Homework 1 — partial solutions — APPM5440, Fall 2016

Problem 1.3: Note that the desired inequality is equivalent to the following pair of inequalities:
d(xa Z) - d(yv Z) < d(.ﬁ[), y)
d(y7 Z) - d(i[), Z) < d(.ﬁlf, y)

Now prove each of the two inequalities in the pair above separately.

Problem 1.5: We will prove that if (X, | -||) is a NLS, then the function
[z =y
Az, y) = ———— =
L+ [lz =yl
defines a metric on X. It is easy to verify that d is symmetric and is zero iff z = y. The challenge
is the triangle inequality. Observe that
t

diz,y) = f(lz—yll), ~ where  f(t) =77~

Since f is monotonically increasing, and since ||z — y|| < ||z — z|| + ||y — 2|, we immediately find
that

d(z,y) = f(lz —yll) < f(lz = 2] + ly — =)
Next, use the following lemma:

Lemma: Suppose that f: [0,00) — [0,00) is a differentiable function that satisfies
f(0) =0, f/ >0, and f" is monotonically decreasing. Then f(a + b) < f(a) + f(b) for
every non-negative a and b.

Proof: We have
a+b b
fla+b)= f(a)+ / Pt dt < fla)+ /0 F(t)dt = f(a) + F(B) — £(0) = f(a) + F(B),

where the inequality holds true since f’ is positive but decreasing (so for every ¢ we have

f') < f'la+t))

Since our f satisfies this property, we immediately get
d(@,y) = f(lz —yll) < fllz =2l + ly — 2l < f(llz = 2]) + f(ly — 2[) = d(=, z) + d(z,y).

Problem 2: (a) The putative norms a, d, e, and f are norms. (b and g are semi-norms, ¢ does
not satisfy ||af[| = [af[|f[|.)

(c) Set I = [0, 1] and consider the set X consisting of all continuous functions on I, with the norm

1
11l = / ()] d.

Prove that the space X is not complete.

Solution: A straight-forward way of proving this is to construct a Cauchy-sequence that does not
have a limit point in X. One example is
-1 r<1/2—1/n,
fu(z) =< n(z—1/2) 1/2—=1/n<2x<1/241/n,
1 x>1/241/n.
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We first prove that (f,) is Cauchy. Note that for any m, n, and x, we have |f,(z) — fi(2)| < 1.
When m,n > N, we further have f,,(z) — fim(x) = 0 outside the interval [1/2 —1/N,1/2+ 1/N],

50 1/24+1/N 1/2+1/N
o = funll = / @) = fin(@)| da < / 1dz = 2/N.
1/2-1/N 1/2-1/N

We next prove that (f,) cannot converge to any element in X. Pick an arbitrary ¢ € X. Assume
temporarily that ¢(1/2) > 0. Since ¢ is continuous, there exists a § > 0 such that ¢(z) > —1/2
for x € Bs(1/2). Pick an integer N > 2/6. Then, for n > N, we have f,(x) = —1 when
x€[1/2-6,1/2—§/2], and so

1/2-8/2 1/2-6/2
1 — ol z/m ) —p@lde = [ 1j2de = /4

1/2-5
If on the other hand ¢(1/2) < 0, then pick § > 0 such that ¢(z) < 1/2 on [1/2,1/2 + 4] and
proceed analogously. O

Remark 1: Note that you cannot solve a problem like the one above by constructing a Cauchy
sequence (f,) in X, point to a non-continuous function f, and claim that since f,, “converges to
f7, X cannot be complete. Note that the metric is not even defined for functions outside of X.

Remark 2: Can you somehow add the limit points of Cauchy sequences in X and obtain a
complete space X? The answer is yes, you can do that for any metric space; the resulting space
X is called the “completion” of X and is (in a certain sense) unique. For the present example, X
is the set of all (Lebesgue measurable) real-valued functions on I for which

/ |f(x)| dx < o0,

where the integral is what is called a “Lebesgue” integral. This space is denoted L'(I). Strictly
speaking, an element of L!'(I) is an equivalence class of functions that differ only on a set of
Lebesgue measure zero. This roughly means that two functions f and g are considered identical if

/|f 2)) de = 0.



