Homework set 8 — APPM5450, Spring 2007 — Hints
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For (2) we need to work a bit more (unless I overlook a simpler solution)
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In bounding Sy we use that
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Problem 11.6: We find that
(D(log |]) @) = —{log |z o) = - /R log 2] ¢'(¢) dx
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Now simply perform partial integration in each term separately.

Problem 11.7: First prove that x - 6(x) = 0 and that = - PV(1/z) = 1
(using the regular rules for the product between a polynomial and a Schwartz
function). Suppose that - is distributive and can pair any two distributions.
Then on the one hand we would have

d(z)-x-PV(1l/x) =6(x) - (- PV(1/z)) =d0(z) - 1 = d(x).
But we would also have

d(z)-x-PV(1l/x) = (z-6(x))-PV(1/z) =0-PV(1/z) = 0.
This is a contradiction.

Problem 11.8: Fix ¢ € S. Set o = [ ¢, and define
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It remains to prove that for any k,
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First consider < 0. Then for any k, we have
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To prove the corresponding estimate for x > 0, we use that since
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we can also express 1) as

Then proceed as in the bound for z < 0.
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So D f = g. (Note that the value of g(0) is irrelevant, any finite value can

be assigned.) To comute D? f, simply differentiate g in the same way. You
should find that D? f = 26.

where

Problem 2: This is a fairly straight-forward application of the definitions.

Problem 3: Define for n =1,2,3,..., the functions

1 T € [n — ﬁ, n] ,
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and set -
fl@) =" 2" xn(x).
n=1

Now prove that both (2) and (3) hold for any k.



