Homework set 14 - APPM5450

From the textbook: 13.2, 13.3, 13.10.

Problem: Set $I = [0,1], X = L^2(I), Y = L^1(I),$ and consider the map $f: X \to Y: u \mapsto u^2.$

- (a) Prove that f is continuously differentiable, and calculate f'.
- (b) Set $\hat{u}=1\in X$, and $\hat{v}=f(\hat{u})$. Prove that there cannot exist open sets $G\subset X$, and $H\subset Y$, such that $\hat{u}\in G,\,\hat{v}\in H$, and a map $g:\,H\to G$ such that

$$f(g(v)) = v, \forall \ v \in H,$$

and

$$g(f(u)) = u, \forall u \in G.$$

(c) Why do (a) and (b) together not contradict the inverse function theorem?