
Applied Analysis (APPM 5450): Midterm 1
8.30am – 9.50am, Feb. 15, 2010. Closed books.

Problem 1: (30p total, 5p per question) Let H denote a Hilbert space with an ON-basis (en)
∞
n=1.

Which of the following statements are necessarily true? No motivation required.

(a) en ⇀ 0.

(b) Suppose that x, xn ∈ H and lim
n→∞

(xn, em) = (x, em) for every m. Then xn ⇀ x.

(c) Suppose that P ∈ B(H) is such that P 2 = P and P ̸= 0. Then ||P || = 1 if and only if P ∗ = P .

(d) Suppose A ∈ B(H) is self-adjoint. Then C = exp(iA) is unitary.

(e) Suppose that A,B ∈ B(H), that A is coercive, and that B is positive. Then A+B is coercive.

(f) Suppose that A,B ∈ B(H), and that A is self-adjoint. Then E = BAB∗ is self-adjoint.

Solution (with unrequired motivations):

(a) True.

(b) False. You must also know that sup ||xn|| < ∞.

(c) True. P is a projection, and for a non-zero projection, we know that:

||P || = 1 ⇔ P = P ∗ ⇔ ran(P ) = ker(P )⊥.

(d) True.

(e) True. Suppose x ∈ H. Then there is a c > 0 such that (Ax, x) ≥ c||x||2. Then
((A+B)x, x) = (Ax, x)︸ ︷︷ ︸

≥c||x||2

+(Bx, x)︸ ︷︷ ︸
>0

≥ c||x||2.

(f) True. E∗ = (BAB∗)∗ = (B∗)∗A∗B∗ = BAB∗ = E.

Problem 2: (26p) Let T denote the one-dimensional torus, parameterized with the interval
I = (−π, π]. Set en(x) = einx/

√
2π, and let P denote the set of all finite linear combinations of

basis functions en, as usual. Let z denote a non-zero complex number and consider the PDE

(1)
∂u

∂t
= z

∂2u

∂x2
,

along with periodic boundary conditions, and with the initial condition

(2) u(x, 0) = f(x), x ∈ I.

(a) (10p) Construct the solution operator T (t) : P → P that maps a function f ∈ P to a function
u = T (t) f that solves (1) and (2).

(b) (8p) Suppose that t > 0. For which values of z can the solution operator T (t) be extended to
a bounded operator on L2(T)? (Recall that P is dense in L2(T).)

(c) (8p) Suppose that t > 0 and that z is such that T (t) is a bounded operator on L2(T). Suppose
that f ∈ L2(T). For which values of z can you guarantee that T (t) f ∈ C1(T)? Can you ever
guarantee that T (t) f ∈ C2(T)?



Solution: Suppose that f =

N∑
n=−N

cn en. Then we look for a solution of the form

u(x, t) =

N∑
n=−N

αn(t) en(x).

Inserting the Ansatz into the PDE (note that it is a finite sum, so differentiating inside the sum
is unproblematic), we find (since ∂2

xen = −n2 en) that

N∑
n=−N

α′
n(t) en(x) =

N∑
n=−N

−z n2 αn(t) en(x).

Using that αn(0) = cn, we find that the solution is

αn(t) = cn e
−z n2 t.

(a) Observing that if f =
∑

cn en, then cn = (en, f), we see that

T (t)f =

∞∑
n=−∞

(en f) e
−z n2 t en(x).

(b) Set w = Re(z). Then from Parseval, we find

||T (t)f ||2L2 =

∞∑
n=−∞

∣∣∣(en f) e−z n2 t
∣∣∣2 = ∞∑

n=−∞
e−2wn2 t |(en f)|2 .

If w ≥ 0, then e−2wn2 t ≤ 1, so ||T (t)f || ≤ ||f || and T (t) ∈ B(L2(T)). Conversely, if w < 0, then

||T (t)||B(L2(T)) ≥ ||T (t)en||L2(T) = e−2wn2 t → ∞, as n → ∞.

Answer: T (t) ∈ B(L2(T)) if and only if Re(z) ≥ 0.

(c) By the Sobolev embedding theorem, Hm(T) ⊆ Ck(T) whenever m > k + 1/2. We have

||T (t) f ||2Hm(T) =
∞∑

n=−∞
(1 + |n|2m)

∣∣e−z n2 t cn
∣∣2 = ∞∑

n=−∞
(1 + |n|2m)e−2wn2 t

∣∣cn∣∣2.
Set

C = sup
n∈Z

(1 + |n|2m) e−2wn2 t.

If w > 0, then C < ∞, so

||T (t) f ||2Hm(T) ≤ C

∞∑
n=−∞

∣∣cn∣∣2 = C ||f ||2L2(T).

We see that T (t) f ∈ Hm(T) for any m, and consequently that T (t) f ∈ Ck(T) for any k.

Answer: T (t)f ∈ Ck(T) for any k ≥ 0 whenever Re(z) > 0.

Note: Our analysis is inconclusive for the case Re(z) = 0. As it happens, T (t) f is not smooth in
this case, but you do not need to show that for a full credit.



Problem 3: (24p) Let H denote a Hilbert space.

(a) (8p) Suppose that U, T ∈ B(H), that U is unitary, and that ||T || = 1/3. Prove that A = U +T
is continuously invertible.

(b) (8p) Suppose that S ∈ B(H) and that S is skew-symmetric. Prove that ran(I + S) is closed.

(c) (8p) For the particular case of H = L2(I) with I = [−1, 1], give an example of a unitary
operator U ∈ B(H) and a skew-symmetric operator S ∈ B(H) such that ran(U + S) is not closed.

Solution:

(a) We observe that A = U (I + U∗ T ). Now ||U∗Tx|| = ||Tx|| for any x, so ||U∗T || = ||T || = 1/3.
This means that the factor (I + U∗T ) is Neumannable1 and

(U + T )−1 =
(
U (I + U∗T )

)−1
=

( ∞∑
n=0

(−U∗T )n

)
U∗.

(b) Let x be any vector. Observe that (S x, x) = (x, S∗ x) = −(x, S x). Consequently,

||(I + S)x||2 = ||x+ S x||2 = ||x||2 + (S x, x) + (x, S x) + ||S x||2 = ||x||2 + ||S x||2 ≥ ||x||2.
Since I + S is coercive, it must have closed range.

(c) Define U and S via

[U f ](x) = i f(x), and [S f ](x) = i (x− 1) f(x).

Set B = U + S. We have [B f ](x) = i x f(x). It remains to prove that B does not have closed
range. First observe that the vector g(x) = 1 does not belong to ran(B) (since 1/(i x) /∈ L2). Next
observe that for any n, the set Hn = {f ∈ H : f(x) = 0 for |x| ≤ 1/n} does belong to the range,
and that

∪∞
n=1Hn is dense in H.

Problem 4: (20p) Recall that if A is an n× n matrix with complex entries, then

(3) ran(A) =
(
ker(A∗)

)⊥
.

Now suppose that H is a Hilbert space, and A ∈ B(H). State and prove a relationship analogous
to (3) that A must satisfy.

Solution: Let A be a bounded operator on a Hilbert space H. Then:

x ∈ ran(A)⊥ ⇔ (Ay, x) = 0 ∀y ∈ H,

⇔ (y, A∗ x) = 0 ∀y ∈ H,

⇔ A∗ x = 0,

⇔ x ∈ ker(A∗).

The calculation shows that
ker(A∗) = ran(A)⊥.

Now recall that if V is a linear subspace of H, then V ⊥⊥ = V to obtain

ker(A∗)⊥ = ran(A)⊥⊥ = ran(A).

Answer: Let H be a Hilbert space, and let A ∈ B(H). Then ker(A∗)⊥ = ran(A).

1Recall that if ||B|| < 1, then I +B is invertible, and (I +B)−1 =
∑∞

n=0(−B)n.


