Applied Analysis (APPM 5440): Final Exam — Solutions
1.30pm — 5.00pm, Dec 11, 2005. Closed books.

In proofs, please state clearly what you assume, and what you will prove.
Problem 1: No motivation is required for the following questions: (2p each)
(a) Define what it means for a subset of a metric space to be totally bounded.

(b) Set I = [0,1). Specify which (if any) of the following inclusions are
equalities: C.(I) C Co(I) C CyH(I) C C(I).

(c) Let X be a Hilbert space, and define for y € X the functional ¢, by setting
y(x) = (y, ). What do you know about the map T': X — X*: y— ¢,?

(d) Let P denote the set of all functions that can be written in the form
flx) = ZTJLO (an cos(nx) + by sin(na)), for some finite integer N, and some
complex numbers a, and b,. Is P dense in C(T)?

(e) Let P be as in (d). Is P dense in L?(T)?

(f) Suppose that f € H*(T). Specify for which k, if any, it is necessarily the
case that f is continuous.

(g) Consider the metric space X consisting of all rational numbers, equipped
with the metric d(x,y) = | — y|. Which of the following sets are open: A=
{geX:0<¢®<4},B={qeX:0<¢*<2},C={geX:0<q<oo}.

(h) Let X be a normed linear space, and let X* define the (topological) dual
of X. Define what it means for a sequence (y,)52; C X* to converge in the
weak-* topology.

(a) For any e > 0, there exists a finite set of point (z,)Y_; such that
{B.(z,)}_, is a cover of the space.

c) It is an isometric isomorphism. (alt.: It is a unitary map.)



Problem 2: Let X be a finite-dimensional linear space, and let || - ||; and
| - ||2 be two norms on X.

(a)
(1)
(3p)

Prove that there exist numbers ¢ and C such that 0 < ¢ < C' < oo, and
cllzllz < |lzlly < Cllzll2,  VzeX.

(b) Let G be a subset of X. Define what it means for G to be open in the
topology generated by the norm || - ||;. (2p)

(c) Prove that if G is open in the topology generated by the norm || - ||1,
then G open in the topology generated by the norm || - ||2. (You may use the
inequality (1) regardless of whether you answered part (a).) (2p)

(a) Let (ej)?zl be a basis for X.

Define a norm on X by setting ||z|| = || Z?Zl zjej|| = Z;-lzl |z;|, and let T
be the topology generated by | - ||.

Set B = {x € X: ||z|| = 1}. This set is clearly compact in 7. (It is
homeomorphic to the set ¢ = {z € R?: Z;-lzl |zj| = 1} which is bounded
and closed in R?, and hence compact.)

For p = 1,2, the map = +— ||z||, is continuous in 7 (since ||z — y||, <
d . .

> 1z = yjl llesllp < llo =yl (maxi<j<a|lejllp). Thus, since B is compact,

there exist constants M, < co such that sup,cp||z||, < M,. Similarly, there

exist my, > 0 such that inf,cp ||z||, > m, (m, cannot equal zero because if

it did, then ||Z||, = 0 for the non-zero minimizer &). Now, for any x # 0,

el _ e/l _ oy
lellz ~ Tle/llell Tz

Thus, C = M;/ma < oo works for the upper bound. Analogously, ¢ =
mq /My > 0 works for the lower bound.

(A briefer proof may still earn full points.)

(b) G is open in the topology generated by || - ||1. < For any = € G, there
exists an € > 0 such that if ||z — y||; < &1, then y € G.

(c) Assume G is open in the 1-topology, and let € G. By assumption, there
exists an e; > 0 such that if || —y||1 < e1, theny € G. Set e = £1/C. Then
if ||z — yl|2 < €2, we find that ||z — y||1 < C||x — y||]2 < &, and then y € G.



Problem 3: Set I = [—1,1], and consider the functions f, 1,92 € C(I),
given by f(z) = z%, gi(z) = 1, and ga(x) = x. Set A = span(gi,g2).
Determine o = dist(A, f) = infgea ||g — f||- Is the minimizer unique? (4p)

Consider g = 1/2¢g; € A. Then ||f — g|| = 1/2, so a < 1/2. Set g =
c191 + ¢c2g2, and assume that g is a minimizer (a minimizer must exist since
A is finite dimensional). We know that ||f — g|| < 1/2. Then

122 |f = gll 2[£(0) = g(0)] = |ea],
122 [f =gl Z|f(1) —g(D)| = [1 = 1 = cal,
122 [f =gl Z|f(=1) —g(=1)| = [1 =1 + 2.
Since |c1| < 1/2, it follows that |1 —c1| > 1/2. Then the second two inequali-

ties imply that co = 0, and thus ¢; = 1/2. It follows that g = § is the unique
minimizer.

(This solution may seem slightly magical - how would you & priori know that
g is the minimizer? Well, since f is even, it is reasonable to guess that the
minimizer should be even, which means that § = cg; for some ¢. Then you
can very easily determine that ¢ should be 1/2.)



Problem 4: Set I = [0, 1], let k be a continuous function on 72, and consider
the integral operator 7' : C(I) — C(I), given by

1
Tf)(x) = / K(z,y) F(y) dy.

Prove that T is compact. (4p)

Let B be a bounded subset of C(I). In order to show that 7" is compact, we
need to prove that 7'(B) is pre-compact. The Arzela-Ascoli theorem states
that this is the case if and only if T'(B) is bounded and equicontinuous.

Set M = supyep || f||. Then M < oo.

Boundedness: Since k is a continuous function on a compact set, k£ is bounded
from above by some finite number C. If f € B, then

[+ 5 dy] < sup [ i) )] dy < O
I xel JI

IT f|| = sup
zel

Equicontinuity: Fix ¢ > 0. We need to show that there exists a § such that
v — 2| < = |g(x) — g(y)| < e, for any g € T(B). Since k is a continuous
function on a compact set, it is uniformly continuous. Thus, there exists a
d such that |(z,y) — (2,v)] < 0 = |k(z,y) — k(2',y')| < e/M. Then, if
g=Tf eT(B),and |z — 2’| <4, we find that

/I(/f(x,y) —k(z',y)) fy) dy‘ < /IAZMdy —c.

l9(z) — g(a")] =




Problem 5: Let X = [}(N), and let (a,,)2%; be numbers such that |a,| <
27", Define the linear operator T': X — X by setting, for z = (z1, z2,...),
(Tl‘)j = ;T + xj.

a) Determine sup{ H||7;:x|\H : x#0}. (3p)

(
(b) What is the range of T7 (1p)
(

¢) Determine sup{ IIHT:“EJC'II cx#0}. (2p)

(a) Note that

LTxHx = =su z||: ||z|| =
p{ Il s o % 0} = 1iTll = supdliTal « el = 13

Suppose that ||z|| = 1. Then

[e'S)
Tall =11+ an)ar] + > lanes + 2l
n=2

o o0
<(l+aal+ Y lanl)loa] + 3 Janl
n=2 n=2
oo
gmax{(H +oq| + Z ]an|>, 1}.
n=2

Set 8= |1+a1|+> 72 |ay|. Then [|T]| < max(8,1). To prove equality, set
x=-e; =(1,0,0,...)if > 1, and set z = e = (0,1,0,...) otherwise.

(b) T is in fact invertible: If y € X, and if we set

o (1/(1 + 1)) y1, forn =1,
" (man/(L+ 1) yi + yn, forn > 2,

then x € X, and Tz = y. Thus, the range of T" equals X.

(c) Via a computation analogous to the one in (a), we find that

o {jipa 20} = { gt e o =i
el )




Problem 6: Let f be a bounded continuous function on R? for which there
exists a finite number C' such that

|f(t,a) — f(t,b)| < Cla— b, Vit,abeR.
Consider the ODE

(ODE)

u(t) = f(t,u(t)),
u(0) = 1.

State the contraction mapping theorem, and use it to prove that for some
e > 0, the equation (ODE) has a unique solution in C!([—¢,¢]). (You do not
need to give an optimal €.) (5p)

Contraction mapping theorem: Let X be a complete metric space, and let
T: X — X be a map for which there exists a ¢ < 1 such that d(Tz,Ty) <
cd(x,y) for all z,y € X. Then there exists a unique € X such that Tz = x.

Set X = C([0,¢]), where € > 0 will be specified later.

Rewrite (ODE) as an integral equation:

(IE) u(t) =1 —i—/o f(s,u(s))ds = [Tul(t).

(The equation above defines T'.) Clearly, 7' maps X to X. We will prove
that T is a contraction if € is small enough. For u,v € X, we have

I7u=Toll = sup | [ (7(svu(s) = F(s.05)

t€]0,e]

< /0 £ (5,u(s)) — F(s,0(s))] ds

S/ Clu(s) —v(s)|ds < Celju — v||.
0

Pick an € such that 0 < e < 1/C. Then T is a contraction on X, and (IE) has
a unique solution u in X. From (IE), it follows directly that u € C1(]0,¢]).
Moreover, differentiating (IE), we see that u solves (ODE).

To prove the existence of a unique C'! solution on [—¢, 0], simply repeat the
proof with ¢ replaced by —t.

(Note that since ¢ only depends on C, it is trivial to prove that there exists
a unique solution in C1(R).)



Problem 7: Let X be a separable infinite-dimensional Hilbert space. Prove
that there exists a family of closed linear subspaces {€2; : ¢t € [0, 1]} such that
Q is a strict subset of Q; whenever s < t. (4p)

Let (e,)52; be an orthonormal basis for X.
Let (¢,)52; denote an enumeration of the rational numbers in [0, 1].
Set Qs ={x € X : (en,z) =01if ¢, > s}.

Each Q4 is obviously a closed linear subspace (since €25 is the orthogonal
complement of the set {e, : ¢, > s}).

Moreover, if s < t, then obviously, s C ;. To prove that the two spaces
are not equal, pick a ¢, such that s < g, < t. Then e, € {4, but e, does not
belong to €);.



