Applied Analysis (APPM 5450): Midterm 3

11.35am – 12.50pm, April 23, 2008. Closed books.

Note: You may want to save problems marked with a star for last.

Problem 1: Mark the following as TRUE/FALSE. Motivate your answers briefly.

(a) [2p] If
$$f_n \rightharpoonup f$$
 in $L^2(\mathbb{R}^d)$, then $\hat{f}_n \rightharpoonup \hat{f}$ in $L^2(\mathbb{R}^d)$. (Note the weak convergence arrows.)

(b) [2p] Set
$$B = \{ f \in L^2(\mathbb{R}^d) : ||f||_2 \le 1 \}$$
. Then \mathcal{F} is a bijection from B to B .

(c) [2p] Let
$$f$$
 be a function on \mathbb{R} such that $\int_{-\infty}^{\infty} (1+|x|) |f(x)| dx < \infty$. Then $\hat{f} \in C^1(\mathbb{R})$.

(d) [2p] If
$$f_n \to f$$
 in $L^1(\mathbb{R}^d)$, then $\hat{f}_n \to \hat{f}$ uniformly.

(e) [2p] If
$$\varphi_n \to \varphi$$
 in $\mathcal{S}(\mathbb{R}^d)$ and α is a multi-index, then $\partial^{\alpha} \hat{\varphi}_n \to \partial^{\alpha} \hat{\varphi}$ in $\mathcal{S}(\mathbb{R}^d)$.

Problem 2: [7p] Let d be a positive integer. Prove that if s is a real number that is "large enough", then $H^s(\mathbb{R}^d) \subset C_0(\mathbb{R}^d)$. Make sure to specify what "large enough" is.

Problem 3: Calculate the Fourier transform of the following functions on \mathbb{R} :

- (a) [3p] The Dirac δ -function.
- (b) [3p] $f(x) = x^k$.
- (c) [3p] $g(x) = \sin(x)$.

Problem 4:

- (a) [2p] State the definition of a σ -algebra.
- (b) [2p] Is every topology is a σ -algebra? Motivate your answer.
- (c*) [2p] Is every σ -algebra a topology? Motivate your answer.
- (d) [2p] State the definition of a measure.
- (e) [4p] Let (X, \mathcal{A}, μ) be a measure space, and let $\{\Omega_{\beta}\}_{{\beta}\in B}$ be a <u>countable</u> collection of sets in \mathcal{A} . Prove directly from the definition of a measure that

$$\mu\left(\bigcup_{\beta\in B}\Omega_{\beta}\right) = \sup\left\{\mu\left(\bigcup_{\beta\in C}\Omega_{\beta}\right) : C \text{ is a finite subset of } B\right\}.$$

Hint: Since B is countable, you may assume that $B = \{1, 2, 3, ...\}$. Then the statement you are asked to prove is equivalent to the statement $\mu\left(\bigcup_{n=1}^{\infty} \Omega_n\right) = \sup\left\{\mu\left(\bigcup_{n=1}^{N} \Omega_n\right) : N = 1, 2, 3, ...\right\}$.

(f*) [2p] Demonstrate that the formula (*) is not necessarily true if B is uncountable.

Problem 5: [6p] We define for $n = 1, 2, 3, \ldots$ functions f_n on \mathbb{R} by $f_n(x) = n^{3/2} x e^{-n x^2}$. Either prove that $(f_n)_{n=1}^{\infty}$ does not converges in $\mathcal{S}^*(\mathbb{R})$, or give the limit point and prove convergence.