
CD 0.000545 0.0003

Table 5.5: The lift and drag coeficient for the initial and optimal airfoils, five
POD modes.

To validate the results such as pressure distribution, flowfield contours etc

estimated from the outcomes of the constrained problem i.e. Equation (4.9),

the flowfield around the resulting designed airfoil is computed and the airfoil

surface pressure distribution is extracted using the flow solver. Figure 5.22
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Figure 5.21: The initial airfoil (solid) and the design airfoil with five POD
modes.

compares the airfoil surface pressure distribution from Equation (4.8) with that

computed for the designed airfoil using the flow solver. It can be seen that both

distributions match each other very well for this case.
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Figure 5.22: The pressure coefficients comparison for the design airfoil with five
POD modes.

It is expected that a better improvement in lift and drag coefficients for the

design airfoil can be obtained when more POD modes (and hence the number

80



of design variables) are used. Figure 5.23 compares the initial and designed

airfoil shapes for the case when ten POD modes are used. From Table 5.6

it can be seen that improvement in lift and drag coefficients is now obtained.

For this case it can be seen that the airfoil surface pressure distributions from

(4.8) and from the flow solver for the designed airfoil are identical as shown

in Figure 5.24. However it is observed that although much more improvement

is achieved when the number of POD modes is increased, the designed airfoil

is somewhat unphysical. A possible reason is because the current model has

only taken advantage of numerics on the ensemble of snapshots in order to solve

the optimization problem (4.9). Therefore although an optimal solution can be

obtained with negligible cost, it may not guarantee to result in a physical airfoil.

Further constraints such as the preservation of the cross-sectional area imposed

as a constraint maybe needs to be incorporated in this approach to maintain its

advantage and also to lead to a physical solution.
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Figure 5.23: The initial airfoil (solid) and the design airfoil with ten POD modes.
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initial airfoil optimal airfoil
CL 0.2966 0.3141
CD 0.000545 0.00032

Table 5.6: The lift and drag coeficient for the initial and optimal airfoils, ten
POD modes.
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Figure 5.24: The pressure coefficients comparison for the design airfoil with ten
POD modes.

5.5 Prediction of Flowfield around an Arbitrary

Airfoil

5.5.1 Grid Generation Around an Arbitrary Airfoil

In this section, an attempt to generate the grids around an arbitrary airfoil

via gappy POD method is considered. As outlined in section 4.5, if the grid

generation around an arbitrary airfoil is of interest, the coordinates C∗ of a

given airfoil shape are available data while the grids G∗ are treated as missing

data. For example, the coordinates of the Korn airfoil are specified as available

data while the grid coordinates around it are unknown and treated as missing

data. The ensemble of 63 snapshots around the baseline airfoil RAE 2822 in
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(a) Exact grid for Korn airfoil.
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(b) Grid for Korn airfoil from gappy POD method.

Figure 5.25: The grid generation with 29 POD modes for Korn airfoil from RAE
based snapshots.
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(a) Exact grid for GOE 117 airfoil.
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(b) Grid for GOE 117 airfoil from gappy POD method.

Figure 5.26: The grid generation with 29 POD modes for GOE 117 airfoil from
RAE based snapshots.
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section 5.4.1 is used again and 29 POD basis functions which capture 99.994%

of energy are used. Figures 5.25(a) and (b) are the exact grids from the CFD

solver and those from gappy POD method, respectively. It can be seen that the

grids from gappy POD method are very close to the exact ones. Even in the

case of the GOE 117 airfoil whose geometry is very different from the baseline,

the grids generated by gappy POD in Figure 5.26(b) are in good agreement with

the exact ones in Figure 5.26(a). It has been shown that grids around an airfoil

can be generated by gappy POD method. The resulting grids are very close to

the exact ones even if there are significant changes in geometries between given

and baseline airfoils.

5.5.2 Prediction of Flowfield around an Arbitrary Airfoil

This section presents some examples in predicting the aerodynamic flow field

around an arbitrary airfoil as derived in section 4.5. The first example in this

section is the case when the coordinates of the Korn airfoil are the available

data while the pressure field is missing data. The ensemble in the previous

section is used and again 29 POD basis functions are used for predicting pressure

distribution. Although the Korn airfoil has different thickness and camber and

hence is not a member of snapshots, it is quite similar to the RAE 2822 airfoil.

As a result, in Figure 5.27(a), the pressure coefficients on the surface of the Korn

airfoil match the exact ones generated from the flow solver accurately except

a very small region on the upper surface near the leading edge. Figure 5.27(c)

shows that the predicted pressure contours are quite close to the exact contours

computed from the CFD solver in Figure 5.27(b).
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Next, pressure field predictions are done for NACA 63212, HQ 2010 and

GOE 117 airfoils with 31 POD basis functions. The order of these airfoils

implies small to big changes in geometry compared to the baseline airfoil RAE

2822. As expected, Figure 5.28(a) shows that the predicted pressure coefficients

for NACA 63212 airfoil are very close to the exact ones while there are some

small discrepancies in the resulting pressure coefficients in Figure 5.28(b) for

HQ 2010 airfoil and big discrepancies in the resulting pressure coefficients in

Figure 5.28(c) for GOE 117 airfoil.

These examples show that Gappy POD can be used as an efficient tool for

predicting flowfields for an arbitrary airfoil. This method may be useful for

guiding direct airfoil design methods which involve the specification of a section

geometry and the calculation of pressures and performance. One evaluates the

given shape and then modifies the shape to improve the performance.
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(c) The predicted pressure contours.

Figure 5.27: The pressure field prediction with 29 POD modes for Korn airfoil
from RAE based snapshots.
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(a) The comparison between the exact and predicted
pressure coefficients for NACA 63212.
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(b) The comparison between the exact and predicted
pressure coefficients for HQ 2010.
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Figure 5.28: The pressure field predictions for NACA 63212, HQ 2010 and GOE
117 airfoils from RAE based snapshots.
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Chapter 6

Conclusions and

Recommendations

A challenge arises in steady aerodynamics is that how the steady solution can

be obtained efficiently. Although CFD turns out to be a useful tool to pro-

vide an accurate result, it is high order and expensive in most of the cases in

aerodynamics. Reconstruction of incomplete data in experiments or damaged

data (due to technical or natural circumstances some data is marred) is another

challenge in time-independent aerodynamics. Recent effort in characterization

of human faces has been successful in reconstruction of incomplete or marred

faces. One of the well known problem in time-independent aerodynamics may

be the inverse airfoil design in which an appropriate airfoil is found from a given

pressure distribution. A number of methods have been designed to solve this

problem but it is still open for a new method. Attempts to deal with these

challenges have been proposed in this thesis.

The POD basis has been shown to be efficient for capturing the relevant flow

information for steady transonic aerodynamic applications in which the flow
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solution depends on the values of some varying parameters such as the angle

of attack or Mach number. By coupling the POD basis with an interpolation

method, models are obtained that give accurate flow field predictions. These

predictions do not require a projection onto the CFD governing equations which

may be difficult and expensive, but rather just a collection of flow snapshots

that covers the parameter ranges of interest, hence they can be obtained very

fast. The interpolation approach is applicable to any problem whose properties

of interest are a smooth function of the parameters under consideration.

The PODI method has been employed for steady problems so far, one of the

extensions could be the application of the PODI method for obtaining a fast

computation for parameter-dependent unsteady aerodynamic in which angle of

attack or Mach number and time are varying parameters. One of the possible

ways is to take the snapshots at discrete point of time directly from nonlinear

unsteady simulation for PODI model, and then PODI will predict the solution

at any point of time. However, such a way is expensive and may not be suitable

since the unsteady simulation needs to be performed beforehand.

The gappy POD has been applied to a number of aerodynamic applications.

In particular, the method has been shown to be very effective for reconstructing

flow fields from incomplete aerodynamic data sets. This approach may be useful

in many real applications where experimental and computational results must

be combined. While the rate of convergence of the reconstruction depends on

the amount of missing data and the structure of the flow field, the method

was found to work effectively for all problems considered. Ongoing research

is investigating the question of optimal sensor placement, that is, how many
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sensors which are really necessary and where to put them on the airfoil surfaces

such that the whole flow field can be reconstructed accurately.

A new extension of the methodology has also been proposed for inverse

design of airfoil shapes. Given a database of airfoil shapes and pressure distri-

butions, it has been shown that the gappy POD approach can be used to design

an airfoil to match a specified pressure target. Even when the geometry of

the target airfoil is different significantly to those contained within the original

database, a systematic restart procedure can be used to obtain accurate results.

While demonstrated for aerodynamic problems in this thesis, the Gappy POD

can be applied straightforward to the other areas.

It is clear that the geometry disturbances provided by Hicks-Henne bump

functions may not be the best way to generate the airfoil geometry subspace. It

is expected that the bigger the subspace is the better the gappy POD result is

and hence less restarts need to be performed as well as the design task will be

less expensive. One possible way is to vary the parameters in the Hicks-Henne

function to find the best combination but it may be impossible to test all the

values of these parameters since they can be any positive real numbers. Another

possible way is to use another kind of bump function for disturbing the airfoil

geometry [30].

The research has shown that although the flowfield prediction for an ar-

bitrary airfoil can be solved efficiently by the gappy POD method, some im-

provement needs to be done to obtain an accurate result in the case when the

geometry of given airfoil is significantly different from those in the ensemble of

snapshots. The result can be improved if further snapshots are added to the

91



ensemble; however, this implies some a priori knowledge of the desired result

so that appropriate snapshots may be chosen. The gappy POD method for

predicting flowfields around an arbitrary airfoil may be useful for guiding direct

airfoil design methods which involve the specification of a section geometry and

the calculation of pressures and performance. One evaluates the given shape

and then modifies the shape to improve the performance.

It has been shown that the constrained airfoil design optimization turns

out to be very simple in the context of POD-based method in the sense that

the result can be obtained very quickly without running the CFD solver again.

However, the method does not guarantee to give a physical airfoil. Further

development needs to be incorporated in this approach to maintain its advantage

and to lead to a physical solution as well.

While the gappy POD method has been useful for experiment and steady

aerodynamic, it may be extended for unsteady aerodynamic. For example, in

the supersonic engine inlet problem, the propulsive efficiency will decrease and

the drag will increase if the shock stands in front of the engine throat. Hence

it is necessary to know the position of the shock in order to make sure that it

is right behind the engine throat through some control mechanism when there

are some upstream disturbances. In this case, the upstream disturbances can

be treated as the available data while the shock position is the missing data.

Therefore, with a given upstream disturbance, investigating the gappy POD

method to see whether it can predict the shock position is an interesting task

for future work.

While in this thesis, the methods are demonstrated for two-dimensional in-
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viscid compressible flow past an airfoil, it can be applied straightforwardly to

both two-dimensional and three-dimensional viscous flows.
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