
Homework set 14 — APPM5450, Spring 2007 — Solutions

Problem 12.8: We want to prove that

||f − fn||
p
p =

∫

|f − fn|
p → ∞.

We know that |f − fn|
p → 0 pointwise, so if we can only justify moving the limit

inside the integral, we’ll be done.

First note that
|f(x)| = lim

n→∞
|fn(x)| ≤ |g(x)|.

Then we can dominate the integrand as follows:

|f − fn|
p ≤ (|f | + |fn|)

p ≤ (|g| + |g|)p ≤ 2p|g|p.

Since
∫
|g|p < ∞, we find that the Lebesque dominated convergence theorem applies,

and so

lim
n→∞

||f − fn||
p
p = lim

n→∞

∫

|f − fn|
p = {LDCT} =

∫
(

lim
n→∞

|f − fn|
p
)

=

∫

0 = 0.

Problem 12.16: Fix f ∈ Lp and ε > 0. We want to prove that there exists a δ > 0
such that for |h| < δ, we have ||f − τhf ||p < ε.

First pick ϕ ∈ Cc such that ||f − ϕ||p < ε/3. Then

||f − τhf ||p ≤ ||f − ϕ||p + ||ϕ − τhϕ||p + ||τhϕ − τhf ||p

= ||f − ϕ||p + ||ϕ − τhϕ||p + ||ϕ − f ||p < ε/3 + ||ϕ − τhϕ||p + ε/3.

Set R = sup{|x| : ϕ(x) 6= 0}. Since ϕ is uniformly continuous, there exists a δ such

that if |x− y| < δ, then |ϕ(x)−ϕ(y)| < ε/(3µ(BR+1(0))
1/p). Then, if h < min(δ, 1),

||ϕ − τhϕ||pp =

∫

BR+1(0)
|ϕ(x) − ϕ(x − h)|p dx <

∫

BR+1(0)

εp

3pµ(BR+1(0))
dx <

εp

3p
.

Problem 12.17: Set fn = χ(n−1,n). Then if m 6= n,

||fn − fm||∞ = 1,

and for finite p,
||fn − fm||p = · · · = 21/p.

It follows that no subsequence of (fn)∞n=1 can be Cauchy, and can therefore not
converge.

Problem 12.18: Set fn = χ(n−1,n). Let (fnj
)∞j=1 be a subsequence of (fn)∞n=1.

Define g ∈ L∞ by

g =
∞∑

j=1

(−1)jχ(nj−1, nj),

and define ϕ ∈ (L1)∗ via ϕ(f) =
∫

fg. Then ϕ(fnj
) = (−1)j (verify!) and so (fnj

)

cannot converge weakly. Since L1 is not reflexive, this does not contradict that
Banach-Alaoglu theorem.



Problem 12.13: Set I = [0, 1] and let Ω be a dense set in L∞(I). For r ∈ I, set
fr = χ[0, r], and pick xr ∈ Ω ∩ B1/3(fr). Since ||fr − fs|| = 1 if s 6= r, we find that
||xr − xs|| ≥ ||fr − fs|| − ||fr − xr|| − ||fs − xs|| ≥ 1/3, so all the xr’s are distinct.
Therefore, Ω must be uncountable, and L∞ cannot be seperable.

To prove that C(I) cannot be dense in L∞(I), simply note that if f = χ[0,1/2], and
ϕ ∈ C(I), then

||f − ϕ||∞ ≥ max(|ϕ(1/2)|, |1 − ϕ(1/2)|) ≥ 1/2

(verify this!).

An alternative argument for why C(I) cannot be dense in L∞(I): If ϕn ∈ C(I), and
ϕn → f in the supnorm, then (ϕn) is a Cauchy sequence with respect to the uniform
norm (when applied to continuous functions, the uniform norm and the L∞ norms
are identical). Therefore, there exists a continuous function ϕ such that ϕn → ϕ
uniformly. Then f(x) = ϕ(x) almost everywhere. But not every equivalence class
function in L∞ has a continuous function in it (for instance f = χ[0,1/2]).

Problem 12.14: Let p and q be such that 1 ≤ p < q ≤ ∞.

First we construct a function f ∈ Lp\Lq. Let α be a non-negative number and set
f(x) = x−αχ[0,1]. Then

||f ||pp =

∫ 1

0
x−α p dx,

which is finite if αp < 1. Moreover

||f ||qq =

∫ 1

0
x−α q dx

which is infinite if αq > 1. Consequently, f ∈ Lp\Lq if

1

q
< α <

1

p
.

To construct a function f ∈ Lq\Lp, set f = x−αχ[1,∞). Then

||f ||pp =

∫ ∞

1
x−αp dx

which is infinite if αp < 1. Moreover

||f ||qq =

∫ ∞

1
x−αq dx

which is finite if αq > 1. Thus, f ∈ L1\Lp if

1

q
< α <

1

p
.

(The arguments above need slight modifications if q = ∞, but the idea is the same.)

Consider the function

f(x) =
1

(
|x| (1 + log2 |x|)

)1/2
.



That f ∈ L2 is clear, since

||f ||22 =

∫ ∞

−∞

1

|x|(1 + log2 |x|)
dx = 2

∫ ∞

0

1

x(1 + log2 x)
dx = {x = et}

2

∫ ∞

−∞

1

et(1 + t2)
et dt = 2π.

Moreover, if p > 2, then note that there exists a δ > 0 such that

x(p−2)/2(1 + log2 x)p/2 ≤ 1

when x ∈ (0, δ). Then

||f ||pp ≥

∫ δ

0

1

xp/2(1 + log2 x)p/2
dx =

∫ δ

0

1

x

1

x(p−2)/2 (1 + log2 x)p/2

︸ ︷︷ ︸

≥1

dx = ∞.

Analogously, if p < 2, then there exists an M such that

x(p−2)/2(1 + log2 x)p/2 ≤ 1

when x ≥ M . Then

||f ||pp ≥

∫ ∞

M

1

xp/2(1 + log2 x)p/2
dx =

∫ ∞

M

1

x

1

x(p−2)/2 (1 + log2 x)p/2

︸ ︷︷ ︸

≥1

dx = ∞.

Problem 12.15: Let α ∈ (0, 1), and let m, n ∈ (1,∞) be such that 1/m + 1/n = 1
(we will determine suitable values for α, m, n later). Then from Hölder’s inequality
we obtain

(1) ||f ||rr =

∫

|f |r =

∫

|f |αr|f |(1−α)r ≤

(∫

|f |αmr

)1/m (∫

|r|(1−α)nr

)1/n

.

In order to obtain the desired right hand side, we must pick α, m, n so that

αmr =p,

(1 − α)nr =q,

(1/m) + (1/n) =1.

To obtain and equation for α, we eliminate m and n:

(1 − α)r

q
=

1

n
= 1 −

1

m
= 1 −

αr

p
.

Solving for α we obtain

α =
pq − pr

rq − rp
=

1/r − 1/q

1/p − 1/q
.

Equation (1) now takes the form

||f ||r ≤
((

||f ||pp
)1/m (

||f ||qq
)1/n

)1/r
= ||f ||p/mr

p ||f ||q/nr
q .



Finally note that

p

mr
=α =

1/r − 1/q

1/p − 1/q
,

q

nr
=1 − α = 1 −

1/r − 1/q

1/p − 1/q
=

1/p − 1/r

1/p − 1/q
.


