Applied Analysis (APPM 5450): Final — Solutions

Problem 1: No motivation required for these questions. 2p each.
(a) State Holder’s inequality.

(b) Define what it means for a sequence (¢,,)22, of Schwartz functions to converge
in S(R).

(c) Let H be a Hilbert space, and let (A4,)5; be a sequence of operators in B(H ).
Define what it means for A,, to converge strongly to some operator A € B(H).

(d) Let (X, u) be a o-finite measure space. For which numbers p in the interval
[1, 0o] is it necessarily the case that (LP(X,u))* = LY(X, u), where ¢ is such that
(1/p) + (1/q) = 1. For which numbers p is LP(X, ) necessarily reflexive?
(

e) Let H be a Hilbert space, and let A be a linear bounded operator on H. Give a
formula that relates the range of A to the kernel of A*.

(f) Let H be a Hilbert space and let A € B(H) be a self-adjoint operator. Let H;
be an invariant subspace of A. Is Hi- necessarily an invariant subspace of A? Is Hi-
necessarily an invariant subspace of A if A is skew-adjoint instead of self-adjoint?

(g) Let H be a Hilbert space, and let A € B(H) be self-adjoint and compact. What
can you say about o.(A)?

(a) Let p,q € [1,00] be such that (1/p)+(1/q) = 1, let (X, i) be a measure space, let
f € LP(X,p), and let g € LU(X, ). Then fg € LY(X, ) and [If gl[x < |f[p |lgllg-

(b) @n — @ if for every a € N® and k € N, we have lim,, .o || — ©nllak = 0, where
[|llak = sup, (1 + |2[)F/2[0% ().

(c) A, — A strongly if for every x € H we have lim,, .o |[[Ax — Ay z|| = 0.

(d) If p € [1,00) then (LP)* necessarily equals LI. If p € (1,00), then LP is necessarily
reflexive.

(e) ran(A) = (ker(A*))*
(f) Yes, and yes.
(g) Either o.(A) = {0} or o.(A) = 0.



Problem 2: Let H be a Hilbert space, and let P € B(H) be an operator such that
P? = P. Prove that the statements (S1) and (S2) given below are equivalent: (4p)

(S1):  (ran(P))* = ker(P).
(S2):  (Pz,y) = (x, Py) for all x,y € H.

(S1) = (S2): Assume that (S1) holds. First note that for any z € H, we have
(I — P)z € ker(P) since P(I — P)z = Pz — P?2 = Pz — Pz = 0. Then, for z,y € H
(Pz,y) = (Pz, Py + (I = P)y) = (Px, Py) + (Pz, (I — P)y) = (Pz, Py).

The last equality used that Px € ran(P), that (I — P)y € ker(P) and assumption
(S1). Analogously

<.’L’7 Py>::<va Py>7
and so (Pz, y) = (z, Py).

(S2) = (S1): Assume that (S2) is true. Then
zeker(P) & (Pr,y)=0Vy & (z,Py)=0Vy < z € (ran(P))*.



Problem 3: Let 6 € S(R)* denote the Dirac delta-function as usual, let ¢’ denote

the distributional derivative of §, and define for a positive integer n the distribution
T, € S(R)* by T,,(x) = sin(nz) §(x).

(a) Calculate the Fourier transform T}, of T},. (2p)
(b) Does the sequence (1},)%; converge in S(R)*? (2p)

Hint: You may want to start by simplifying the expression for T,.

First we simplify the expression for T,. If ¢ € S, then
(T, @) = (sin(nx)d, ) = (&, sin(nz)p) = — (4, d(sin(nz)y))
— (8, ncos(nz)p + sin(nz)¢’) = —ncos(0)e(0) — sin(n)¢’'(0) = —nep(0).
Consequently, T,, = —n .
(a) Since 6 = 1/v/27, we find that T), = —n/v/27.
(b) If ¢ € S, then

ES n

<Tna 90> = <7\/7277T7 90> = \/%/_Oo QO(I‘) dx.

When [ ¢ # 0, we have (Tn, ) — +00, so T,, cannot converge.



Problem 4: Let p € [1, c0), let g be a function in LP(R), and let (f,)22; be

measurable functions from R to R such that
o0

S (@) < gla),  ae.

n=1

N
Set hy = Z fn. Prove that the sequence (hy)3_; converges in LP(R). (5p)

n=1

Set Q1 = {z: |g(z)| < oo}. Then p(Q2f) =0, since g € LP.
Set Qo ={z: > |fu(x)] <l|g(x)|}, then p(25) = 0 by assumption.
Set © = Oy N Q. Then u(Q) < () + (25) = 0.

For z € Q, we have >, |fn(x)| < 00, so we the following formula defines a finite
valued function: 5o (@)
B et Jn(x), x €,
h(z) = { , x € Q°.
It follows immediately that |h(z)| < g(z) for all z, and so h € LP.

(e}

We will prove that ||h — hn||, — 0 as N — co. We have

N
I =l = [ ) =3 o a

Note that N
p
(a) ’h(x) - Z fn(x)‘ — 0, pointwise,
=1
and that "

N N
) |n@) = 3 fu@)| < (@] + D @) < @gla))? = 2 g(a)”. Since
n=1 n=1

g € LP, we know that J 2P g? < o0, and 50 in light of (a) and (b), we can invoke the
Lebesgue dominated convergence theorem:

‘p

(e e}

N
p
i — p: 1 — = =
i lh = hallp /szlﬂo‘h(x) n§:1fn(x)‘ dx / 0dz = 0.

—0o0



Problem 5: Consider the Hilbert space H = L%(T), let a € (0, 7) be a real number,
and define the operator T' € B(H) by

[T u|(x) = %(u(az —a) +u(a—z)).

a) Construct 7% and indicate whether T is self-adjoint. (2p)
(b) Prove that T is not unitary. Is 7" normal? (2p)

(c¢) Specify infinite dimensional subspaces Hy and Hs of H such that the map
T : H; — Hs is a unitary operator. (2p)

(d) Let F: H — [*(Z) denote the Fourier transform. Determine the operator
T :1%(Z) — I*(Z) given by T = FT F~1. (2p)

(e) Determine o (7). As far as you can, classify the different parts of the spectrum
as belonging to the point, continuous, or residual spectrum. (3p)

First note that T' = S, P, where
[Pu](x) = %(u(aj) + u(—x)), and [Squ](z) = u(x — a).

(In other words, P is the orthogonal projection onto the even functions, and S, is a
simple shift operator.)

(a) T* = (Sa P)* = P*S; = PS_,. In other words,
1
[T*u)(z) = 5 (u(z + a) + u(a — z)).
We see that T is not self-adjoint.

(b) T*T = PS_4,SoP = PP =P and TT* = S, PPS_, = SqPS_,s0 T is
neither unitary nor normal. (Note that [S, P S_qu](z) = 3u(z) + 3u(—2z + 2a).)

(c) Let H; denote the subspace of even functions, and let Hs denote the space of
functions that are even around the point © = a (so that f € Hy < f(a—1z) =
f(a+ ) for all z). Then T'|g, = S, which is clearly unitary.

(d) Let a, denote the Fourier coefficients of a function u, and set v = T'u. Then we
calculate Fourier coefficients -, of v:

Yo =0 /11‘ e_m“%(u(a: —a)+u(a—z))de

= ﬁ/ e_m(y"'a)lu(y) dy + ﬂ/ e_m(“_y)lu(y) dy = e_mal(an +a_y).
; 2 ; 2 2

So T : (o) — () where v, = €% (ay, 4+ a_p) /2.



(e) Since F is a unitary map, the spectrum of 7" is identical to the spectrum of T.
We can therefore answer the question by determining the spectrum of 7.

Recall that a number A € C belongs to o(T) if the operator T'— A does not have a
bounded inverse. We therefore consider the equation

(1) (T —M)a=1vy
Setting pu = e~™Me we write equation (1) componentwise as
(2) (1 - >‘) ap = "o,
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’ Case 1 —\=1: ‘ In this case, equation (2) does not have a solution. In fact, if v is
any constant vector, then T'v = v, so 1 € o,(T).

’ Case 2 -\ =0: ‘In this case, equation (3) is singular. In fact, if v is an odd function
(so that oy, = —a—y,) then Tv =0, so 0 € op(T).

’ Case 3 — A #0,1: ‘ For this case, equation (2) is invertible, and (3) is invertible if
and only if

07 (31 =A) (5 = A) = jui
Simplifying, we obtain the equation
0#AN—3(n+hi).
We find that (3) is singular if A = 0 or if
A= 3 (p+ ) = cos(na).
The eigenvector corresponding to A = cos(na) is
Vp = Q€ mx +a_pe —inz _ Meinx + ﬂefinx — ein(mfa) + efin(xfa) _ 2COS(77,$ o na).
Thus op(T) = {0} U {1} U {cos(na)}22;.
Remark: If you got this far, you got full credit.
If X € Cis a number such that dist(X, o, (7)) > 0, then the system (2,3) is boundedly
invertible, so A € p(T). In contrast, if A € o,(T) then T — AI is injective, but not

boundedly invertible. In fact, if A\p; — A as j — oo, we have [[(T — A\I)vy,,|| =
[[(An; = A) vy | — 050 A € ac(T).

To summarize:
op(T) = {0} U {1} U {cos(na)}2
ap(T) \ op(T)

n=1
o.(T) =0
or(T) =10
Remark 1: If a/~ is a rational number, then o,(7T') is finite, and o(T") = op(T).

Remark 2: Since T is not normal, its eigenvalue decomposition is not of much
value. Of more interest is the decomposition T' = S, P. It is an analogue of the
singular value decomposition of T" and specifies exactly the action of T, its null-space,
its range, and so on.



