Homework set 11 — APPM5450, Spring 2006

From the textbook: 12.2, 12.3, 12.5, 12.7. Problem 1 below is very important, Problem 2 is not crucially important.

Problem 1: Let $(f_n)_{n=1}^{\infty}$ be a sequence of real valued measurable functions on \mathbb{R} such that $\lim_{n\to\infty} f_n(x) = x$ for all $x\in\mathbb{R}$. Specify which of the following limits necessarily exist, and give a formula for the limit in the cases where this is possible:

(1)
$$\lim_{n \to \infty} \int_{1}^{2} \frac{f_n(x)}{1 + f_n(x)^2} \, dx,$$

(2)
$$\lim_{n \to \infty} \int_0^1 \frac{\sin(f_n(x))}{f_n(x)} dx,$$

(3)
$$\lim_{n \to \infty} \int_0^\infty \frac{\sin(f_n(x))}{f_n(x)} \, dx,$$

(4)
$$\lim_{N \to \infty} \int_0^1 \sum_{n=1}^N \frac{|f_n(x)|}{n^2 (1 + |f_n(x)|)} \, dx,$$

(5)
$$\lim_{N \to \infty} \int_0^\infty \sum_{n=1}^N \frac{1}{n^2 (1 + |f_n(x)|^2)} \, dx.$$

Problem 2: Let (X,μ) be a measure space and consider the space $L^{\infty}(X,\mu)$ consisting of all measurable functions from X to \mathbb{R} such that

$$||f||_{\infty} = \operatorname{ess\,sup}_{x \in X} |f(x)| < \infty.$$

Prove that $L^{\infty}(X,\mu)$ is closed under the norm $\|\cdot\|_{\infty}$.

Hint: You may want to start as follows:

- (1) Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in $L^{\infty}(X,\mu)$.
- (2) For each positive integer k, there exists and N_k such that for $m, n \geq N_k$, $||f_n - f_m||_{\infty} < 1/k.$
- (3) For each k, and for each $m, n \geq N_k$, let Ω_{mn}^k denote the set of all $x \in X$ such
- that $|f_m(x) f_n(x)| < 1/k$. What can you tell about Ω_{mn}^k in light of (2)? (4) Form $\Omega^k = \bigcap_{m,n=N_k}^{\infty} \Omega_{mn}^k$. What do you know about Ω^k in view of your conclusion from (3)?
- (5) Form $\Omega = \bigcap_{k=1}^{\infty} \Omega^k$. What do you know about Ω in view of your conclusion from (4)?
- (6) What can you tell about $(f_n(x))_{n=1}^{\infty}$ for $x \in \Omega$?