Linear stability analysis: Consider an autonomous system of non-linear equations
x =1fx,y),
y=9x.y).

Step 1: Find every equilibrium point (X, y) for which f(x,y) = g(x,y) = 0.

Step 2: For each equilibrium point (X, y), compute the Jacobian

(%) f(x9)

J = T A
_gX(Xay) gy(Xay)_

Step 3: Compute the eigenvalues and eigenvectors of J.
Step 4: Inspect the eigenvalues to determine the nature of the equilibrium point. E.g.:
A <0 and Ao >0 = Unstable (saddle point)
Mo=axif with a <0 = Asympt.-stable (spiral)
Warning 1: Linear analysis may fail if J is singular.

Warning 2: Linear analysis is inconclusive if A\{ = /. The solution can be a center,
or a repelling spiral (unstable), or an attracting spiral (asy-stable).



Example: Find equilibria and determine their type for {

y=x(x—1)

Determine Jacobian: J =

01|

2x—10]

Find equilibria: (A) (xg,Y0) = (1,0) and (B) (xg, o) = (0, 0).

Analyze point (A): J =

Analyze point (B): J =

01

10|

01

10|
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X=y—x>
Example: Find equilibria and determine their type for ¢ 3
y==X=Y
C a2 -
Determine Jacobian: J = X .
- —3y2_
Find equilibria: (A) (xg,Yo) = (0,0).
| 01 | 1 |
Analyze point (A): J = Col M =1 Vy=1] Ao =—I Vo=
— i
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| o o X=y+x°
Example: Find equilibria and determine their type for ¢ 3
y=—-X+tYy

a2 4

Determine Jacobian: J = X .
| —13y2

Find equilibria: (A) (xg,Yo) = (0,0).

| 01 | 1 |
Analyze point (A): J = Col M =1 Vy=1] Ao =—I Vo=
— i
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Example: Find equilibria and determine their type for

. _ 01
Determine Jacobian: J = .
| —cos(x) 0|
Find equilibria: (A) (x,y) = (7 2n,0) and
| 01
Analyze point (A): J = Col A =1
| 01
Analyze point (B): J = A =1

_10_'

y = —sin(x)
(Note: This is the system form of the mathematical pendulum x + sin(x) = 0.)

(B) (x,¥) = (7w (2n+1),0).
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y = —sin(x) —y
Note: This is the system form of the mathematical pendulum x + x + sin(x) = O.
Observe that the term x represents friction. The system is now losing energy.

Example: Find equilibria and determine their type for {

| _ ’ 0 1
Determine Jacobian: J = .
| —cos(x) —1
Find equilibria: (A) (x,y) = (72n,0) and (B) (x,y) = (7 (2n+ 1), 0).
N
Analyze point (A): J = . Mo = —% +iv/3/2.

0
Analyze point (B):J = | © 1. Mo=—%+5/2
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