Applied Analysis (APPM 5450): Midterm 1 — Solutions
8.30am — 9.50am, Feb. 14, 2011. Closed books.

Problem 1: (21p) All operators in this problem are bounded linear operators on a Hilbert space.
Which statements are necessarily true? No motivation required.

a) Every bounded sequence in a Hilbert space has a weakly convergent subsequence.

(a)
(b) If A and B are self-adjoint operators, then A + B is self-adjoint.
(c¢) If A and B are self-adjoint operators, then A B is self-adjoint.
(d) If A and B are unitary operators, then A + B is unitary.

(e) If A and B are unitary operators, then A B is unitary.

f) If A is skew-symmetric, then the operator B = $°°° A ig unitary.
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(g) If A is an isometric operator, then ran(A) = (ker(A*))L.

Solution:
(a) TRUE. (Observe that the unit ball in a Hilbert space is weakly compact.)

(b) TRUE. (A simple calculation will demonstrate this.)
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(c) FALSE. (Counterexamnple.H—(C,A—[1 1 , B= 0 0 , AB = 1o )

(d) FALSE. (Counter example: A=1, B=1, A+ B=2I.)

(e) TRUE. (Note that for any =,y € H, we have (ABz, ABy) = (Bx, By) = (z, y) where we first
used that A is unitary, and then used that B is unitary. So AB preserves the inner product (and
is therefore 1-to-1). To prove that it is onto, consider z € H. Since B is onto, there is a y € H
such that z = By. Since A is onto, there is an « € H such that y = Az. Therefore, z = ABxz.)

(f) TRUE. (You can prove that B* = B~! by simply taking the adjoint of the definition.)

(g) TRUE. (Note that when A is an isometry, ran(A) is necessarily closed.)



Problem 2: (29p) Let H; denote the Hilbert space obtained by taking the completion of the set
P of trigonometric polynomials with respect to the norm induced by the inner product

(o= [ @)oo do
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and let Hy denote the Hilbert space induced by the inner product

(u, v)g = /7T w(x) v(z) (1 — cos(z)) d.

—T
(a) Do the spaces Hy and Hj contain the same [equivalence classes of] functions?
(b) Does there exist a unitary map between H; and Hy?
(c) For which real numbers « is it the case that the sequence (¢n);2; where vn, = n% X(_1/n, 1/n)
converges in norm in Hy? Is the answer different if you consider weak convergence?
(d) Repeat question (c), but now do the exercise in Hy.
(e) Set pp(x) = sin(nz). Does (p,)2, converge in either Hy or Ha? Weakly? In norm?

Solution: First observe that 1 — cosz = 2(s.in(:1c/2))2 ~ (1/2)z? as x — 0. Also note that for both
i =1 and i = 2 we know that P is dense in H; so a sequence w,, — w in H; iff (a) sup,, ||wn]||; < 0o
and (b) (wp,u); = (w,u); for all u € P.

(a). No. Set u(z) = 1/xz. Then |[ul} = [T a72dx = oo but |[ul3 = [T 2722 (sin(x/2))? dz <
[T (1/2)dx = .

(b) Yes. Hy and Hjy are both separable Hilbert spaces so they are unitarily equivalent. (You
can explicitly construct orthonormal bases for the two spaces by performing Gram-Schmidt with

respect to the two inner products to the sequence {1, cos(z), sin z, cos(2z), sin(2z), cos(3z), ... }.)
Alternatively, you can prove that the map U : Hy — Hy with [U f](x) = /1 — cos(x) f(z) is an

isometric bijection.

(©) llenll? = f_1{7n n?*dz = 2n%*~ 1 If a > 1/2 then the sequence is unbounded and can converge
neither weakly nor in norm. If @ < 1/2 then ¢, — 0 in norm (and hence weakly as well).
For the case a = 1/2, observe (a) that the sequence is bounded, and (b) that for u € P we

have [{gn, bl = | 117, n2u(e) do] < (sup, fua)]) [, 07 do = (sup, [a(@)]) 20772 = 0 50
n — 0.

(d) ||enll3 = 2f1/n 2%(1 — cosz) dz = 2n** ((1/n) —sin(1/n)) ~ n?*=3. If o > 3/2 then (¢,)
is unbounded and can converge neither weakly nor in norm. If a < 3/2 then ¢, — 0 in norm
(and hence weakly as Well) When a = 3/2, observe (a) that the sequence is bounded, and (b)

that for u € P we have [(pn, u)z| < f%’;n n32|u(z)|(1/2)2z? dx < (sup,, |u(z)]) Ol/n n3/2 22 dx =

(sup, |u(z)|) (1/3) n=3/2 =0 so ¢, — 0.

(e) First observe that (p,) is bounded in both spaces. Next fix a function v € P. We have

(1) / " sin(na) v(x) dz % / " cos(nz) o/ (z) da

since the boundary conditions in the partial integration vanish due to periodicity. This immediately
shows that (p,,v);1 — 0 for all v € P and therefore p, — 0 in H;. We also have (p,,u)2 — 0 for
all u € P since (1) holds for v(z) = u(x) (1 — cosz). Therefore p, — 0 in Hy. To see that (pn)
cannot converge in norm to zero, simply note that ||p,||? = 7 and

llonll3 = /_7r sin?(nz)(1—cos(z)) do = /_7r 1_(:028(2”%)(1—COS($)) dx = /_7r 1—6028(271.’13) dx = .

_—Hv||L1 -0 asn—0




Problem 3: (20p) Set f(t) = [t| for —m < ¢ < 7 and extend f to be a 27-periodic function. Is it
the case that f € H*(T) for any k > 0?

Hint: The Sobolev embedding theorem should very quickly provide at least a partial answer.

Solution: First we construct the Fourier expansion of f. Since f is real and even, its expansion
consists of cosines only:

o0
f(z) = Po+ Z B cos(nx).
n=1
The constant is the average of f so By = 7/2. To determine §,, multiply both sides by cos(nx)

and integrate:
K

_W f(z) cos(nz) dx:Bn/ (cos(nac))zdx.

—T

/7r (COS(’I’LZL‘))le' = /7r HCO;(QTM) dx =,

We have

—T —T

and

i f(z)cos(nz) dx = 2 /ﬂ x cos(nx) dr = 2 [133 sin(naz)} . 2 /7r ! sin(nz) dx
—r 0 n 0

0 n

=2 [1 cos(na?)]7T = 3(cos(mr) -1) = 3((—1)" —1)
n? 0 n? n?
So A . o
T e
f(z) 5 n_lé;& w2 cos(nx) nze%an NeT
where
n3/29-1/2 n=>0
an=14 0 n =42, +4, +6, ...
5/27-1/2p=2 =41, 43, +5, ...
We find that

3
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The sum is convergent if and only if 2k — 4 < —1, which is to say if k < 3/2.

Answer: f € H* if and only if k < 3/2.

Partial answer alluded to in hint: Observe that f ¢ C'. If k > 3/2, then H* C C', and since
f ¢ C", it follows that f ¢ H* when k > 3/2.



Problem 4: (30p) Suppose that P is a projection on a Hilbert space H. Prove that the following
are equivalent:

(i) P is orthogonal, i.e. ker(P) = ran(P)> .
(ii) P is self-adjoint, i.e. (Px, y) = (x, Py) Vz,y.
(iii) ||P|| =0 or 1.

Solution:
(a) = (b): Assume ker(P) = ran(P)*. Pick any z,y € H. Then
(Pz,y) = ( Lz, , Py+( - P)y) = (Pz, Py) = (Pz+ (I — P)z, Py) = (z, Py).
~~ ———

eran(pP) cker(P)

b) = (c¢): Assume that (b) holds. Then for any z
(b) = (c) y .,
|Pz|]* = (Pz, Px) = (P?z, x) = (Pz, x) < ||Px|| ||x]],

so |[|P]| < 1. Obviously it is possible for ||P|| to be zero. We need to prove that the only possible
non-zero value of ||P|| is one. To this end, note that if P # 0, then ran(P) # {0}. Now observe
that if = is a non-zero element in ran(P), we have Pz = z so ||P|| > 1.

(c) = (a): Assume that (a) does not hold. Then there exist x € ran(P) and y € ker(P) such that

(z,y) #0. Set a = (z, y)/|(z, y)| and z = ay. Then z € ker(P) and (z, z) = |(z, y)| € R4. Set
w=x—zt.

Then ||Pw|| = ||x||, and
lwl? = [J2]|* = 2t (z, 2) + ¢ ||2]]*.
For small t, we see that ||w|| < ||z|| = ||[Pw]| so ||P|| > 1.



