
Separable differential equations:

Consider the DE: dy
dt = h(t)g(y)

Solution recipe:

1. Collect terms: 1
g(y) dy = h(t)dt

2. Integrate:
∫ 1

g(y) dy =

∫
h(t)dt + C

In other words, find primitive functions H and G such that H′(t) = h(t) and G′(y) = 1
g(y).

The solution is then

(1) G(y) = H(t) + C.

3. If you have an initial condition, you can determine C.

4. If possible, you can solve (1) for y, if you so desire.

Note: If you are given an initial condition, you can use definite integrals in step 3:∫ y

y0

1
g(z) dz =

∫ t

t0
h(s)ds.



Rigorous verification that the solution method works:

Consider a separable DE

(2) dy
dt = h(t)g(y).

On the previous slide, we in a questionable way derived the solution:

(3) G(y(t)) = H(t) + C.

where
G′(y) = 1

g(y) and H′(t) = h(t).

Let us differentiate the solution (3), using the chain rule,
dy
dt G

′(y(t)) = H′(t).

This simplifies to
dy
dt

1
g(y) = h(t).

Multiply by g(y) to see that we do indeed satisfy the DE (2).



Example: Consider the equation
dy
dt = −2t y.

First note that y = 0 is an equilibrium point.

Then collect terms (assuming y 6= 0):
dy
y = −2t dt.

Then integrate both sides:
log |y| = −t2 + C.

Solve for y:
|y| = e−t

2+C = eC e−t
2
= {Set D = eC} = De−t

2
.

Observe that D > 0. Removing the absolute value, we find

y = ±De−t
2
.

We can summarize all solutions we found as:

y(t) = Ae−t2 where A is any real number.
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The differential equation dy/dt = −2*t*y
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Example: Consider the equation
dy
dt = − t

y .

First observe that there are no equilibrium solutions. (y = 0 is a singular point.)

Collect terms:
y dy = −t dt.

Integrate:
1
2 y2 = −12 t2 + C.

Reformulate slightly:
y2 + t2 = 2C.

You could solve for y to get:
y(t) = ±

√
2C − t2.
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y=0 (FORBIDDEN)
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Section 1.4: Euler’s method for solving DEs
Consider a DE:  y′(t) = f (t, y),

y(a) = y0.

We seek a solution on the interval I = [a,b].

How would you find an approximate solution using a computer?

In the example that follows we solve the very simple equation y′(t) = y,
y(0) = y0 = 0.3
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The forwards Euler method − starting conditions (h = 0.50)

 y′(t) = y,
y(0) = y0 = 0.3
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 y′(t) = y,
y(0) = y0 = 0.3
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 y′(t) = y,
y(0) = y0 = 0.3
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The forwards Euler method − step 3 (h = 0.50)

 y′(t) = y,
y(0) = y0 = 0.3
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The forwards Euler method − step 4 (h = 0.50)

 y′(t) = y,
y(0) = y0 = 0.3
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The forwards Euler method: N = 4   error = 0.6980

 y′(t) = y,
y(0) = y0 = 0.3
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 y′(t) = y,
y(0) = y0 = 0.3
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 y′(t) = y,
y(0) = y0 = 0.3
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 y′(t) = y,
y(0) = y0 = 0.3



Section 1.4: Euler’s method for solving DEs
Consider a DE:  y′(t) = f (t, y),

y(a) = y0.

We seek a solution on the interval I = [a,b].

Split the interval into N points, separated a distance h =
b− a
N :

t0 = a, t1 = a + h, t2 = a + 2h t3 = a + 3h, · · · tN = b.

Now approximate y(t) by a sequence of straight lines:

y0 = y0
y1 = y0 + h f (t0, y0),
y2 = y1 + h f (t1, y1),
y3 = y2 + h f (t2, y2),



Section 1.4: Euler’s method for solving DEs
Key points about Euler’s method (a.k.a. “the Forwards Euler method”):

• You should know the formula.

• You should know that the error depends on the number of intervals used.
Roughly, if you double the number of intervals, you half the error.
Technically, we say the error E satisfies E = O(h) or, equivalently, E = O(1/N).

• This method is extremely simple to use, which is why we teach it in APPM2360.
However, it is a very bad method.

• There are other easy-to-use methods that are much better!
If you need to code up a method, then read up a little.
(Or take more APPM courses!)

• Even better, there are black-box numerical integrators that are extremely good and
also very easy to use.
• You specify a desired error, the black-box figures out what h should be.
• The step-size changes from step-to-step!



Consider a DE:

 y′(t) = f (t, y),
y(a) = y0.

An “ad hoc” scheme whose error decays as 1/N2 as N →∞
First compute y1 using forwards Euler: y1 = y0 + h f (t0, y0).
Then proceed via the formula: yn+1 = yn−1 + 2h f (tn, yn)
The second order “Runge-Kutta” method:
Given yn, compute two intermediate values:

k1 =f (tn, yn),
k2 =f (tn + (1/2)h, yn + (1/2)h k1).

Then yn+1 = yn + h k2.
The fourth order “Runge-Kutta” method:
Given yn, compute four intermediate values:

k1 =f (tn, yn),
k2 =f (tn + (1/2)h, yn + (1/2)h k1),
k3 =f (tn + (1/2)h, yn + (1/2)h k2),
k4 =f (tn + h, yn + h k3).

Then yn+1 = yn + h 1
6 (k1 + 2k2 + 2k3 + k4).


