Equivalence Theorems and Their Applications

Tan Bui-Thanh,

Center for Computational Geosciences and Optimization
Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin, USA

September 13, 2010
Time Domain Electromagnetic Waves

Spherical Cavity

electromagnetic scattering
Consistency, Stability and Convergence
 An Equivalence Theorem for $y = T x$: T linear
 Lax Equivalence Theorem for $u'(t) = A u(t)$
 Nonlinear maps $y = T x$
 Equivalence Theorem for $A y = x$

A Discontinuous Spectral Element Method for Hyperbolic Equations?? (Next presentation)

Stability of a Discontinuous Spectral Element Method for Wave Propagation Problems (Next presentation)
Consistency, Stability and Convergence

An Equivalence Theorem for $y = Tx$: T linear
Lax Equivalence Theorem for $u'(t) = Au(t)$
Nonlinear maps $y = Tx$
Equivalence Theorem for $Ay = x$

A Discontinuous Spectral Element Method for Hyperbolic Equations?? (Next presentation)

Stability of a Discontinuous Spectral Element Method for Wave Propagation Problems (Next presentation)
Motivation

Question
What is the first thing you need to do when you derive/invent a new numerical method?
Motivation

Question
What is the first thing you need to do when you derive/invent a new numerical method?

- consistency
- stability
- convergence
Consistency, Stability and Convergence

What is consistency?

What is stability?

What is convergence?
Consistency, Stability and Convergence

What is consistency?

- **Consistency** is a measure of how close a discretization is to the “continuous” problem = how good you approximate operators and functions

What is stability?

- Stability means that the propagated error is controlled by the error in the data = continuity of solution w.r.t the data, uniform boundedness of the discrete operator

What is convergence?

- Convergence means that the discrete solution converges to the exact solution = error between the exact and discrete solutions converges to zero
Consistency, Stability and Convergence

What is consistency?

- Consistency is a measure of how close a discretization is to the “continuous” problem = how good you approximate operators and functions

What is stability?

Stability means that the propagated error is controlled by the error in the data = continuity of solution w.r.t the data, uniform boundedness of the discrete operator

What is convergence?

Convergence means that the discrete solution converges to the exact solution = error between the exact and discrete solutions converges to zero
Consistency, Stability and Convergence

What is consistency?

- Consistency is a measure of how close a discretization is to the “continuous” problem = how good you approximate operators and functions

What is stability?

- Stability means that the propagated error is controlled by the error in the data = continuity of solution w.r.t the data, uniform boundedness of the discrete operator
Consistency, Stability and Convergence

What is consistency?

- Consistency is a measure of how close a discretization is to the “continuous” problem = how good you approximate operators and functions

What is stability?

- Stability means that the propagated error is controlled by the error in the data = continuity of solution w.r.t the data, uniform boundedness of the discrete operator

What is convergence?

Consistency, Stability and Convergence

What is consistency?

- Consistency is a measure of how close a discretization is to the “continuous” problem = how good you approximate operators and functions

What is stability?

- Stability means that the propagated error is controlled by the error in the data = continuity of solution w.r.t the data, uniform boundedness of the discrete operator

What is convergence?

- Convergence means that the discrete solution converges to the exact solution = error between the exact and discrete solutions converges to zero
The importance of equivalence theorems

Which of the three (consistency, stability, convergence) is the most difficult? Why?
The importance of equivalence theorems

Which of the three (consistency, stability, convergence) is the most difficult? Why?

- Convergence: needs knowledge about the exact solution

P. Lax 1953

"Well-posedness of the original differential equation problem and consistency imply the equivalence between stability and convergence of difference methods"
The importance of equivalence theorems

Which of the three (consistency, stability, convergence) is the most difficult? Why?

- Convergence: needs knowledge about the exact solution

Alternate route for convergence: Equivalence theorems

\[\text{consistency} + \text{stability} \rightarrow \text{convergence} \]
The importance of equivalence theorems

Which of the three (consistency, stability, convergence) is the most difficult? Why?

- Convergence: needs knowledge about the exact solution

Alternate route for convergence: **Equivalence theorems**

\[
\text{consistency} + \text{stability} \rightarrow \text{convergence}
\]

Peter Lax 1953

“*Well-posedness of the original differential equation problem and consistency imply the equivalence between stability and convergence of difference methods*”

\[
\text{stability} \iff \text{convergence}
\]
More on Stability

The “easiest” among the three?
More on Stability

The “easiest” among the three?

- purely the property of the discrete problem: Knowledge about the exact solution/operators is not needed
The “easiest” among the three?

- purely the property of the discrete problem: Knowledge about the exact solution/operators is not needed
- An analogy: uniqueness implies existence (matrix theory, Fredholm theory). Think about the proof of Banach fixed point theorem. (next talk about inverse problem theory)
More on Stability

The “easiest” among the three?

► purely the property of the discrete problem: *Knowledge about the exact solution/operators is not needed*

► An analogy: *uniqueness implies existence* (matrix theory, Fredholm theory). Think about the proof of Banach fixed point theorem. *(next talk about inverse problem theory)*

Extremely important for computer implementation?
More on Stability

The “easiest” among the three?

- purely the property of the discrete problem: Knowledge about the exact solution/operators is not needed
- An analogy: uniqueness implies existence (matrix theory, Fredholm theory). Think about the proof of Banach fixed point theorem. (next talk about inverse problem theory)

Extremely important for computer implementation?

- round-off errors
Definitions
Let V, W be Banach spaces, and $T, T_h : V \to W$

i) Wellposedness: continuity of T, T_h

ii) Consistency: T_h is said to be consistent with T if
\[\lim_{h \to 0} \| (T_h - T) v_0 \| = 0, \forall v_0 \in D \subset V, D \text{ dense in } V, \]

iii) Stability: T_h is called stable if $\sup_h \| T_h \| < \infty$. (Uniform boundedness)

iv) Convergence: T_h is said to converge to T, if
\[\lim_{h \to 0} \| (T_h - T) v \| = 0, \forall v \in V \]

Replace h by n if n is more natural
Equivalence Theorem for Linear Operators

Theorem

A consistent family of T_h is convergent if and only if it is stable.
Equivalence Theorem for Linear Operators

Theorem

A consistent family of T_h is convergent if and only if it is stable.

Proof.

\Rightarrow) Since $\lim_{h \to 0} \|(T_h - T)v\| = 0$, $\forall v \in V$, the family T_h is pointwise uniformly bounded continuous linear operators. The uniform boundedness principle yields $\sup_h \|T_h\| < \infty$, which is exactly stability.
Equivalence Theorem for Linear Operators

Theorem

A consistent family of T_h is convergent if and only if it is stable.

Proof.

\Rightarrow Since $\lim_{h \to 0} \|(T_h - T)v\| = 0$, $\forall v \in V$, the family T_h is pointwise uniformly bounded continuous linear operators. The uniform boundedness principle yields $\sup_h \|T_h\| < \infty$, which is exactly stability.

\Leftarrow By triangle inequality (three-ϵ argument), $v_0 \in D$,

$$\|Tv - T_hv\| \leq \|T\| \|v - v_0\| + \|(T - T_h)v_0\| + \|T_h\| \|v_0 - v\|.$$

The proof is complete by the following two facts. First, the consistency implies $\exists h_0 : \forall h \leq h_0$ such that $\|(T - T_h)v_0\| \leq \epsilon/3$. Second, the density of D allows us to pick v_0 such that $\|v - v_0\| \leq \frac{\epsilon}{3 \max\{\|T\|, \sup_h \|T_h\|\}}$.

\square
Numerical Integrations

A suitable setting

- \(V = (C[a, b], \| \cdot \|_\infty) \)

- \(Tf = \int_a^b f \, dx, \quad f \in V \), then \(T \) is linear and bounded, \(|Tf| \leq (b - a) \| f \|_\infty \)

- \(T_n f = \sum_{i=1}^{n} w_i f_i, \quad f \in V \), then \(T_n \) is linear and bounded, \(|T_n f| \leq (\sum_{i=1}^{n} w_i) \| f \|_\infty \)

- The family \(T_n \) is consistent if \(\forall f \in \mathcal{P}, \mathcal{P} \) space of polynomials \((\mathcal{P} \subset V, \text{dense ?})\), \(\lim_{n \to \infty} |T_n f - Tf| = 0 \).

- The family \(T_n \) is stable if \(\sup_n \| T_n \| < \infty \).

- The family \(T_n \) is convergent if \(\forall f \in V \)
 \(\lim_{n \to \infty} |T_n f - Tf| = 0 \)

Examples

Stable : Trapezoidal, Simpson, Gauss quadrature, and etc

Unstable : Newton-Cotes
Numerical Derivatives

A suitable setting

- \(\mathbf{V} = (C^k[a, b], \| \cdot \|_{C^k}) \), \(\mathbf{W} = (C[a, b], \| \cdot \|_\infty) \)

- \(D^{(k)}f, \quad f \in \mathbf{V} \) is linear and bounded, \(\| D^{(k)}f \|_\infty \leq \| f \|_{C^k} \)

- Denote \(D^{(k)}_hf, \quad f \in \mathbf{V} \) the numerical derivative

- The family \(D^{(k)}_h \) is consistent if
 \[
 \lim_{h \to 0} \| (D^{(k)}_h - D^{(k)}) f \|_\infty = 0 \quad \forall f \in \mathbf{D} \subset \mathbf{V}, \mathbf{D} \text{ is dense}
 \]

- The family \(D^{(k)}_h \) is stable if \(\sup_h \| D^{(k)}_h \|_\infty < \infty \).

- The family \(D^{(k)}_h \) is convergent if \(\forall f \in \mathbf{V} \)
 \[
 \lim_{h \to 0} \| D^{(k)}_h f - D^{(k)} f \|_\infty = 0
 \]

Examples: Stability of forward differentiation

\[
\left\| D^{(1)}_h \right\| = \sup_{\| f \|_{C^1} = 1} \sup_x \left| \frac{f(x+h) - f(x)}{h} \right| = \sup_{\| f \|_{C^1} = 1} \sup_x |f'(x + \theta h)| \leq 1
\]
Numerical Derivatives

Convergence is independent of Stability

\[
\lim_{h \to 0} \left\| D_h^{(1)} f - D^{(1)} f \right\|_\infty = \lim_{h \to 0} \sup_x \left| \frac{f(x + h) - f(x)}{h} - f'(x) \right| = \\
\lim_{h \to 0} \sup_x \left| f'(x + \theta h) - f'(x) \right| = 0
\]
Linear time dependent problems

One step method
Consider the problem $u'(t) = Au(t), \ u(0) = u_0$, and an abstract one step method

$$v(h) = B_h u_0,$$
$$v(nh) = B_{nh} u_0.$$

Well-posedness of the continuous problem
Let $S : V \rightarrow V, u(t) = S(t)u_0$, we require $u(t)$ is continuous w.r.t t and $\sup_t \|S(t)\| < \infty$.

Well-posedness of the discrete problem
For each $0 \leq h \leq h_0$, we require $\sup_h \|B_h\| < \infty$.
Linear time dependent problems

Consistency
∀v₀ ∈ D ⊂ V, D is dense,

\[\lim_{h \to 0} \| B_h u(t) - S(t + h)v_0 \| = 0 \]

Stability
\[\| B^n_h \| < \infty, \forall h, n : nh \leq T \]

Convergence
\[\lim_{k \to \infty} \| B^{n_k}_{h_k} v_0 - S(t)v_0 \| = 0, \text{ where } \lim_{k \to \infty} n_k h_k = t \]
Stability \iff Convergence

Stability \Rightarrow Convergence

Using triangle inequality and three-ϵ trick we have

$$
\| v(nh) - u(t) \| = \| B^n_h u_0 - S(t)u_0 \| \leq \\
\underbrace{\| B^n_h \| \| v - u_0 \|}_\text{stability + density} + \underbrace{\| B^n_h v - S(t)v \|}_\text{consistency} + \underbrace{\| S(t) \| \| v - u_0 \|}_\text{wellposedness + density} \to 0,
$$
Stability \iff Convergence

Convergence \Rightarrow Stability

If n is finite then by the discrete wellposedness we have

$$\sup_h \|B_n^h\| \leq \sup_h \|B_h^n\|^n < \infty.$$

Now $k \to \infty : \lim_k n_k h_k = t$, by convergence we have for each $u_0 \in V$, the family $B_{h_k}^{n_k}$ is uniformly bounded. Then by the uniform boundedness principle, we have

$$\sup_k \left\| B_{h_k}^{n_k} \right\| < \infty.$$

In both cases, the stability condition is proved.
A nonlinear setting for $y = Tx$

T is nonlinear

$T : V \to W$, and V, W are Banach

- **Wellposedness**: T is continuous
- **Consistency**: convergence on a dense subspace D

\[\forall v \in D \subset V : \lim_{n \to \infty} \|T_n v - T v\| = 0 \]

- **Stability** $\forall \epsilon, \|v - v_0\| \leq \delta$, such that $\|T_n v - T_n v_0\| \leq \epsilon$
 (replace uniform boundedness by equi-continuity)

- **Convergence**

\[\forall v \in V, \exists n_0 : n \geq n_0 \lim_{n \to \infty} \|T_n v - T v\| = 0 \]
Theorem

A consistent family of T_h is convergent if and only if it is stable.
Equivalence Theorem for nonlinear Operators

Theorem

A consistent family of T_h is convergent if and only if it is stable.

Proof.

\Rightarrow) Again the three-ϵ trick, $\|v - v_0\| < \delta$

$$\|T_n v - T_n v_0\| \leq \underbrace{\|T_n v - T v\|}_{\text{convergence}} + \underbrace{\|T v - T v_0\|}_{\text{Wellposedness}} + \underbrace{\|T v_0 - T_n v_0\|}_{\text{convergence}} \leq \epsilon$$
Equivalence Theorem for nonlinear Operators

Theorem

A consistent family of T_h is convergent if and only if it is stable.

Proof.

⇒) Again the three-ϵ trick, $\|v - v_0\| < \delta$

\[
\|T_n v - T_n v_0\| \leq \underbrace{\|T_n v - T v\|}_{\text{convergence}} + \underbrace{\|T v - T v_0\|}_{\text{Wellposedness}} + \underbrace{\|T v_0 - T_n v_0\|}_{\text{convergence}} \leq \epsilon
\]

⇐) By the three-ϵ trick, $\forall v \in V$, by density $\exists v_0 \in D$, $\|v - v_0\| < \delta$

\[
\|T v - T_n v\| \leq \underbrace{\|T v - T v_0\|}_{\text{wellposedness}} + \underbrace{\|T v_0 - T_n v_0\|}_{\text{Consistency}} + \underbrace{\|T_n v_0 - T_n v\|}_{\text{Stability}} \leq \epsilon
\]
Linear equation $Ay = x$

Wellposedness

Let $A : W \rightarrow V$, and V, W are Banach. The problem is wellposed if A is continuous and bijective. We know that the inverse exists, i.e. $T = A^{-1}$, and T is continuous (Why??).

The problem can be converted to the form $y = Tx$ which we have already discussed.
Consistency, Stability and Convergence

- An Equivalence Theorem for $y = Tx$: T linear
- Lax Equivalence Theorem for $u'(t) = Au(t)$
- Nonlinear maps $y = Tx$
- Equivalence Theorem for $Ay = x$

A Discontinuous Spectral Element Method for Hyperbolic Equations?? (Next presentation)

Stability of a Discontinuous Spectral Element Method for Wave Propagation Problems (Next presentation)
Consistency, Stability and Convergence
An Equivalence Theorem for $y = T x$: T linear
Lax Equivalence Theorem for $u'(t) = Au(t)$
Nonlinear maps $y = Tx$
Equivalence Theorem for $Ay = x$

A Discontinuous Spectral Element Method for Hyperbolic Equations?? (Next presentation)

Stability of a Discontinuous Spectral Element Method for Wave Propagation Problems (Next presentation)