Homework 4, Math222a:

Problem 1: Let A be an $m \times n$ matrix of rank k. Provided that m, n, k are as in the top row, please answer questions 1 through 6 in the table below.

	m > n > k	m > n = k	m = n = k	m=n>k	n > m = k	n > m > k
Q1:						
Q2:						
Q3:						
Q4:						
Q5:						
Q6:						

Q1: Is it the case that span $(A) = \mathbb{R}^m$?

Q2: Is it the case that Ax = b always has a solution?

Q3: Is the map $x \mapsto Ax$ onto?

Q4: Are the columns of A linearly independent?

Q5: Provided that Ax = b is consistent, is the solution unique?

Q6: Is the map $x \mapsto Ax$ one-to-one?

Problem 2: Consider the map

$$T\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} -x_1 \\ x_2 \end{array}\right].$$

- Is T linear?
- If T is linear, what is its standard matrix?
- Is T onto?
- Is T one-to-one?
- Make two sketches similar to Fig. 6 in ch. 1.8 showing the geometric action of T.

Also do:

Section 1.6: 6,8

Section 1.8: 6,20,26,32 Section 1.9: 6,8,10,24,30,36