Solutions for Homework 9 — APPM5450 — Spring 2017
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Proving (1) is simple:
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For (2) we need to work a bit more (unless I overlook a simpler solution)
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First we bound |Si|. Note that when |z| > /¢, we have
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In bounding S5 we use that
T
——= ¢(0)dx =0,
/I:c|<\/5 e? +x? ©)
and that
lp(2) = @0)] < [2[1l¢'lu < |2lllell10,
to obtain
Sof = [t [ 5 (pla)  0l0))d
= |lim — (p(z) — x
2 e—0 lz|<\/E 82 +.I‘2 v v
. |z|
< lim su / T dr = 0.
wow [ g ol lelh

<1



2

Problem 11.6: We find that
(D(log |2]) ¢) = —(log |z] ') = — /R log 2] ¢'(¢) dx
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Partial integrations yield

— (oglol ) = i {los(-e)e @5, — [ Lpla) d+

—00

log () ()] + / " () da)
= (PV(1/2), @) + lim {log(e) ((c) — w(~¢))}

Since
£

() — pl—2)| = ' | &

—€

< 2¢||p

1,0

and lim{eloge} = 0, we find that lim {log(e)(¢(e) — ¢(—€))} = 0.
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Problem 11.7: First prove that z-§(z) = 0 and that - PV(1/z) = 1 (using the regular rules for
the product between a polynomial and a Schwartz function). Suppose that - is distributive and
can pair any two distributions. Then on the one hand we would have

d(z)-x-PV(1l/x) =6(x) - (x-PV(1/z)) =6(z) - 1 = d(x).
But we would also have
0(x) - x-PV(l/z) = (x-d(x))-PV(1/x) =0-PV(1/x) = 0.

This is a contradiction.

Problem 11.8: Fix ¢ € S. Set a = [ ¢, and define
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Obviously, ¢ € C*°, and
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Moreover, we find that if n > 1, then
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It remains to prove that for any k,
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First consider x < 0. Then for any k, we have
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To prove the corresponding estimate for x > 0, we use that since
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we can also express 1 as

P(x) =— /Oo(go(z) — aw(z)) dz.

Then proceed as in the bound for x < 0.
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So D f = g. (Note that the value of g(0) is irrelevant, any finite value can be assigned.) Further-
more,

where
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Problem 2: Assume that f satisfies the given assumptions. We will prove that for any « and k,
there exists a number C' and a finite integer N such that
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This immediately proves both that f ¢ € &, and that f ¢, — f ¢ whenever ¢, — ¢ in S.

Fix o and k. Then
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Now using that for each v there exist finite numbers IV, and C, such that
07 f(2)] < Cy(1+ |2?)™/?
we obtain
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Problem 3: Define for n =1,2,3,..., the functions
1 T € [n - 4%, n] ,
Xn(2) = { 0 otherwise,

and set -
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Now (2) clearly holds for any k. To prove (3) note that for any given k, we have
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