
Homework set 8 — APPM5440 — Solutions

3.6: Set X = C([−a, a]) and define on X the operator

[Fu](x) =
1
π

∫ a

−a

1
1 + (x− y)2

u(y) dy + 1.

Then the given equation can be formulated as a fixed point problem u = F (u).
We find that

||F (u)− F (v)|| = sup
x∈[−a,a]

∣∣∣∣
1
π

∫ a

−a

1
1 + (x− y)2

(u(y)− v(y)) dy

∣∣∣∣

≤ · · · ≤ 2 arctan(a)
π

||u− v||
(you should be able to fill in the missing steps). The contraction mapping
principle now proves that the equation has a unique solution in X.

To prove that the solution is positive, note that if u(x) ≥ 0 for all x, then
[Tu](x) ≥ 0 for all x. Combine this fact with the fact that f is non-negative,
and that

u = (I − T )−1 f =
∞∑

n=0

Tnf.

For the case a = ∞, note that uniqueness cannot hold. If u is a solution,
then so is any shift of u.

3.7: Set X = {u ∈ C(I) : u(0) = u(1) = 0}. Convolve given BVP with the
Green’s function g(x, y) (defined by eqn (3.22)) and obtain

(1) u + λT u = h,

where T is the operator on X given by

[Tu](x) =
∫ 1

0
g(x, y) sin(u(y)) dy,

and

h(x) =
∫ 1

0
g(x, y) f(y) dy.

Note that Tf ∈ X, so (1) is an equation on X. Now

||Tu− Tv|| ≤ sup
x

∫ 1

0
|g(x, y)| | sin(u(y))− sin(v(y))| dy.

Use that
| sin(u(y))− sin(v(y))| ≤ |u(y)− v(y)| ≤ ||u− v||

to obtain
||Tu− Tv|| ≤ β||u− v||,

where

β = sup
x

∫ 1

0
|g(x, y)| dy.

We see that if λ < 1/β, equation (1) has a unique solution in X (by the
contraction mapping theorem).



Problem 4: Consider the integral equation

(*) u(x) = π2 sin(x) +
3
2

∫ cos(x)

0
|x− y|u(y) dy.

Prove that (*) has a unique solution in C([0, 1]).

Solution: Set X = C([0, 1]) and define the operator T on X by

[Tu](x) =
3
2

∫ cos(x)

0
|x− y|u(y) dy.

We find that

||Tu− Tv|| ≤ sup
x

3
2

∫ cos(x)

0
|x− y| |u(y)− v(y)| dy

≤ sup
x

3
2

∫ 1

0
|x− y| |u(y)− v(y)| dy

≤ sup
x

3
2

∫ 1

0
|x− y| dy ||u− v||.

Now

sup
x

∫ 1

0
|x− y| dy = sup

x
(
1
2
x2 +

1
2
(1− x)2) =

1
2
,

so
||Tu− Tv|| ≤ 3

4
||u− v||.

Since T is a contraction, the equation

(I − T ) u = f

has a unique solution for every f . (In particular, for f(x) = π2 sin(x).)



Problem 1: Let X be a set with infinitely many members. We define a
collection T of subsets of X by saying that a set Ω ∈ T if either Ωc = X\Ω
is finite, or if Ω is the empty set. Verify that T is a topology on X. This
topology is called the “co-finite” topology on X. Describe the closed sets.

Solution: The verification should be straight-forward. The closed sets are
the finite sets, and the entire set.

Problem 2: Let X denote a finite set, and let T be a metrizable topology
on X. Prove that T is the discrete topology on X.

Solution: Enumerate the points in X so that X = {xn}N
n=1. Set

εn = min{d(xn, xm) : m 6= n}, for n = 1, 2, . . . , N.

Since the minimum is taken over a finite set of positive numbers, εn > 0, and
it follows that the set Bεn/2(xn) = {xn}, must be open. Since any union of
open set must itself be open, it follows that all subsets of X are open.

Problem 3: Consider the set X = {a, b, c}, and the collection of subsets
T = {∅, {a}, {a, b}, {a, c}, {a, b, c}}. Is T a topology? Is T a metrizable
topology?

Solution: Yes it is a topology (and union or intersection of the given sets is
itself a member of the set.

No, it cannot be metrizable. If it were, then the argument given in Problem
2 would demonstrate that {b} would have to be an open set, and it is not.


