
Applied Analysis (APPM 5450): Midterm 3 — Solutions
8.30am – 9.50am, April 18, 2011. Closed books.

Problem 1: In this problem, X denotes a set, and A denotes a σ-algebra on X.

(a) State the definition of a measure µ on (X, A).

(b) Let (Ωj)
∞
j=1 denote a sequence in A such that µ(Ω1) < ∞, and

Ω1 ⊇ Ω2 ⊇ Ω3 ⊇ . . . .

Set

Ω =

∞∩
j=1

Ωj .

Prove that the sequence (µ(Ωj))
∞
j=1 is convergent, and that µ(Ω) = lim

j→∞
µ(Ωj).

(c) Given an example of a measure space (X,µ) and measurable sets (Ωj)
∞
j=1 such that

Ω1 ⊇ Ω2 ⊇ Ω3 ⊇ . . .

but lim
j→∞

µ(Ωj) ̸= µ

 ∞∩
j=1

Ωj

.

Solution: We use “d” to denote disjoint unions.

(b) Set An = Ωn\Ωn+1. Then Ωn = An d Ωn+1 and so

µ(Ωn) = µ(An d Ωn+1) = µ(An) + µ(Ωn+1) ≥ µ(Ωn+1).

Since (µ(Ωn))
∞
n=1 is a decreasing sequence, it must have a limit. To compute the limit, we note that

∞ > µ(Ω1) = µ

(
Ω d

( ∞∪
m=1

Am

))
= µ(Ω) +

∞∑
m=1

µ(Am).

It follows that
∑∞

m=1 µ(Am) is finite, which implies that limn→∞
∑∞

m=n µ(Am) = 0. Finally,

lim
n→∞

µ(Ωn) = lim
n→∞

µ

(
Ω d

( ∞∪
m=n

Am

))
= lim

n→∞

(
µ(Ω) +

∞∑
m=n

µ(Am)

)
= µ(Ω).

(c) Consider X = R2 with standard Lebesgue measure. Set Ωn = {x = (x1, x2) : |x2| < 1/n}.

Then µ(Ωn) = ∞ for all n, but Ω =
∞∩
n=1

Ωn is the x1-axis, which has measure zero.

Note: The different parts are worth:
(a) 5p
(b) 10p
(c) 10p



Problem 2: Let (X,A, µ) be a measure space, and let f : X → R be a measurable real-valued
function.

(a) State the definition of a Lebesgue integral of f over X.

(b) Consider the special case of X = R with A being the power set on R and

µ(Ω) =
∑

j∈Ω∩N
2j ,

where N = {1, 2, 3, . . . } is the set of natural numbers. Is µ finite, σ-finite, or neither?

(c) With (X,A, µ) as in (b), and with f(x) = e−x, evaluate the integral∫
R
f dµ.

Solution:

(b) We have

µ(R) =
∑

j∈R∩N
2j =

∑
j∈N

2j =

∞∑
j=1

2j = ∞

so the measure is not finite. However, if we set Ωj = (j − 1/2, j + 1/2], then {Ωj}j∈Z is a disjoint

cover of R, and µ(Ωj) is finite
1 for all j so the measure is σ-finite.

(c) ∫
R
f dµ =

∞∑
j=1

2j f(j) =

∞∑
j=1

2j e−j =

∞∑
j=1

(
2

e

)j

=
2/e

1− 2/e
.

Note: The answer to (c) does not need to be motivated in any detail deeper than that given above.
However, to evaluate the integral directly from the definition, first set g = f χN. Then f = g a.e. so∫
f =

∫
g. Now set

φN (x) =
N∑

n=1

e−j χ{j}(x).

Then φN are simple functions such that φN ↗ g. Finally∫
φN =

N∑
j=1

e−j 2j ↗
∞∑
j=1

e−j 2j =
2/e

1− 2/e
.

Note: The different parts are worth:
(a) 9p
(b) 8p
(c) 8p

1To be precise, µ(Ωj) = 0 if j ≤ 0 and µ(Ωj) = 2j if j ∈ N.



Problem 3: No motivation required for parts (a) and (b).

(a) Let δ ∈ S∗(R) denote the Dirac δ-function. What is δ̂ = Fδ?

(b) Let τn denote a shift operator on S(R) defined via [τnφ](x) = φ(x−n) and generalize to a shift

operator on S∗(R) via ⟨τn T, φ⟩ = ⟨T, τ−n φ⟩ as usual. Set TN =
∑N

n=−N τn δ. What is the Fourier

transform T̂N?

(c) Prove that the sequence (TN )∞N=1 converges in S∗(R).

(d) Prove that the sequence (T̂N )∞N=1 converges in S∗(R).

5p extra credit: State the limit point of (T̂N )∞N=1. No motivation required.

Solution:

(a) ⟨δ̂, φ⟩ = ⟨δ, φ̂⟩ = φ̂(0) =

∫ ∞

−∞

1√
2π

φ(x) dx so δ̂ = 1√
2π
.

(b) Recall that [F(τnT )](t) = e−int T̂ (t) so

T̂N =
N∑

n=−N

e−int 1√
2π

=
1√
2π

ei(N+1)t − e−iNt

eit − 1
=

1√
2π

ei(N+1/2)t − e−i(N+1/2)t

eit/2 − e−it/2
=

1√
2π

sin((N + 1/2)t)

sin(t/2)
.

(c) Fix φ ∈ S(R). We need to prove that the sequence (TN (φ))∞N=1 converges. Observe that

|φ(x)| ≤ 1

1 + x2
sup
x

(
(1 + x2) |φ(x)|

)
=

1

1 + x2
||φ||0,2.

Now

TN (φ) =

N∑
n=−N

[τnδ](φ) =

N∑
n=−N

φ(n).

The sum is convergent since |φ(n)| ≤ C/(1 + n2) and
∑N

n=−N 1/(1 + n2) < ∞.

(d) Since F is a continuous map from S∗ to S∗, the fact that (TN ) converges immediately implies
that (FTN ) converges.

Alternative solution to (d):

T̂N (φ) = TN (φ̂) =

N∑
n=−N

φ̂(n),

and then convergence is proved as in (c) since φ̂ ∈ S.

Note: The different parts are worth:
(a) 6p
(b) 6p
(c) 7p
(d) 6p



Comments on the extra credit problem: The distribution T is quite well-known in signal processing
and is often called a Dirac comb. Its Fourier transform is also a Dirac comb:

(1) T̂ (t) =
√
2π

∞∑
n=−∞

δ(t− 2πn).

To see this informally (and this is not a rigorous argument!) note that T is a periodic function
with period 1, so we can write T (x) =

∑∞
n=−∞ αn e

i2πnx. Since {ei2πnx}n∈Z is an ON-basis on

L2(−1/2, 1/2) we find αn =
∫ 1/2
−1/2 T (x) e

−i2πnx dx = 1, and so

T (x) =

∞∑
n=−∞

ei2πnx.

Take the Fourier transform “under the sum” to obtain (1). (Note [Fei2πnx](t) =
√
2π δ(t− 2πn).)

From (1) we obtain the important Poisson summation formula,
∞∑

n=−∞
φ(n) = ⟨T, φ⟩ = ⟨F∗FT, φ⟩ = ⟨T̂ , φ̌⟩ =

√
2π

∞∑
n=−∞

φ̌(2πn) =
√
2π

∞∑
n=−∞

φ̂(2πn).

There is much more on this important and interesting topic in Section 11.11 of the text book.

To illustrate the limit graphically, we plot T̂N for N = 5 and N = 10 below:
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Problem 4: Let r be a real number, and define for x ∈ R\{0} the functions

fr(x) = (1 + |x|2)r, gr(x) = 1− |x|r.
Furthermore, set

fr(0) = 1, gr(0) =

{
1 when r > 0,
0 when r ≤ 0.

The figure below illustrates the definitions:
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(a) For which r ∈ R is it the case that fr ∈ C0(R)?

(b) For which r ∈ R is it the case that gr ∈ C0(R)?

(c) For which r ∈ R is it the case that f̂r ∈ C0(R)?

(d) For which r ∈ R is it the case that ĝr ∈ C0(R)?

(e) For which r ∈ R is it the case that fr ∈ S∗(R)?

(f) For which r ∈ R is it the case that gr ∈ S∗(R)?

(g) For which r ∈ R is it the case that f̂r ∈ S∗(R)?

(h) For which r ∈ R is it the case that ĝr ∈ S∗(R)?

(i) For which r ∈ R and s ≥ 0 is it the case that f̂r ∈ Hs(R)?

(j) For which r ∈ R and s ≥ 0 is it the case that ĝr ∈ Hs(R)?

(Every correct answer will get full credit regardless of whether a motivation is provided.)

5p extra credit: Specify how your answers would change if you consider fr and gr as functions on

Rd rather than as functions on R.



Solution to Problem 4:

(a) fr ∈ C0 if r < 0.

fr is continuous for all r, and decays iff r < 0.

(b) gr ∈ C0 if r ≥ 0.

gr decays for all r (super -fast!), and is continuous iff r ≥ 0.

(c) f̂r ∈ C0 if r < −1/2.

By the Riemann-Lebesgue lemma, f̂r ∈ C0 if fr ∈ L1. Now
∫
fr < ∞ iff 2r < −1.

(d) ĝr ∈ C0 if r > −1.

By the Riemann-Lebesgue lemma, ĝr ∈ C0 if gr ∈ L1. Now
∫
gr < ∞ iff r > −1.

(e) For all r.
Note that for any r, we have (1 + x2)−r−1 fr = (1 + x2)−1 ∈ L1 so fr is tempered.

(f) For r > −1.

Note that
∫
gr = ∞ if r ≤ −1. Conversely, if r > −1, then gr ∈ L1 ⊂ S∗.

(Note that decay factors do not help here; local integrability is the issue.)

(g) For all r.

Note that F : S∗ → S∗ is an isomorphism so f̂r ∈ S∗ iff fr ∈ S∗. Therefore, the answer must be
identical to the answer in (e).

(h) For all r > −1.
Note that F : S∗ → S∗ is an isomorphism so ĝr ∈ S∗ iff gr ∈ S∗. Therefore, the answer must be
identical to the answer in (f).

(i) f̂r ∈ Hs iff 2s+ 4r < −1 (and s ≥ 0).

Note that f̂r ∈ Hs iff (1 + x2)s |fr|2 ∈ L1 (by definition). Now (1 + x2)s |fr(x)|2 = (1 + x2)s+2r

which is integrable iff 2s+ 4r < −1.

(j) ĝr ∈ Hs iff r > −1/2 (and s ≥ 0).

Note that ĝr ∈ Hs iff (1 + x2)s |gr|2 ∈ L1 (by definition). Since gr has compact support, the decay
factor is in this case irrelevant, so all that matters is whether |gr|2 ∈ L1. This is true iff 2r > −1.

Extra credit problems: The answers that change are the ones that depend on integrability. We find:
(c) r < −d/2.
(d) r > −d.
(f) r > −d.
(h) r > −d.
(i) 2s+ 4r < −d
(j) r > −d/2

Grading guide: Each correct sub-problem is worth 2.5p (with the total rounded up to the nearest
integer).


