Applied Analysis (APPM 5450): Final

 $7.30\,\mathrm{am} - 10.00\,\mathrm{am}$, May 6, 2008. Closed books.

Problem 1: In the following questions, the letter H denotes a generic Hilbert space. Motivate your answers briefly. (3p each)

- (a) Does the sequence $(\chi_{[n,n+1]})_{n=1}^{\infty}$ converge weakly in $L^3(\mathbb{R})$?
- (b) Does there exist a Hilbert space H and an operator $A \in \mathcal{B}(H)$ such that $\sigma(A) = \{1/n\}_{n=1}^{\infty}$?
- (c) Let $A \in \mathcal{B}(H)$, and let $\lambda, \mu \in \rho(A)$. Define the resolvent operator by $R_{\lambda}(A) = (A \lambda I)^{-1}$ as usual and show that $R_{\lambda} - R_{\mu} = \alpha R_{\lambda} R_{\mu}$ for some number α . Make sure to specify α .
- (d) What can you say about the spectrum of an operator $A \in \mathcal{B}(H)$ that is both self-adjoint and unitary?
- (e) Let f_1 and f_2 be functions on $L^2(\mathbb{R})$ such that $||f_1|| = ||f_2|| = 1$ and $\langle f_1, f_2 \rangle = 0$. Is it possible to say for sure what $||\hat{f}_1 - \hat{f}_2||$ is? If so, give its value.
- (f) Which (if any) of the following statements regarding convolutions are always true:
 - (i) If $f, g \in \mathcal{S}(\mathbb{R})$, then $f * g \in \mathcal{S}(\mathbb{R})$.

 - (ii) If $f, g \in \mathcal{S}^*(\mathbb{R})$, then $f * g \in \mathcal{S}^*(\mathbb{R})$. (iii) If $f, g \in L^2(\mathbb{R})$, then $\mathcal{F}[f * g] \in L^1(\mathbb{R})$.
- (g) Let $\{\varphi, \psi\}$ be a couple of orthonormal vectors in H and define $A \in \mathcal{B}(H)$ via

$$A u = (a \langle \varphi, u \rangle + b \langle \psi, u \rangle) \varphi + (c \langle \varphi, u \rangle + d \langle \psi, u \rangle) \psi.$$

Give an example of real numbers a, b, c, d such that $\sigma(A)$ is purely imaginary.

(h) Define $f \in \mathcal{S}^*(\mathbb{R})$ via $f(x) = x^3$. What is \hat{f} ? (Do not worry about getting constant multipliers correct.)

Problem 2: Set I = [0, 1] and let (f_n) be a sequence of real valued functions in $L^1(I)$ such that

$$\int_0^1 f_n(x) \, dx = 2^{-n},$$

and such that the sum $f(x) = \sum_{i=1}^{\infty} f_n(x)$ is absolutely summable for any $x \in I$.

- (a) Prove that if $f_n(x) \ge 0$ for all x and n, then $\int_0^1 f(x) dx = 1$. (6p)
- (b) Construct functions f_n (not necessarily non-negative) such that $\int_0^1 f(x) dx = 0$. (6p)

Problem 3: Set $H = l^2(\mathbb{N})$. Define $A \in \mathcal{B}(H)$ via

$$A(x_1, x_2, x_3, x_4, \dots) = (0, \frac{x_1}{2}, \frac{x_2}{3}, \frac{x_3}{4}, \dots).$$

Determine $\sigma(A)$, $\sigma_{\rm p}(A)$, $\sigma_{\rm c}(A)$, and $\sigma_{\rm r}(A)$. (10p) Hint: Calculate powers of A.

Problem 4: Let α be a real number and define the function f via

$$f(x) = \begin{cases} 0 & x = 0 \\ |x|^{\alpha} & x \neq 0. \end{cases}$$

For which real numbers α is it the case that $f \in \mathcal{S}^*(\mathbb{R}^d)$? Prove your assertions. (10p)

Problem 5: Let $(\varphi_j)_{j=1}^{\infty}$ be an ON-basis for a Hilbert space H. Define for $n=1,2,3,\ldots$ operators $A_n \in \mathcal{B}(H)$ via

$$A_n u = \sum_{j=1}^{\infty} \left(\frac{1}{j}\right)^{1/n} \langle \varphi_j, u \rangle \varphi_j.$$

- (a) Are the operators A_n self-adjoint? Compact? Motivate your answers briefly. (3p)
- (b) Determine the spectrum of A_n and identify $\sigma_p(A_n)$, $\sigma_c(A_n)$, and $\sigma_r(A_n)$. No motivation required. (3p)
- (c) Does the sequence $(A_n)_{n=1}^{\infty}$ converge? If so, in what sense and to what limit? (6p)