Hints for homework set 8 — APPM5450, Spring 2017
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Proving (1) is simple:
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For (2) we need to work a bit more (unless I overlook a simpler solution)
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First we bound |Si|. Note that when |z| > /¢, we have
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In bounding S5 we use that
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Problem 11.6: We find that

(D(log|]) @) = —({log |z] &) = - /R log |z| /() dz
= _;i_rf(l) [/_: log(—z)¢'(x) dx + /:O log(z)¢' (z) dz| .

Now simply perform partial integration in each term separately.

Problem 11.7: First prove that z-J(z) = 0 and that - PV(1/z) = 1 (using the regular rules for
the product between a polynomial and a Schwartz function). Suppose that - is distributive and
can pair any two distributions. Then on the one hand we would have

O(z) -z -PV(1l/z) =6(x) - (x-PV(1/z)) = () - 1 = 0(x).
But we would also have
0(x) - x-PV(l/z) = (x-d(z))-PV(1/x) =0-PV(1/x) = 0.

This is a contradiction.

Problem 11.8: Fix ¢ € S. Set a = [ ¢, and define
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To prove the corresponding estimate for x > 0, we use that since
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we can also express ¢ as

P(x) = — /oo(gp(z) — aw(z)) dz.

Then proceed as in the bound for x < 0.
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So D f = g. (Note that the value of g(0) is irrelevant, any finite value can be assigned.) To
compute D? f, simply differentiate g in the same way. You should find that D? f = 26.

where

Problem 2: This is a fairly straight-forward application of the definitions.

Problem 3: Define for n = 1,2,3,..., the functions

{1 :ce[n—%n,n],

Xn(x) = 0 otherwise,

and set -
@)= 32" xala).
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Now prove that both (2) and (3) hold for any k.



