Solutions for Homework 9 — APPM5450 — Spring 2013
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Fix a ¢ € §. You need to prove that
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Proving (1) is simple:
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For (2) we need to work a bit more (unless I overlook a simpler solution)
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First we bound |S1|. Note that when |z| > /¢, we have
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Consequently,
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In bounding S5 we use that
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Problem 11.6: We find that
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Partial integrations yield
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Problem 11.7: First prove that z-§(z) = 0 and that - PV(1/z) = 1 (using the regular rules for
the product between a polynomial and a Schwartz function). Suppose that - is distributive and
can pair any two distributions. Then on the one hand we would have

d(z)-x-PV(1l/x) =d(x) - (- PV(1/z)) =d0(z) - 1 = d(x).
But we would also have
O(x) -x-PV(l/z) = (x-d(x))-PV(1/x) =0-PV(1/x) = 0.

This is a contradiction.

Problem 11.8: Fix ¢ € S. Set a = [ ¢, and define
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Moreover, we find that if n > 1, then
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It remains to prove that for any k,
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First consider x < 0. Then for any k, we have
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To prove the corresponding estimate for x > 0, we use that since
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we can also express 1 as

P(x) = — /Oo(go(z) — aw(z)) dz.

Then proceed as in the bound for x < 0.
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So D f = g. (Note that the value of g(0) is irrelevant, any finite value can be assigned.) Further-
more,

where
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Problem 2: Assume that f satisfies the given assumptions. We will prove that for any « and k,
there exists a number C and a finite integer N such that
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This immediately proves both that f ¢ € &, and that f ¢, — f ¢ whenever ¢, — ¢ in S.

Fix o and k. Then
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Now using that for each v there exist finite numbers N, and C, such that
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we obtain
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Problem 3: Define for n =1,2,3,..., the functions
1 T € [n - 4%, n] ,
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and set -
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Now (2) clearly holds for any k. To prove (3) note that for any given k, we have

/u+mWW W—Z/ (1+ 22| f ()| de

) n 4
<> [ aras= Y e < o,
n—4-"n

n=1 - n=1



