
Homework set 7 — APPM5450, Spring 2017 — partial solutions

Problem 9.21: Suppose A ∈ B(H) is such that

Re(x, Ax) ≤ 2α‖x‖2.
Prove that the solution x = x(t) of x′(t) = Ax(t) satisfies

‖x(t)‖ ≤ eαt ‖x(0)‖.

Note: The book may have a typo — the bound seems off by a factor of two. Consider for instance
Ax = 2αx, then x(t) = e2αtx(0).

Solution: Set f(t) = ‖x(t)‖2. Then

f ′(t) =
d

dt
(x, x) = (x′, x) + (x, x′) = (Ax, x) + (x, Ax) = 2Re(x, Ax) ≤ 4α‖x(t)‖2 = 4αf(t).

By the Grönwall inequality, we find

‖x(t)‖2 = f(t) ≤ f(0) exp(

∫ t

0
4αds) = f(0) e4αt = ‖x(0)‖2 e4αt.

Extract the square root to obtain the desired bound.

Problem 9.22: Let A be compact and non-negative. Prove that there exists a unique compact
non-negative operator B such that B2 = A.

Solution: Since A is self-adjoint and compact, there is an ON-basis (ϕn)∞n=1 of eigen-vectors of A.
Aϕn = λn ϕn. We know |λn| → 0 since A is compact, and λn ≥ 0 since A is non-negative.

Existence: Set B =
∑∞

n=1

√
λn Pn where Pnx = (ϕn, x), ϕn. It is easily shown that B2 = A and

that B is compact and non-negative.

Observe that from the construction of B, it follows that if ψ is a vector such that Aψ = λψ, then
B ψ =

√
λψ.

Uniqueness: Suppose that C is a non-negative compact operator such that C2 = A. We need to
show that C = B, where B is the operator constructed above. Since C is compact and self-adjoint,
there is an ON-basis (ψn)∞n=1 such that C ψn = µn ψn. Now observe that

Aψn = C2 ψn = C (µn ψn) = µ2nψn

so ψn is an eigenvector of A with eigenvalue µ2n. It follows that B ψn =
√
µ2n ψn = µn ψn = C ψn.

(We know that
√
µ2n = µn since C must be non-negative, which implies that µn ≥ 0.)
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Problem 1: Consider the Hilbert space H = Cn. Let A ∈ B(H), let (e(j))nj=1 be the canonical
basis, and let A have the representation

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


in the canonical basis. We define the Hilbert-Schmidt norm of A as

‖A‖HS =

 n∑
i,j=1

|aij |2
1/2

.

(a) Let (ϕ(j))nj=1 be any ON-basis for H. Show that ‖A‖2HS =

n∑
j=1

‖Aϕ(j)‖2.

(b) Show that ‖A‖ ≤ ‖A‖HS ≤
√
n‖A‖ for any A ∈ B(H).

(c) Find G,H ∈ B(H) such that ‖G‖HS = ‖G‖ and ‖H‖HS =
√
n‖H‖.

Solution:

(a) Let r(i) denote the i’th row of A. Then
n∑
j=1

‖Aϕ(j)‖2 =

n∑
j=1

n∑
i=1

‖(r(i), ϕ(j))‖2 = {Parseval} =

n∑
i=1

‖r(i)‖2 = ‖A‖2HS.

(b) For any x a simple application of Cauchy-Schwartz yields

‖Ax‖2 =
n∑
i=1

‖(r(i), x)‖2 ≤
n∑
i=1

‖r(i)‖2 ‖x‖2 = ‖A‖2HS‖x‖2.

It follows that ‖A‖ ≤ ‖A‖HS. Next, let i be such that ‖r(i)‖ = maxj ‖r(j)‖. Then

‖A‖2HS =
n∑
j=1

‖r(j)‖2 ≤ n ‖r(i)‖2 = n ‖A∗ ei‖2 ≤ n ‖A∗‖ = n ‖A‖,

where ei denotes the i’th canonical basis vector.

(c) For instance, let G be the matrix consisting of all ones. Then, the singular value decomposition
of G is G =

√
n g g∗, where g = (1, 1, 1, . . . , 1)/

√
n. Consequently, ‖G‖ =

√
n. It is a trivial

computation to shot that ‖G‖HS =
√
n.

Next, let H be the identity matrix. Then obviously ‖H‖ = 1 since ‖Hx‖ = ‖x‖ for any vector x.
But ‖H‖HS =

√
n.
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Problem 2: Let H be a separable Hilbert space, and let A ∈ B(H). Suppose that H has an

ON-basis (ϕ(j))∞j=1 such that
∞∑
j=1

‖Aϕ(j)‖2 <∞.

Prove that if (ψ(j))∞j=1 is any other ON-basis, then

∞∑
j=1

‖Aϕ(j)‖2 =
∞∑
j=1

‖Aψ(j)‖2.

Solution: Set
αji = (Aϕ(j), ψ(i)) = (ϕ(j), A∗ ψ(i))

and
βik = (A∗ ψ(i), ψ(k)) = (ψ(i), Aψ(k)).

The proof consists of four applications of Parseval:
∞∑
j=1

‖Aϕ(j)‖2 =

∞∑
j=1

∞∑
i=1

|αji|2 =

∞∑
i=1

‖A∗ ψ(i)‖2 =

∞∑
i=1

∞∑
k=1

|βik|2 =

∞∑
k=1

‖Aψ(k)‖2.

Note that the interchanges of summation order are permissible as all terms are non-negative.
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Problem 3: Consider the linear space L = R2. Define for x = (x1, x2) ∈ L the seminorms

p1(x) = |x1|, p2(x) = |x2|.
Construct for x ∈ L, j ∈ {1, 2}, and ε ∈ (0,∞), the sets

Bx,j,ε = {y ∈ L : pjj(x− y) < ε}.
Describe these sets geometrically. What is the topology generated by the collection of semi-norms
{p1}? Is it Hausdorff? What is the topology generated by the collection of semi-norms {p1, p2}?
Is it Hausdorff?

Solution:

For x = (x1, x2), the set Bx,1,ε is a vertical strip of width 2ε centered around x1. The set Bx,2,ε is
a horizontal strip of width 2ε centered around x2.

The topology T1 generated by {p1} is the topology on the real line. In other words, Ω ∈ T1
iff Ω = Ω1 × R where Ω1 is an open set on the line. This topology is not Hausdorff. For a
counter-example, set x = (0, 0) and y = (0, 1). Then if Ω ∈ T1 we have

x ∈ Ω ⇔ y ∈ Ω.

As far as T1 is concerned, the points x and y are not distinct.

The topology generated by {p1, p2} has as its base B intersections of open sets in T1 and T2. This
means that B consists of all open rectangles in the plane. These generate the standard topology
on R2, which is Hausdorff.


