
Applied Analysis (APPM 5450): Midterm 1 — Solutions
8.30am – 9.50am, Feb. 14, 2011. Closed books.

Problem 1: (21p) All operators in this problem are bounded linear operators on a Hilbert space.
Which statements are necessarily true? No motivation required.

(a) Every bounded sequence in a Hilbert space has a weakly convergent subsequence.

(b) If A and B are self-adjoint operators, then A+B is self-adjoint.

(c) If A and B are self-adjoint operators, then AB is self-adjoint.

(d) If A and B are unitary operators, then A+B is unitary.

(e) If A and B are unitary operators, then AB is unitary.

(f) If A is skew-symmetric, then the operator B =
∑∞

n=0
An

n! is unitary.

(g) If A is an isometric operator, then ran(A) =
(
ker(A∗)

)⊥
.

Solution:

(a) TRUE. (Observe that the unit ball in a Hilbert space is weakly compact.)

(b) TRUE. (A simple calculation will demonstrate this.)

(c) FALSE. (Counter example: H = C2, A =

[
1 1
1 1

]
, B =

[
1 0
0 0

]
, AB =

[
1 0
1 0

]
.)

(d) FALSE. (Counter example: A = I, B = I, A+B = 2I.)

(e) TRUE. (Note that for any x, y ∈ H, we have ⟨ABx, ABy⟩ = ⟨Bx, By⟩ = ⟨x, y⟩ where we first
used that A is unitary, and then used that B is unitary. So AB preserves the inner product (and
is therefore 1-to-1). To prove that it is onto, consider z ∈ H. Since B is onto, there is a y ∈ H
such that z = By. Since A is onto, there is an x ∈ H such that y = Ax. Therefore, z = ABx.)

(f) TRUE. (You can prove that B∗ = B−1 by simply taking the adjoint of the definition.)

(g) TRUE. (Note that when A is an isometry, ran(A) is necessarily closed.)



Problem 2: (29p) Let H1 denote the Hilbert space obtained by taking the completion of the set
P of trigonometric polynomials with respect to the norm induced by the inner product

⟨u, v⟩1 =
∫ π

−π
u(x) v(x) dx

and let H2 denote the Hilbert space induced by the inner product

⟨u, v⟩2 =
∫ π

−π
u(x) v(x) (1− cos(x)) dx.

(a) Do the spaces H1 and H2 contain the same [equivalence classes of] functions?
(b) Does there exist a unitary map between H1 and H2?
(c) For which real numbers α is it the case that the sequence (φn)

∞
n=1 where φn = nα χ(−1/n, 1/n)

converges in norm in H1? Is the answer different if you consider weak convergence?
(d) Repeat question (c), but now do the exercise in H2.
(e) Set ρn(x) = sin(nx). Does (ρn)

∞
n=1 converge in either H1 or H2? Weakly? In norm?

Solution: First observe that 1− cosx = 2
(
sin(x/2)

)2 ∼ (1/2)x2 as x → 0. Also note that for both
i = 1 and i = 2 we know that P is dense in Hi so a sequence wn ⇀ w in Hi iff (a) supn ||wn||i < ∞
and (b) ⟨wn, u⟩i → ⟨w, u⟩i for all u ∈ P.

(a). No. Set u(x) = 1/x. Then ||u||21 =
∫ π
−π x

−2 dx = ∞ but ||u||22 =
∫ π
−π x

−22 (sin(x/2))2 dx ≤∫ π
−π(1/2) dx = π.

(b) Yes. H1 and H2 are both separable Hilbert spaces so they are unitarily equivalent. (You
can explicitly construct orthonormal bases for the two spaces by performing Gram-Schmidt with
respect to the two inner products to the sequence {1, cos(x), sinx, cos(2x), sin(2x), cos(3x), . . . }.)

Alternatively, you can prove that the map U : H2 → H1 with [U f ](x) =
√

1− cos(x) f(x) is an
isometric bijection.

(c) ||φn||21 =
∫ 1/n
−1/n n

2α dx = 2n2α−1. If α > 1/2 then the sequence is unbounded and can converge

neither weakly nor in norm. If α < 1/2 then φn → 0 in norm (and hence weakly as well).
For the case α = 1/2, observe (a) that the sequence is bounded, and (b) that for u ∈ P we

have |⟨φn, u⟩1| = |
∫ 1/n
−1/n n

1/2u(x) dx| ≤
(
supx |u(x)|

) ∫ 1/n
−1/n n

1/2 dx =
(
supx |u(x)|

)
2n−1/2 → 0 so

φn ⇀ 0.

(d) ||φn||22 = 2
∫ 1/n
0 n2α(1 − cosx) dx = 2n2α

(
(1/n) − sin(1/n)

)
∼ n2α−3. If α > 3/2 then (φn)

is unbounded and can converge neither weakly nor in norm. If α < 3/2 then φn → 0 in norm
(and hence weakly as well). When α = 3/2, observe (a) that the sequence is bounded, and (b)

that for u ∈ P we have |⟨φn, u⟩2| ≤
∫ 1/n
−1/n n

3/2|u(x)|(1/2)x2 dx ≤
(
supx |u(x)|

) ∫ 1/n
0 n3/2 x2 dx =(

supx |u(x)|
)
(1/3)n−3/2 → 0 so φn ⇀ 0.

(e) First observe that (ρn) is bounded in both spaces. Next fix a function v ∈ P. We have

(1)

∣∣∣∣∫ π

−π
sin(nx) v(x) dx

∣∣∣∣ = ∣∣∣∣ 1n
∫ π

−π
cos(nx) v′(x) dx

∣∣∣∣ ≤ 1

n
||v′||L1(T) → 0 as n → 0

since the boundary conditions in the partial integration vanish due to periodicity. This immediately
shows that ⟨ρn, v⟩1 → 0 for all v ∈ P and therefore ρn ⇀ 0 in H1. We also have ⟨ρn, u⟩2 → 0 for
all u ∈ P since (1) holds for v(x) = u(x) (1 − cosx). Therefore ρn ⇀ 0 in H2. To see that (ρn)
cannot converge in norm to zero, simply note that ||ρn||21 = π and

||ρn||22 =
∫ π

−π
sin2(nx)(1−cos(x)) dx =

∫ π

−π

1− cos(2nx)

2
(1−cos(x)) dx =

∫ π

−π

1− cos(2nx)

2
dx = π.



Problem 3: (20p) Set f(t) = |t| for −π ≤ t < π and extend f to be a 2π-periodic function. Is it
the case that f ∈ Hk(T) for any k ≥ 0?

Hint: The Sobolev embedding theorem should very quickly provide at least a partial answer.

Solution: First we construct the Fourier expansion of f . Since f is real and even, its expansion
consists of cosines only:

f(x) = β0 +

∞∑
n=1

βn cos(nx).

The constant is the average of f so β0 = π/2. To determine βn multiply both sides by cos(nx)
and integrate: ∫ π

−π
f(x) cos(nx) dx = βn

∫ π

−π

(
cos(nx)

)2
dx.

We have ∫ π

−π

(
cos(nx)

)2
dx =

∫ π

−π

1 + cos(2nx)

2
dx = π,

and∫ π

−π
f(x) cos(nx) dx = 2

∫ π

0
x cos(nx) dx = 2

[
1

n
x sin(nx)

]π
0

− 2

∫ π

0

1

n
sin(nx) dx

= 2

[
1

n2
cos(nx)

]π
0

=
2

n2

(
cos(nπ)− 1

)
=

2

n2

(
(−1)n − 1

)
.

So

f(x) =
π

2
− 4

π

∑
n=1, 3, 5, ...

1

n2
cos(nx) =

∑
n∈Z

αn
einx√
2π

where

αn =

 π3/2 2−1/2 n = 0
0 n = ±2, ±4, ±6, . . .

25/2 π−1/2 n−2 n = ±1, ±3, ±5, . . .

We find that

||f ||2Hk =
π3

2
+

∑
n odd

|n|2k 32

π n4

The sum is convergent if and only if 2k − 4 < −1, which is to say if k < 3/2.

Answer: f ∈ Hk if and only if k < 3/2.

Partial answer alluded to in hint: Observe that f /∈ C1. If k > 3/2, then Hk ⊆ C1, and since
f /∈ C1, it follows that f /∈ Hk when k > 3/2.



Problem 4: (30p) Suppose that P is a projection on a Hilbert space H. Prove that the following
are equivalent:

(i) P is orthogonal, i.e. ker(P ) = ran(P )⊥.

(ii) P is self-adjoint, i.e. ⟨P x, y⟩ = ⟨x, P y⟩ ∀x, y.

(iii) ||P || = 0 or 1.

Solution:

(a) ⇒ (b): Assume ker(P ) = ran(P )⊥. Pick any x, y ∈ H. Then

(Px, y) = ( Px︸︷︷︸
∈ran(P )

, Py + (I − P )y︸ ︷︷ ︸
∈ker(P )

) = (Px, Py) = (Px+ (I − P )x, Py) = (x, Py).

(b) ⇒ (c): Assume that (b) holds. Then for any x,

||Px||2 = (Px, Px) = (P 2x, x) = (Px, x) ≤ ||Px|| ||x||,
so ||P || ≤ 1. Obviously it is possible for ||P || to be zero. We need to prove that the only possible
non-zero value of ||P || is one. To this end, note that if P ̸= 0, then ran(P ) ̸= {0}. Now observe
that if x is a non-zero element in ran(P ), we have Px = x so ||P || ≥ 1.

(c) ⇒ (a): Assume that (a) does not hold. Then there exist x ∈ ran(P ) and y ∈ ker(P ) such that

(x, y) ̸= 0. Set α = (x, y)/|(x, y)| and z = αy. Then z ∈ ker(P ) and (x, z) = |(x, y)| ∈ R+. Set

w = x− z t.

Then ||Pw|| = ||x||, and
||w||2 = ||x||2 − 2 t (x, z) + t2 ||z||2.

For small t, we see that ||w|| < ||x|| = ||Pw|| so ||P || > 1.


