
Homework set 10 — APPM5440 — Solution sketches

Textbook 4.5a: The connected subsets of R are the intervals of the form
(a, b), [a, b], (a, b], and [a, b) where a and b are numbers such that −∞ ≤ a ≤
b ≤ ∞. A full solution consists of two steps. First, let I denote and interval
of the kind described and prove that I is connected (this is easily done via
contradiction). Second, let Ω denote a subset that is not an interval, then
you can construct two open disjoint subsets that cover Ω. This proves that
Ω is not connected.

Textbook 4.6: Prove the following results:
• Let X and Y denote two homeomorphic topological spaces. Prove

that X is connected if and only if Y is connected.
• Let X and Y denote two homeomorphic topological spaces, let f : X →

Y denote a homeomorphism, and let x ∈ X. Prove that f is a home-
omorphism between X\{x} and Y \{f(x)}.

• Prove that R\{0} is not connected.
• Prove that if y ∈ R2, then R2\{y} is connected.

Assume that R and R2 are connected. Derive a contradiction from the four
facts given above.

Textbook 5.1: As an example, we prove that a = b = c, where

a = sup
x6=0

||Ax||
||x|| , b = sup

||x||=1
||Ax||, c = sup

x≤1
||Ax||.

First we prove that a = b:

a = sup
x6=0

||Ax||
||x|| = sup

x6=0
||A x

||x|| || = sup
||y||=1

||Ay|| = b.

It is obvious that b ≤ c (since the surface of the unit ball is a subset of
the closed unit ball itself), so it only remains to prove that c ≤ b. To this
end, we pick a sequence of vectors xn such that ||xn|| ≤ 1 and ||Axn|| → c.
Clearly, we can pick all xn’s to be non-zero. Then

c = lim ||Axn|| ≤ lim sup
||Axn||
||xn|| = lim sup ||A xn

||xn|| || ≤ sup
||y||=1

||Ay|| = b.

Textbook 5.3: First note that

|δ(f)| = |f(0)| ≤ sup
x∈[0,1]

|f(x)| = ||f ||u.

This immediately proves that δ is continuous w.r.t. the uniform norm.

A simple way to prove that δ is not continuous w.r.t. the L1 norm is to
construct a sequence of functions fn ∈ C([0, 1]) such that ||fn||L1 = 1, but
|δ(fn)| = n. For instance, the functions fn(x) = (n− n2x/2) χ[0,2/n](x) will
do.



Problem 1: Set X = Rn, Y = Rm, and let A ∈ B(X,Y ). Let


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn




denote the representation of A in the standard basis. Equip X and Y with
the supremum norms. Compute ||A||.
Solution: This problem is solved in the text of the book.

Problem 2: Set X = R2 and Y = R, and define f : X → Y by setting
f([x1, x2]) = x1. Prove that f is continuous. Prove that f is open. Prove
that f does not necessarily map close sets to close sets.

Solution: First we prove that f is continuous. We use that in a metric space,
continuity and sequential continuity are equivalent. Let x(n) → x in R2, or,
in other words, (x(n)

1 , x
(n)
2 ) → (x1, x2). Then it follows immediately that

f(x(n)) = x
(n)
1 → x1 = f(x).

Next we prove that f is open. Let Ω ⊂ R2 be an open set. Pick a point x1

in f(Ω). Then for some real number x2, we have x = (x1, x2) ∈ Ω. Since
Ω is open, there exists ε > 0 such that Bε(x) ⊆ Ω. Then (x1 − ε, x1 + ε) =
f(Bε(x)) ⊆ f(Ω), and so f(Ω) must be open. (Draw a picture of all objects
in this solution!)

Finally we prove that f is not closed via a counterexample. Consider Ω =
{(x1, x2) ∈ R2 : x1x2 ≥ 1} (draw a picture!). Then Ω is closed in R2, but
f(Ω) = (−∞, 0) ∪ (0,∞) is not closed in R.


