
Applied Analysis (APPM 5450) — Midterm 3 — Solutions
5.00pm – 6.25pm, April 23, 2007. Closed books.

Problem 1: Pick out the true statements from the list below. One point each, no
motivation required.

(a) If ϕn → ϕ in S, then ϕ̂n → ϕ̂ in S.

(b) If ϕn → ϕ in S, then ϕ̂n → ϕ̂ in S∗.
(c) If f ∈ L1(Rd), then f̂ ∈ Cb(Rd).

(d) If f ∈ Hs(Rd) and s > 1/2, then f ∈ Cb(Rd).

(e) If f ∈ C0(Rd), then f̂ ∈ L2(Rd).

(f) If f, g ∈ L2(Rd), then 〈f, g〉L2(Rd) = 〈f̂ , ĝ〉L2(Rd).

(a) True. (Since F is continuous on S.)

(b) True. (Since F is continuous on S, we know that ϕ̂n → ϕ̂ in S; and since
convergence in S implies convergence in S∗, it follows that ϕ̂n → ϕ̂ in S∗ as well.)

(c) True. (The Riemann-Lebesgue lemma states that in fact f̂ ∈ C0(Rd).)

(d) Not true unless d = 1. (In the general case, s > d/2 is required.)

(e) Not true. (If it were, then we’d have f ∈ L2 since F−1 is a unitary map on L2.
But not every function in C0 belongs to L2.)

(f) True. (F is a unitary map on L2(Rd).)



Problem 2: Suppose that (an)∞n=1 are real numbers such that
∑∞

n=1 |an| < ∞. Set
f(x) =

∑∞
n=1 an ei n x. Is it necessarily the case that

∫ π
−π f(x) dx = 0? Motivate your

answer. (4p)

Yes,
∫

f = 0. To prove this, set fN (x) =
∑N

n=1 an ei n x. Then

(1)
∫ π

−π
f(x) dx =

∫ π

−π

(
lim

N→∞
fN (x)

)
dx.

Now set

g(x) =
∞∑

n=1

|an|.

Then |fN (x)| ≤ g(x) for all x, and
∫ π
−π g(x) dx < ∞. The Lebesgue dominated

convergence theorem now allows us to swap the integral and the limit in (1), and so∫ π

−π
f(x) dx = lim

N→∞

∫ π

−π
fN (x) dx.

Finally note that
∫ π

−π
fN (x) dx =

∫ π

−π

N∑

n=1

an ei n x dx =
N∑

n=1

an

∫ π

−π
ei n x dx = 0,

since
∫ π

−π
ei n x dx = 0 for any positive integer n.



Problem 3: For n = 1, 2, 3, . . . , set Tn(x) = sin(nx) χ[−n, n](x). Does the sequence
(Tn)∞n=1 converge in S∗(R)? Motivate your answer. (4p)

Fix ϕ ∈ S. Then

|〈Tn, ϕ〉| =
∣∣∣∣
∫ n

−n
sin(nx) ϕ(x) dx

∣∣∣∣

=
∣∣∣∣
[
−cos(n x)

n
ϕ(x)

]n

−n

+
∫ n

−n

cos(nx)
n

ϕ′(x) dx

∣∣∣∣

=
∣∣∣∣−

cos(n2)
n

ϕ(n) +
cos(n2)

n
ϕ(−n) +

∫ n

−n

cos(nx)
n

ϕ′(x) dx

∣∣∣∣

≤ |ϕ(n)|
n

+
|ϕ(−n)|

n
+

1
n

∫ ∞

−∞
|ϕ′(x)| dx

≤ 2||ϕ||0,0

n
+

1
n

∫ ∞

−∞

1
1 + x2

(1 + x2) |ϕ′(x)| dx

≤ 2||ϕ||0,0

n
+

1
n

π||ϕ||1,2.

Consequently, 〈Tn, ϕ〉 → 0 as n →∞, and so Tn → 0 in S∗.



Problem 4: Let f and h be functions in L2(R). Suppose that (fn)∞n=1 is a sequence
of functions in L2(R) that converges pointwise to f . Set

αn =
∫

R
fn(x)h(x) dx, and α =

∫

R
f(x) h(x) dx.

(a) Give examples of functions f , h, and (fn)∞n=1 as described above such that the
numbers αn do not converge to α. (3p)

(b) Suppose that |fn(x)| ≤ 1/(1 + |x|) for all x. Prove that then αn → α. (3p)

(a) One example is h(x) = 1/(1 + |x|) and fn(x) = n2 χ[n,n+1](x). Then fn → 0
pointwise, so α = 0, but

αn =
∫ n+1

n
n2 1

1 + x
dx ≥ n2

n + 1
→∞.

(b) Set un(x) = fn(x) h(x) and u(x) = f(x) h(x). Then un → u pointwise. Setting
g(x) = (1/(1 + |x|)) |h(x)|, we have |un(x)| ≤ g(x) for all x. Moreover, a simple
application of the Cauchy-Schwartz inequality yields

∫

R
g(x) dx =

∫

R

1
1 + |x| |h(x)| dx ≤

[∫

R

1
(1 + |x|)2 dx

∫

R
|h(x)|2 dx

]1/2

,

which is finite since both h and (1 + |x|)−1 are members of L2(R).1

Now according to the Lebesgue dominated convergence theorem,

lim
n→∞αn = lim

n→∞

∫

R
un(x) dx =

∫

R

(
lim

n→∞un(x)
)

dx

∫

R
f(x) h(x) dx = α.

1Cauchy-Schwartz is a little bit of overkill. The simple inequality |ab| ≤ 1
2
|a|2 + 1

2
|b|2 suffices:Z

R
g(x) dx =

Z
R

1

1 + |x| |h(x)| dx ≤ 1

2

Z
R

�
1

(1 + |x|)2 + |h(x)|2
�

dx < ∞.



This problem has been corrected: The norm that was originally in the problem has
been substituted for a metric.

Problem 5: Let X be a set and let d be a metric on X. We define a collection S
of subsets of X by saying that Ω ∈ S if and only if for every x ∈ Ω there exists an
ε > 0 such that Bε(x) ⊆ Ω, where Bε(x) = {y ∈ X : d(x, y) < ε}.
The following questions are 1p each. Motivate your answers to (b) and (c) briefly.

(a) State the axioms that a σ-algebra must satisfy.

(b) Give an example of an uncountable set X and a metric d such that S is a
σ-algebra.

(c) Give an example of an uncountable set X and a metric d such that S is not a
σ-algebra.

(a) See the textbook.

(b) Set X = R and

d(x, y) =
{

1, when x = y,
0, when x 6= y.

Then S is the power set (if Ω is an arbitrary subset, and x ∈ Ω, then B1/2(x) ⊆ Ω),
which trivially implies that it satisfies all the axioms of a σ-algebra.

(c) Set X = R and d(x, y) = |x − y| (the standard metric on R). Then S is the
standard topology on R, which is not a σ-algebra. To see this, note for instance that
Ω = (0,∞) ∈ S, but Ωc = (−∞, 0] /∈ S.


