Homework set 11 — APPM5450, Spring 2006 From the textbook: 12.2, 12.3, 12.5, 12.7. Problem 1 below is very important, Problem 2 is not crucially important. **Problem 1:** Let $(f_n)_{n=1}^{\infty}$ be a sequence of real valued measurable functions on \mathbb{R} such that $\lim_{n\to\infty} f_n(x) = x$ for all $x\in\mathbb{R}$. Specify which of the following limits necessarily exist, and give a formula for the limit in the cases where this is possible: (1) $$\lim_{n \to \infty} \int_{1}^{2} \frac{f_n(x)}{1 + f_n(x)^2} \, dx,$$ (2) $$\lim_{n \to \infty} \int_0^1 \frac{\sin(f_n(x))}{f_n(x)} dx,$$ (3) $$\lim_{n \to \infty} \int_0^\infty \frac{\sin(f_n(x))}{f_n(x)} \, dx,$$ (4) $$\lim_{N \to \infty} \int_0^1 \sum_{n=1}^N \frac{|f_n(x)|}{n^2 (1 + |f_n(x)|)} \, dx,$$ (5) $$\lim_{N \to \infty} \int_0^\infty \sum_{n=1}^N \frac{1}{n^2 (1 + |f_n(x)|^2)} \, dx.$$ **Problem 2:** Let (X,μ) be a measure space and consider the space $L^{\infty}(X,\mu)$ consisting of all measurable functions from X to \mathbb{R} such that $$||f||_{\infty} = \operatorname{ess\,sup}_{x \in X} |f(x)| < \infty.$$ Prove that $L^{\infty}(X,\mu)$ is closed under the norm $\|\cdot\|_{\infty}$. *Hint:* You may want to start as follows: - (1) Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in $L^{\infty}(X,\mu)$. - (2) For each positive integer k, there exists and N_k such that for $m, n \geq N_k$, $||f_n - f_m||_{\infty} < 1/k.$ - (3) For each k, and for each $m, n \geq N_k$, let Ω_{mn}^k denote the set of all $x \in X$ such - that $|f_m(x) f_n(x)| < 1/k$. What can you tell about Ω_{mn}^k in light of (2)? (4) Form $\Omega^k = \bigcap_{m,n=N_k}^{\infty} \Omega_{mn}^k$. What do you know about Ω^k in view of your conclusion from (3)? - (5) Form $\Omega = \bigcap_{k=1}^{\infty} \Omega^k$. What do you know about Ω in view of your conclusion from (4)? - (6) What can you tell about $(f_n(x))_{n=1}^{\infty}$ for $x \in \Omega$?