
Course notes APPM 5720 — P.G. Martinsson March 31, 2016

Diffusion Geometry Review
Given Points S = {xi}ni=1 in RD we seek some parametrization φ : S → Rk (k should be small) that reveals the
geometry (Low dimension structure, clustering).

Introduce a “kernel” k(x, y) = exp(− 1
ε2
‖x− y‖2) where ε is a tuning parameter. Let L be the n× n matrix with

entries L(i, j) = k(xi, xj). Let D(i, i) =
∑n

j=1 L(i, j). Set M = LD−1 then M is a set of transition probabilities
for a random walk on S.

For t = 1, 2, 3, . . . we are interested in the matrix M t of transition probabilities for t steps of the random walk (t is
another tuning parameter). Recall symmetrization “trick”: set

M̃ = D−
1
2MD

1
2 = D−

1
2LD−

1
2 .

So M̃ is symmetric. Compute EVD of M̃ . M̃ = V ΛV ∗. Then

M t = D
1
2 M̃ tD−

1
2 = D

1
2V ΛtV ∗D−

1
2 .

Assume the evals decaly, and pick a truncation parameter k. Then the (truncated) diffusion distance is

dt(i, j) =

 k∑
p=1

λ2kp |vp(i)− vp(j)|2
 1

2

.

So,

Φ : S → Rk

i 7→

 λt1v1(i)
...

λtkvk(t)

 =: Zi

Connection to heat conduction. Let p ∈ Rn be the vector of limiting probabilities p = limt→∞M
tp0. Recall

Mp = p⇒ LD−1p = p⇒ (LD−1 − I)p = 0⇒ (L−D)D−1p = 0 where (L−D) is graph Laplacian.

Ex. Square lattice in 2D. Consider heat conduction. Let u ∈ Rn be the vector of temperatures.

(uw + ue + un + us)− 4uc = 0.

Standard 5-point stencil

L =


0 0 0 0 0
0 0 0 0 0
1 1 4 1 1
0 0 0 0 0
0 0 0 0 0

 , D =


8

8
8

8
8


and

A = L−D =


8

8
1 1 −4 1 1

8
8


Graph Laplacian Au = 0. Heat conduction ∂u

∂t = Au, solution u = exp(At)u0 where exp(At) is heat kernel and
u0 is initial value.

Recall n points {xi}ni=1 in RD,

Computation issues: If n is large, e.g. 103 ≤ n ≤ 109, D can be large! D = 2, 3, · · · 103. Cost to assemble L is
O(Dn2). Cost to compute top k evecs & evals of L is O(kn2). This is prohibitive when n is large.

1

Course notes APPM 5720 — P.G. Martinsson March 31, 2016

Observe that many entries of L are very close to 0. Let us modify the kernel function. Pick a truncation distance δ
and set

k(x, y) =

{
exp(− 1

ε2
‖x− y‖2, if ‖x− y‖ ≤ δ,
0 if ‖x− y‖ > δ.

This sparsifies L. On row i of L, the only non-zero entries L(i, j) are the ones for which ‖x− y‖ ≤ δ. Then M̃ is
sparse, and we can use e.g. Lanczos to compute the top k evals & evecs.

Problem: Finding the nearest neighbors can be costly. If done naivey, the cost is still Dn2.

Solution - first try.

Say D = 2. Put down quad tree on domain. Assume points are distributed fairly uniformly. Cost to build the tree
∼ n. Cost to search ≤ n.

In 2D, the number of neighbors boxes = 32 − 1 = 8. In n-D, the number of neighbors boxes = 3n − 1. This
method scales abysmally with dimension.

Let us consider a non-uniform distribution. Build the tree adaptively. Split boxes only with “many” points in them.
This still scales very badly with dimension. The search stage can get nasty.

“K-d trees”: A technique to make tree searches work well for non-uniform distributions and for “sort of” high
dimensions.

“Binary tree”:

2

