Homework set 9 — APPM5450 Spring 2011 — Solutions/Hints
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Proving (1) is simple:
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For (2) we need to work a bit more (unless I overlook a simpler solution)
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First we bound |S;|. Note that when |z| > /e, we have
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In bounding S5 we use that
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Problem 11.6: We find that
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Partial integrations yield
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and hm{slog e} =0, we find that hm {log ( —e))} =0.

Problem 11.7: First prove that z-§(z) = 0 and that - PV(1/z) = 1 (using the regular rules for
the product between a polynomial and a Schwartz function). Suppose that - is distributive and
can pair any two distributions. Then on the one hand we would have
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But we would also have
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This is a contradiction.

Problem 11.8: Fix ¢ € S. Set o = [ ¢, and define
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First consider x < 0. Then for any k, we have
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To prove the corresponding estimate for x > 0, we use that since
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we can also express 1) as
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Then proceed as in the bound for x < 0.
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So D f = g. (Note that the value of g(0) is irrelevant, any finite value can be assigned.) Further-

more,
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Problem 2: Assume that f satisfies the given assumptions. We will prove that for any « and k,
there exists a number C' and a finite integer N such that
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This immediately proves both that f ¢ € &, and that f ¢, — f ¢ whenever ¢, — ¢ in S.
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Problem 3: Define for n =1,2,3,..., the functions
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Now (2) clearly holds for any k. To prove (3) note that for any given k, we have
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