APPM5450 — Applied Analysis: Section exam 2

8:30 – 9:50, March 19, 2014. Closed books.

Problem 1: (12p) Let A be a self-adjoint bounded compact linear operator on a separable Hilbert space H. Which statements are necessarily true (no motivation required):

- (a) H has an ON-basis of eigenvectors of A.
- (b) If $(e_n)_{n=1}^{\infty}$ is an ON-sequence, then $\lim_{n\to\infty} ||A e_n|| = 0$.
- (c) For any $\lambda \in \mathbb{C}$, the subspace $\ker(A \lambda I)$ is necessarily finite dimensional.
- (d) $\sigma_c(A) = \emptyset$.
- (e) $\sigma_{\rm r}(A) = \emptyset$.
- (f) |A| is necessarily an eigenvalue of A.

Problem 2: (12p) Let P be a projection on a Hilbert space H. Which of the following statements are necessarily correct (no motivation required):

- (a) The spectral radius r(P) is either precisely zero or precisely one.
- (b) $\sigma(P) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$
- (c) $\sigma(P) \subseteq \mathbb{R}$.
- (d) If P is orthogonal, then $\sigma(P) \subseteq \{0, 1\}$.
- (e) If ||Px|| = ||x|| for every $x \in H$, then P is necessarily the identity.
- (f) If there exist $x \in \operatorname{ran}(P)$ and $y \in \ker(P)$ such that $\langle x, y \rangle \neq 0$, then ||P|| > 1.

Problem 3: (25p) Let H be a Hilbert space, and let A be a bounded linear operator on H, so that $A \in \mathcal{B}(H)$.

- (a) Define the resolvent set $\rho(A)$.
- (b) Prove that $\rho(A)$ is an open set.

Problem 4: (25p) Define a map $T: \mathcal{S}(\mathbb{R}) \to \mathbb{C}$ via

$$T(\varphi) = \lim_{\varepsilon \searrow 0} \left(\int_{-\infty}^{-\varepsilon} \frac{1}{x} \varphi(x) \, dx + \int_{\varepsilon}^{\infty} \frac{1}{x} \varphi(x) \, dx \right).$$

Prove that T is a continuous functional on S. (You do not need to prove linearity.) What can you say about the order of T?

Note: Recall that the *order* of a distribution is the lowest number m for which a bound of the form $|T(\varphi)| \leq C \sum_{\ell \leq k} \sum_{|\alpha| \leq m} ||\varphi||_{\ell,\alpha}$ holds.

Problem 5: (24p) Consider the Hilbert space $H = L^2(\mathbb{R})$. For this problem, we define H as the closure of the set of all compactly supported smooth functions on \mathbb{R} under the norm

$$||u|| = \left(\int_{-\infty}^{\infty} |u(x)|^2 dx\right)^{1/2}.$$

Which of the following sequences converge weakly in H? Motive your answers briefly.

(a)
$$(u_n)_{n=1}^{\infty}$$
 where $u_n(x) = \begin{cases} 1 - |x - n|, & \text{for } x \in [n - 1, n + 1], \\ 0, & \text{for } x \in (-\infty, n - 1) \cup (n + 1, \infty). \end{cases}$

(b)
$$(v_n)_{n=1}^{\infty}$$
 where $v_n(x) = \sin(n x) e^{-x^2}$.

(c)
$$(w_n)_{n=1}^{\infty}$$
 where $w_n(x) = \begin{cases} 1 - |x/n - 1| & \text{for } x \in [0, 2n] \\ 0 & \text{for } x \in (-\infty, 0) \cup (2n, \infty). \end{cases}$