Applied Analysis (APPM 5440): Midterm 1
5.30pm — 6.45pm, Sep. 25, 2006. Closed books.

Problem 1: No motivation required for (a) and (c). Only brief motivations required
for (b) and (d). 2 points each:

(a) Define what it means for a metric space (X, d) to be complete.
(b) Set X =[0,1]U[2,3], and 2 = [0, 1]. Is © open in the metric space (X,|-|)?
(c) For n € N, set x, = 6_1/”(1 + (=1)") = 1/n. Give numerical values for the
quantities that exist among: lim z,, limsupz,, and liminf z,.

n—oo

n—00 n—00

(d) Construct a sequence (x,)0°; such that 0 < z,, <1 for every n, and such that
for any a € [0, 1], there exists a subsequence (zn,)72; such that x,,; — a as j — oo.

(a) A metric space is complete if every Cauchy sequence in the space has a limit
point in the space.

(b) Q is open. To prove this, pick x € 2, then By 5(z) C 0.l

(c) limsupx, = 2 and liminfx, = 0. limx, does not exist (since the limsup and
the liminf are different).

(d) The set of all rational numbers in [0,1] is a countable set. Let (x,)22, denote
an enumeration. This sequence satisfies the requirements.?

INote that

0,2+ 1/2) ife<1/2
By >—{ (0,1) it o= 172
(x —1/2,1] ifx >1/2.

In fact, 2 is both open and closed.
2The sequence

zn = (0,1/2, 0,1/4,2/4,3/4, 0,1/8,2/8,3/8,4/8,5/8,6/8,7/8, 0,1/16,...)

works as well.



Problem 2: Define a norm on R? by setting, for 2 = (z1, 22, ...,24) € R?,
el = > |l
1<j<d

Using the fact that (R, |- |) is complete, prove that (R?, || -||) is complete. (3p)

Let (:L'(”))%o:1 denote a Cauchy sequence in R%. We will prove that (z(™) has a limit
point in R,

First we construct the limit point . For 5 =1,2,...,d, we have
d
(1) 2l — 2™ < 3 ) — 2™ = (2 — )
j=1

Since (z(™) is a Cauchy sequence, it follows from (1) that (:Ugn))zozl is a Cauchy
sequence in R. Since R is complete, each such sequence has a limit point, name this

point z;. In other words,

(2) T = nh_}rrgo xg-n).

Set x = (1, x9,...,1q). Clearly z € R?.

Next we prove that the Cauchy sequence (™) converges to z. Fix an & > 0. For
each j € {1,2,...,d}, equation (2) assures us that there exists an N; such that

(3) n>N; = [ol ) <e/d

Set N = max{Ny, No,...,Ng}. Then, if n > N, it follows from (3) that

d d
2 —af| = Y lal” — ;] < Y e/d =-.
j=1 J=1



Problem 3: Let (X,dx), (Y,dy), and (Z, dz) denote metric spaces, and let f : X —
Y,and g: Y — Z denote continuous functions. Prove that the function h: X — Z
that is defined by h(z) = g(f(x)) is continuous. (3p)

Let G denote an open set in Z. We will prove that h is continuous by proving that
h~1(G) is necessarily open in X.

Since g is continuous, and G is open in Z, g~!(G) is open in Y.
Since f is continuous, and ¢g~!(G) is open in Y, f~(g7(G)) is open in X.
Finally note that h=1(G) = f~1(g71(Q)).



Problem 4: Let X denote the set of real numbers, and equip X with the discrete
metric dx (so that dx(x,y) =0 if z = y, and dx(x,y) = 1 otherwise). Let (Y, dy)
denote another metric space. For each statement below, either prove that it is
necessarily true, or give a counter-example. (2p each.)

(a) Let f be a function from (X, dx) to (Y,dy). Then f is necessarily continuous.

(b) Let g be a function from (Y, dy) to (X,dx). Then g is necessarily continuous.

(a) Yes, f is necessarily continuous. To prove this, we fix an x € X and a number
e > 0. We will prove that there exists a § > 0 such that

dx(z,y) <6 = dy(f(z), f(y)) <e.
Pick 6 = 1/2. Then if dx(z,y) < 1/2, we must have x = y, and then of course
dy (f(z), f(y)) =0 <e.

(b) No, f need not be continuous. As an example, set Y = R with the usual metric,
and consider g(z) = 2. Now if 2 € X, then the set {2} is open in (X,dx)3, but
g '({z}) = {x} which is not open in (Y, dy).

3To see that {z} is open, simply note that By s(z) = {z} C {z}.



Problem 5: Let (X,d) denote a metric space, and let Y denote a subset of X.
Consider the following three sets, and three statements:

2 is the set of all x € X for which there exists (y,)52; C Y such that y, — x.

Oy = ﬂ F,, where {F,}oca is the set of all closed sets in (X, d) that contain Y.
a€A

Y, d) is the completion of the metric space (Y, d).
a) 0 C Qo
b) Qy C Oy
¢) The two metric spaces (Qg,d) and (Y, d) are isometrically isomorphic.

For each statement, either prove that it is necessarily true, or give a counter-example
(if you give a counter-example, you do not need to justify it in detail). You may not
use any theorems given in class that relate to the concept of “closure”. (2p each.)

(a) Assume that z € Q. Then there exist points (y,)5>; C Y such that y, — =.
But then if F, is a closed set that contains Y, it follows that x € F,, since (y,,) C F,
and F, contains all its limit points. Consequently, x € €s.

(b) Assume that x € Q9. First we note that for every € > 0, the set B.(z) NY is
non-empty. (If there existed an € > 0 such that B.(z) N'Y were empty, then B.(z)°
would be a closed set in the collection (Fy)aca, and then x could not be a member
of 22.) Consequently, we can for n = 1,2,... pick y, € By/p(z)NY. Then y, — =,
and so r € (.

(c) This is not true. Consider the example X = Q with the usual metric, and
Y ={¢e€eQ:0<gq<1} Thenf/:{reR: 0 <r <1 andd is the usual
metric on R. Moreover, Qy = Y. The sets (Y, d) and (€2, d) cannot be isometrically
isomorphic since Y is uncountable and s is countable.

Note that if (X,d) is complete, then (f23,d) is a completion of (Y,d), and since
all completions are isometrically isomorphic, (Y,d) and (€2,d) are isometrically
isomorphic.

Here is an alternative proof for (a) and (b):

Pick an x € X. Set ¢ = inf{d(z,y) : y € Y}. We will prove that if ¢ > 0, then =
belongs to neither €2y nor €2o; and if ¢ = 0, then x belongs to both 1 and 2. This
proves that Q1 = Qo.

Case 1, ¢ > 0: No sequence in Y can converge to x, so x ¢ Q;. Moreover, B.(z) is
a closed set that contains Y. Hence = ¢ Qs.

Case 2, ¢ = 0: In this case B:.(x) N'Y is non-empty for every . By picking y, €
Byn(z) NY, we construct a sequence in Y such that y, — z. So x € Q. This
argument also shows that x belongs to any closed set F, that contains Y, and
consequently x € (.



