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Problem addressed: The talk concerns numerical methods for boundary value
problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain with boundary Γ, and where A is a linear elliptic differential operator
(with possibly variable coefficients).

Examples of problems we are interested in:
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Archetypical example: Poisson equation with Dirichlet boundary data:−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.



Problem addressed: The talk concerns numerical methods for boundary value
problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain with boundary Γ, and where A is a linear elliptic differential operator
(with possibly variable coefficients).

Linear solution operators: As a warmup, let us consider the Poisson equation

−∆u(x) = g(x) x ∈ R2

(with suitable decay conditions at infinity to ensure uniqueness). The solution is given by

(SLN) u(x) =

∫
R2
φ(x − y)g(y)dy , x ∈ R2.

where the “fundamental solution” of the Laplace operator −∆ on R2 is defined by

φ(x) = − 1
2π log |x|.

In principle very simple. Numerically non-trivial, however: The operator is global, so
discretizing it leads to a dense matrix. (There is also the singular kernel to worry about!)



Problem addressed: The talk concerns numerical methods for boundary value
problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain with boundary Γ, and where A is a linear elliptic differential operator
(with possibly variable coefficients).

Linear solution operators: A general solution operator for (BVP) takes the form

(SLN) u(x) =

∫
Ω
G(x,y)g(y)dy +

∫
Γ
F(x,y) f (y)dS(y), x ∈ Ω,

where G and F are two kernel functions that depend on A, B, and Ω.

Bad: The kernels G and F in (SLN) are generally unknown.
(Other than in trivial cases — constant coefficients and very simple domains.)

Bad: The operators in (SLN) are global.
Dense matrices upon discretization. O(N2) cost? O(N3) cost?

Good: The operators in (SLN) are friendly and nice.
Bounded, smoothing, often fairly stable, etc.



Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ.
(BVP)

Explicit solution formula: u(x) =

∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

Recurring idea: Upon discretization,
(SLN) leads to a matrix with off-diagonal
blocks of low numerical rank.

This property can be exploited to attain
linear or close to linear complexity for
operations such as matrix-vector multi-
ply, matrix-matrix multiply, LU factoriza-
tion, matrix inversion, forming of Schur
complements, etc.

All gray blocks have low rank.

Strong connections to Calderón-Zygmund theory for singular integral operators.
References: Fast Multipole Method (Greengard, Rokhlin); Panel Clustering (Hackbusch); H- and

H-matrices (Hackbusch et al); Hierarchically Block Separable matrices; Hierarchically Semi Separable

matrices (Xia et al); HODLR matrices (Darve et al); BLR matrices (Buttari, Amestoy, Mary, . . . ); . . .
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∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

In real life, tessellation patterns of rank structured matrices tend to be more complex . . .

Image credit: Ambikasaran & Darve, arxiv.org #1407.1572



Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ.
(BVP)

Explicit solution formula: u(x) =

∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

The talk will describe recent work on algorithms that numerically construct an
approximation to (SLN).

When using these algorithms, the process of solving (BVP) splits into two stages:
1. “Factorization” or “build” stage: Build a representation of the inverse operator.
2. “Solve” stage: Apply the computed inverse to given data f and g.

Typical characteristics of methods of this type:
• Memory usage tends to be high.
• Stage 1 tends to be slower than an iterative solve, when convergence is fast.
• Stage 2 is almost always VERY fast.

FDS is most competitive when:
• Getting iterative methods to converge rapidly is hard.
• When the cost of Stage 1 can be amortized over many solves.



History:

1980s: Rokhlin and Greengard develop the Fast Multipole Method.

1991: Beylkin, Coifman, Rokhlin: Fast algorithms exist for most solution operators.

1996: Michielssen, Boag, Chew: Fast direct solvers for 3D scattering problems in
certain geometries.

1998 onwards: Hackbusch, Bebendorf, Börm, Grasedyck, Khoromskij, Sauter,
Tyrtyshnikov, . . . develop H and H2-frameworks that provide explicit recipes for operator
algebra in O(n logr n) operations for r moderate.



Outline of talk:

• Introduction: Problem formulation & solution operators. [Done!]

• Curse of dimensionality.

• Interaction ranks — why are they small? How small are they?

• Versions of fast direct solvers — “strong” versus “weak” etc.

• High order discretizations and fast direct solvers.



Curse of dimensionality
Algorithms involving rank-structured matrices scale very poorly with dimension.
For instance, for the classical Fast Multipole Method, key quantities scale as:

Dimension Typical ranks Number of “neighbors” Length of “interaction list”
1 2 2 3
2 10–50 8 27
3 50–500 26 189
d (log(1/ε))d−1 3d − 1 6d − 3d

For fast direct solvers, the scaling with dimension is equally problematic:

Current state of affairs
1 Extremely fast. Linear scaling is easy to attain.
2 Quite fast in practice, but simple methods do not scale linearly.
3 Slow. Basic methods cannot go much beyond N ≈ 107.
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Curse of dimensionality
Algorithms involving rank-structured matrices scale very poorly with dimension.
For instance, for the classical Fast Multipole Method, key quantities scale as:

Dimension Typical ranks Number of “neighbors” Length of “interaction list”
1 2 2 3
2 10–50 8 27
3 50–500 26 189
d (log(1/ε))d−1 3d − 1 6d − 3d

For fast direct solvers, the scaling with dimension is equally problematic:

Effective Dimension Current state of affairs
1 Extremely fast. Linear scaling is easy to attain.
2 Quite fast in practice, but simple methods do not scale linearly.
3 Slow. Basic methods cannot go much beyond N ≈ 107.

Fortunately, we can often reduce the effective dimensionality.
For many 3D problems, the dense problems we need to invert “live” on 2D domains!



Curse of dimensionality: Dimension reduction via an integral equation

Recall that many boundary value problems can ad-
vantageously be recast as boundary integral equa-
tions. Consider, e.g., (sound-soft) acoustic scatter-
ing from a finite body:

(3)


−∆u(x)− κ2 u(x) = 0 x ∈ R3\Ω

u(x) = v(x) x ∈ ∂Ω

lim
|x|→∞

|x|
(
∂|x|u(x)− iκu(x)

)
= 0.

The BVP (3) is in many ways equivalent to the BIE

(4) − πiσ(x) +

∫
∂Ω

((
∂n(y) + iκ

) eiκ|x−y |
|x − y |

)
σ(y)dS(y) = f (x), x ∈ ∂Ω.

The integral equation (4) has several advantages over the PDE (3), including:
• The domain of computation ∂Ω is finite.
• The domain of computation ∂Ω is 2D, while R3\Ω is 3D.
• Equation (4) is inherently well-conditioned (as a “2nd kind Fredholm equation”).

A serious drawback of integral equations is that they lead to dense coefficient matrices.
Since we are interested in constructing inverses anyway, this is unproblematic for us!



Curse of dimensionality: Dimension reduction via sparse direct solvers

Let us next consider what happens if we directly discretize the PDE (using, say, finite
elements or finite differences) to obtain a linear system

Au = b

involving a sparse coefficient matrix A.

Key idea: Do a sparse LU factorization based on a “nested dissection” ordering of the
grid as an outer solver. Then use rank structured matrix algebra to deal with the dense
matrices that arise.



Curse of dimensionality: Dimension reduction via sparse direct solvers

A 2D model problem: Let Ω = [0,1]2 and Γ = ∂Ω. We seek to solve

(5)

−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We introduce an n× n grid on Ω with nodes {xj}Nj=1 where N = n2, see Figure A. Letting
u = [u(j)]Nj=1 denote a vector of approximate solution values, u(j) ≈ u(xj), and using the
standard five-point stencil to discretize −∆, we end up with a sparse linear system

Au = b,

where [Au](k) = 1
h2
(
4u(k)− u(ks)− u(ke)− u(kn)− u(kw)

)
, see Figure B.

Figure A: The grid

k kekw

ks

kn

h = 1
n+1

Figure B: The 5-point stencil



Divide-and-conquer: Split the nodes in three groups as shown so that there are no
connections between nodes in Ω1 and Ω2. Then A has zero blocks as shown:

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

Now suppose that we can somehow construct A−111 and A−122 . Then

A =


I 0 0
0 I 0

A31A−111 A32A−122 I



A11 0 0
0 A22 0
0 0 S33




I 0 A−111A13
0 I A−122A23
0 0 I


where S33 = A33 − A31A−111A13 − A32A−122A23 is a Schur complement.
In other words, in order to invert A, we need to execute three steps:
• Invert A11 to form A−111 . size ∼ N/2× N/2
• Invert A22 to form A−122 . size ∼ N/2× N/2
• Invert S33 = A33 − A31A−111A13 − A32A−122A23. size ∼

√
N ×

√
N

Notice the obvious recursion!

Ω1 Ω2

Ω3
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Divide-and-conquer: Split the nodes in three groups as shown so that there are no
connections between nodes in Ω1 and Ω2. Then A has zero blocks as shown:

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

Now suppose that we can somehow factor A11 = L11U11 and A22 = L22U22. Then

A =


L11U11 0 A13

0 L22U22 A23
A31 A32 A33

 =


L11 0
0 L22

A31U−111 A32U−122 I




I 0 0
0 I 0
0 0 S33



U11 0 L−111A13
0 U22 L−122A23
0 0 I

 .
where S33 = A33 − A31U−111 L

−1
11A13 − A32U−122 L

−1
22A23 is a Schur complement.

In other words, in order to invert A, we need to execute three steps:
• Factor A11 to form A11 = L11U11. size ∼ N/2× N/2
• Factor A22 to form A22 = L22U22. size ∼ N/2× N/2
• Factor S33 = A33 − A31U−111 L

−1
11A13 − A32U−122 L

−1
22A23. size ∼

√
N ×

√
N

Notice the obvious recursion!



Sparse direct solvers with nested dissection ordering
Typically, nested dissection orderings are more complicated:

Image credit: Jianlin Xia, “Robust and Efficient Multifrontal Solver for Large Discretized PDEs”, 2012

Observe that while the computational domain is 2D in this example, the rank structured
matrices all live on the colored 1D domains.



Curse of dimensionality: Dimension reduction

Key point: When faced with a BVP in 3D, you can almost always build direct solvers
that rely on dense operator algebra that are defined only 2D domains.

1. Constant coefficient problems: Reformulate as integral equation on boundary.

2. Variable coefficient problems: Use a sparse direct solver as an “outer” solver.



Outline of talk:

• Introduction: Problem formulation & solution operators. [Done!]

• Curse of dimensionality. [Done!]
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• High order discretizations and fast direct solvers.



Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ.
(BVP)

Explicit solution formula: u(x) =

∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

Question: Why do the dense matrices resulting upon discretization of (SLN) typically
have off-diagonal blocks of low numerical rank?

(One) Answer: It is a consequence of the smoothing effect of elliptic differential
equations; it can be interpreted as a loss of information.

This effect has many well known physical consequences:

• Rapid convergence of multipole expansions when the region of sources is far away
from the observation point.
• The St Venant principle in mechanics.
• The inaccuracy of imaging at sub-wavelength scales.
• The intractability of solving the heat equation backwards.

Caveat: High-frequency problems present difficulties — no loss of information for
length-scales > λ. Extreme accuracy of optics, high-frequency imaging, etc.



Interaction ranks: A simple potential evaluation problem
We consider the problem of evaluating an electric field generated by sources in a box:
Let Ωs be the red square. It holds a “source” distribution σ.
Let Ωt be the blue square. It holds “target” points where we evaluate the field

u(x) = [Lσ](x) =

∫
Ωs
φ(x − y)σ(x)dy , x ∈ Ωt.

Claim: This singular values of L decay exponentially fast.
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singular values of L

error in multipole expansions

analytic bound

In this simple case, there is an analytic expansion (a “multipole expansion”)

φ(x − y) =
k∑

j=1
bj(x)cj(y) + Ek(x,y), x ∈ Ωt, y ∈ Ωs,

for which it is known that |Ek(x,y)| ≤ C (
√
2/3)k/2.



Interaction ranks: A simple potential evaluation problem
We consider the problem of evaluating an electric field generated by sources in a box:
Let Ωs be the red square. It holds a “source” distribution σ.
Let Ωt be the blue square. It holds “target” points where we evaluate the field

u(x) = [Lσ](x) =

∫
Ωs
φ(x − y)σ(x)dy , x ∈ Ωt.

The decay depends strongly on the geometry.
In FDS, it is often advantageous to have interacting regions closer:
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This situation is harder to analyze — a multipole expansion does not work.
However, numerical compression works very well.
Randomized low rank approximation is particularly helpful.



Interaction ranks: A simple potential evaluation problem
Now let us consider a Helmholtz problem, φκ(x) = H(1)

0 (κ|x|).
Let Ωs be the red square. It holds a “source” distribution σ.
Let Ωt be the blue square. It holds “target” points where we evaluate the field

u(x) = [Lσ](x) =

∫
Ωs
φκ(x − y)σ(x)dy , x ∈ Ωt.

We first consider a small Helmholtz parameter, corresponding to diam(Ωs) = 1.6λ.
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It looks pretty much like the Laplace problem.



Interaction ranks: A simple potential evaluation problem
Now let us consider a Helmholtz problem, φκ(x) = H(1)

0 (κ|x|).
Let Ωs be the red square. It holds a “source” distribution σ.
Let Ωt be the blue square. It holds “target” points where we evaluate the field

u(x) = [Lσ](x) =

∫
Ωs
φκ(x − y)σ(x)dy , x ∈ Ωt.

Now consider a high Helmholtz parameter, corresponding to diam(Ωs) = 11.3λ.
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Observe how there is a flat plateau before the singular values start to decay.
The plateau reflect the need to resolve all features larger than the wavelength.



Interaction ranks: Boundary integral equations
Let us consider two simple boundary integral equations on a boundary Γ:
The first is a reformulation of a Dirichlet problem involving the Laplace equation:

ασ(x) +

∫
Γ

(
d(x,y) + s(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The second is a reformulation of a Dirichlet problem involving the Helmholtz equation:

βσ(x) +

∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The kernels are derived from the corresponding fundamental solutions:

s(x,y) =φ(x − y),

d(x,y) =∂n(y)φ(x − y),

sκ(x,y) =φκ(x − y),

dκ(x,y) =∂n(y)φκ(x − y),

where, as before,

φ(x) =− 1
2π log |x|,

φκ(x) =
i
4H

(1)
0 (κ|x|).



Interaction ranks: Boundary integral equations
Let us consider two simple boundary integral equations on a boundary Γ:
The first is a reformulation of a Dirichlet problem involving the Laplace equation:

ασ(x) +

∫
Γ

(
d(x,y) + s(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The second is a reformulation of a Dirichlet problem involving the Helmholtz equation:

βσ(x) +

∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

Let A denote the matrix resulting from discretization of either BIE.

On the next slide, we show the singular values of the off-diagonal block A23.



Interaction ranks: Boundary integral equations
The ranks of an off-diagonal block of A:
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This is all as expected. Can be proven directly from properties of the kernels.

Now the fun part! We set B = A−1, and plot the svds of the off-diagonal block B23.
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Remarkable similarity!
(Observe ill-conditioning due to close resonances for the Helmholtz BIE.)
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This is all as expected. Can be proven directly from properties of the kernels.
Now the fun part! We set B = A−1, and plot the svds of the off-diagonal block B23.
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Interaction ranks: Stiffness matrix from finite difference discretization
Recall our example of Laplace’s equation discretized using the 5-point stencil.

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

We build the Schur complement S = A33 − A31A−111A13 − A32A−122A23.
Then split the Schur complement into four parts:

Iα

Iβ

S =
Sαα Sαβ

SββSβα

We explore the svds of Sαβ — encoding interactions between Iα and Iβ.
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Interaction ranks: Stiffness matrix from finite difference discretization

Let us try a few different PDEs, and different problem sizes:

Note: The rank decay property is remarkably stable!
Note: The decay continues to εmach — regardless of the discretization errors!



Interaction ranks: Stiffness matrix from finite difference discretization

Next, let us consider Helmholtz problems with increasing wave numbers.

We recognize this pattern from the potential evaluation operator:
Fast decay once oscillations are resolved.
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Interaction ranks: Stiffness matrix from finite difference discretization

Finally, let us consider the analogous 3D problem.

The geometry.



Interaction ranks: Stiffness matrix from finite difference discretization

Finally, let us consider the analogous 3D problem.

The singular values.



Outline of talk:

• Introduction: Problem formulation & solution operators. [Done!]

• Curse of dimensionality. [Done!]

• Interaction ranks — why are they small? How small are they? [Done!]

• Versions of fast direct solvers — “strong” versus “weak” etc.

• High order discretizations and fast direct solvers.



Versions of fast direct solvers: “strong” versus “weak” admissibility
Weak admissibility: Compress directly adjacent patches.

The geometry The matrix

Left: Points in a box Ω = [0,1]2.
Red sources induce potentials on
blue points. Average rank=13.9 at
ε = 10−8.

Right: Magenta blocks are dense.
Cyan blocks low rank. Many low
rank blocks, but high ranks.

Strong admissibility: Compress only “far-field” interactions.
The geometry The matrix

Left: Points in a box Ω = [0,1]2.
Red sources induce potentials on
blue points. Average rank=7.7 at
ε = 10−8.

Right: Magenta blocks are dense.
Cyan blocks low rank. More dense
blocks, but lower ranks.
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Versions of fast direct solvers: “flat” versus “hierarchical” tessellations
Flat tessellations Hierarchical tessellations

Use a single tessellation of the domain. Use a hierarchy of tessellations.



Versions of fast direct solvers: “flat” versus “hierarchical” tessellations
Flat tessellations Hierarchical tessellations

Use a single tessellation of the domain. Use a hierarchy of tessellations.
The resulting matrix: The resulting matrix:

Easy to work with. More complicated to code and analyze.
Sometimes “good enough”. Better asympt. complexity (can be linear).



Versions of fast direct solvers: “nested” versus “general” bases
General bases: Let us consider a basic rank structured matrix:

Question: How much storage is required?



Versions of fast direct solvers: “nested” versus “general” bases
General bases: Let us consider a basic rank structured matrix:
Observe that you can view the matrix as a sum over different “levels”:

Let k denote the rank of the off-diagonal blocks.

At each level, the cost to store the factors is ∼ Nk.

There are ∼ log(N) levels, so total storage ∼ kN log(N).



Versions of fast direct solvers: “nested” versus “general” bases
Nested bases: These were introduced to eliminate log-factors, and improve efficiency.

The idea is to define the low rank factors for the off-diagonal blocks recursively
— the bases on one level are defined in terms of the bases on the next finer level.

Formally, this leads to a multiplicative representation, rather than an additive one.
For instance, it could take the form

A = U(3)(U(2)(U(1) B(0) (V(1))∗ + B(1))(V(2))∗ + B(2))(V(3))∗ + D(3),

where pictorially, the shapes of the factors are as follows:
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

The cost to store level ` is now 2−`Nk → geometric sum and O(kN) total storage.
Note: The classical Fast Multipole Method relies on nested bases.
This is in contrast to Barnes-Hut which (implicitly) uses general bases.



Versions of fast direct solvers:

We can now loosely organize some common rank-structured matrix “formats”:

Flat Hierarchical
General bases Nested bases

Weak
admissi-
bility

Block Separable Hierarchically off-diagonal
low rank (HODLR)

Hierarchically Block Sep-
arable (HBS/HSS); recur-
sive skeletonization

Strong
admissi-
bility

Block Low Rank H-matrices; Barnes-Hut H2-matrices; Fast Multi-
pole Method; strong recur-
sive skeletonization

Complexity of implementation increases as you go down and to the right in the table.
Asymptotic flop count decreases as you go down and to the right in the table.
The higher the dimension, the more complex scheme you need to use.

Recommendation: Use the simplest format that gives acceptable computational cost.

Note: In principle, the term “H-matrix” is extremely broad — every other format is a special case.

However, the table reflects the standard usage of the term.



Versions of fast direct solvers: selection of references

• H- and H2-matrices: Hackbusch (1999); Khoromskij, Hackbusch (2000); Börm,
Grasedyck, Hackbusch (2003); . . .
• Recursive skeletonization: Lee, Greengard, (1992); Starr, Rokhlin (1994);
Michielssen, Boag, Chew (1996); Martinsson, Rokhlin (2005); Greengard, Gueyffier,
Martinsson, Rokhlin (2009); Ho, Greengard (2012); Ho, Ying (2016); . . .
• HSS matrices: Xia, Chandrasekaran, Gu, and Li (2009); Xia (2012); Wang, Li, Xia,
Situ, De Hoop (2013); Xi, Xia (2016); . . .
• Hierarchically off-diagonal low rank (HODLR) matrices: Aminfara, Ambikasaran,
Darve (2016); Massei, Robol, Kressner (2020); . . .
• Block low rank (BLR) matrices: Amestoy, Ashcraft, Boiteau, Buttari, l’Excellent,
Weisbecker (2015); Amestoy, Buttari, l’Excellent, Mary (2017); . . .

Survey: Ballani & Kressner (2016).

Monographs: Bebendorf (2008). Börm (2010). Martinsson (2019).
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Fast direct solvers and high order methods
Claim: Direct solvers are ideal for combining with high order discretization.

• Direct solvers use a lot of memory per degree of freedom.
→ You want to maximize the oomph per DOF.

• Direct solvers are particularly well suited for “high” frequency wave problems.
→ Need high accuracy due to ill-conditioned physics.

• High order methods sometimes lead to more ill-conditioned systems.
→ Can be hard to get iterative solvers to converge.

Problem: If you combine “nested dissection” with traditional discretization techniques
(FD, FEM, etc), then the performance plummets as the order is increased.
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Fast direct solvers and high order methods
Claim: Direct solvers are ideal for combining with high order discretization.

• Direct solvers use a lot of memory per degree of freedom.
→ You want to maximize the oomph per DOF.

• Direct solvers are particularly well suited for “high” frequency wave problems.
→ Need high accuracy due to ill-conditioned physics.

• High order methods sometimes lead to more ill-conditioned systems.
→ Can be hard to get iterative solvers to converge.

Problem: If you combine “nested dissection” with traditional discretization techniques
(FD, FEM, etc), then the performance plummets as the order is increased.
Solution: Pick your discretization scheme carefully!

• When discretizing the PDE, use methods that play well with “static condensation”.
You want a clean separation between “interior” and “edge” degrees of freedom.
• Multidomain spectral collocation methods (“HPS”, “ultraSEM”, etc.).
• Discontinuous Galerkin. (I think.)

• When integral equation formulations are used, pick quadratures that have as
localized “corrections” as possible. (Very technical point here!)



Fast direct solvers and high order methods: Multidomain spectral collocation
As a numerical illustration, let us consider the “Hierarchical Poincaré-Steklov (HPS)”
method. We set Ω = [0,1]2 and Γ = ∂Ω, and consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We discretize using spectral collocation on a composite grid on Ω (Chebyshev nodes):

On patch boundaries, we enforce continuity of the potential and the normal derivative.
(See talks by Chen and Fortunato in MS31 for details.)
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method. We set Ω = [0,1]2 and Γ = ∂Ω, and consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).
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Fast direct solvers and high order methods: Multidomain spectral collocation
As a numerical illustration, let us consider the “Hierarchical Poincaré-Steklov (HPS)”
method. We set Ω = [0,1]2 and Γ = ∂Ω, and consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).
The spectral computation on a leaf involves 21× 21 points.
κ is chosen so that there are 12 points per wave-length.

p N Nwave tbuild tsolve Epot Egrad M M/N
(sec) (sec) (MB) (reals/DOF)

21 6561 6.7 0.23 0.0011 2.56528e-10 1.01490e-08 4.4 87.1
21 25921 13.3 0.92 0.0044 5.24706e-10 4.44184e-08 18.8 95.2
21 103041 26.7 4.68 0.0173 9.49460e-10 1.56699e-07 80.8 102.7
21 410881 53.3 22.29 0.0727 1.21769e-09 3.99051e-07 344.9 110.0
21 1640961 106.7 99.20 0.2965 1.90502e-09 1.24859e-06 1467.2 117.2
21 6558721 213.3 551.32 20.9551 2.84554e-09 3.74616e-06 6218.7 124.3

Error is measured in sup-norm: e = maxx∈Ω |u(x)− uexact(x)|.
Note: The times refer to a simple Matlab implementation executed on a $1k laptop.
Note: Fixed number of points per wave-length. Almost no “pollution error”!



Fast direct solvers and high order methods: Multidomain spectral collocation
By incorporating rank-structured matrix algebra for the Schur complements, we can
access larger problem sizes, and get linear scaling in important cases.

Problem N Tbuild Tsolve MB

Laplace
1.7e6 91.68 0.34 1611.19
6.9e6 371.15 1.803 6557.27
2.8e7 1661.97 6.97 26503.29
1.1e8 6894.31 30.67 106731.61

Helmholtz I
1.7e6 62.07 0.202 1611.41
6.9e6 363.19 1.755 6557.12
2.8e7 1677.92 6.92 26503.41
1.1e8 7584.65 31.85 106738.85

Helmholtz II
1.7e6 93.96 0.29 1827.72
6.9e6 525.92 2.13 7151.60
2.8e7 2033.91 8.59 27985.41

Helmholtz III
1.7e6 105.58 0.44 1712.11
6.9e6 510.37 2.085 7157.47
2.8e7 2714.86 10.63 29632.89

(About six accurate digits in solution.)



Fast direct solvers and high order methods: Boundary integral equations
Let us consider a multibody scattering problem involving multiple cavities:

Acoustic scattering on the exterior domain. Each bowl is about 5λ.

A hybrid direct/iterative solver is used (a highly accurate scattering matrix is computed
for each body). On an office desktop, we achieved an accuracy of 10−5, in about 6h
(essentially all the time is spent in applying the inter-body interactions via the Fast
Multipole Method). Accuracy 10−7 took 27h. [2015, CAMWA, Hao/M./Young]



Fast direct solvers and high order methods: Boundary integral equations
Consider sound-soft scattering from a multi-body scatterer of size 4 wave-lengths:

The global scattering matrix is computed using the hierarchical direct solver described.
(The ellipsoids are not rotationally symmetric.)

[2015, BIT, with Bremer/Gillman/Martinsson.]



Fast direct solvers and high order methods: Boundary integral equations
The local truncation error is set to 10−3.

Grid dimensions N T E Ratio Predicted
2× 2× 2 12 288 1.02× 10+1 3.37× 10−04 - -
3× 3× 3 41 472 3.43× 10+1 4.81× 10−04 3.4 6.2
4× 4× 4 98 304 7.92× 10+1 1.57× 10−04 2.3 3.7
6× 6× 6 331 776 2.96× 10+2 7.03× 10−04 3.7 6.2
8× 8× 8 786 432 6.70× 10+2 4.70× 10−04 2.3 3.7

10× 10× 10 1 536000 2.46× 10+3 3.53× 10−04 3.7 2.7

Increasing the accuracy is possible, but comes at a cost.
Now the local truncation error is set to 10−6.

Grid dimensions N T E Ratio Predicted
2× 2× 2 49 152 1.61× 10+2 1.22× 10−07 - -
3× 3× 3 165 888 6.87× 10+2 4.92× 10−07 4.3 6.2
4× 4× 4 393 216 1.68× 10+3 5.31× 10−07 2.4 3.6
6× 6× 6 1 327104 6.66× 10+3 4.60× 10−06 4.0 6.2
8× 8× 8 3 145728 1.59× 10+4 2.30× 10−07 2.4 3.6

[2015, BIT, with Bremer/Gillman/Martinsson.]



Fast direct solvers and high order methods: Boundary integral equations

The domain is roughly 2× 2× 0.7 wave-lengths in size.

Ntriangles N T E
32 1 664 7.16× 10+00 3.51× 10−02

128 6 656 6.29× 10+01 4.41× 10−03

512 26 624 2.81× 10+02 4.08× 10−05

2 048 106 496 2.60× 10+03 7.80× 10−07

8 192 425 984 1.47× 10+04 3.25× 10−08

(Note: Laplace problems are much faster.)

[2015, BIT, with Bremer/Gillman/Martinsson.]



Fast direct solvers and high order methods: Boundary integral equations

A surface Γ with corners and edges.

The grid has been refined to attain high accuracy.

Computing scattering matrices for the corners is
conceptually easy (but laborious). The direct
solver eliminates “extra” DOFs.

Compressing the edges takes effort!

Ntris N E T Nout × Nin

192 21 504 2.60× 10−08 6.11× 10+02 617× 712
432 48 384 2.13× 10−09 1.65× 10+03 620× 694
768 86 016 3.13× 10−10 3.58× 10+03 612× 685

Results from a Helmholtz problem (acoustic scattering) on the domain exterior to the “edgy” cube.
The domain is about 3.5 wave-lengths in diameter.

[2015, BIT, with Bremer/Gillman/Martinsson.]



Fast direct solvers and high order methods: “FEM-BEM coupling”
Consider the free space acoustic scattering problem

−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

Joint work with A. Barnett and A. Gillman.

Introduce an artificial box Ω such that support(b) ⊆ Ω.

On Ω:
• Variable coefficient PDE.

On Ωc:
• Constant coefficient PDE.

• Use HPS. • Use BIE.
• Build DtN for ∂Ω. • Build DtN for ∂Ωc.

• Merge using fast operator algebra!
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Fast direct solvers and high order methods: “FEM-BEM coupling”
−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b
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The outgoing field uout (resulting from an incoming plane wave uin(x) = cos(κ x1))

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−7 (estimated)
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Fast direct solvers and high order methods: “FEM-BEM coupling”
−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b — now a photonic crystal with a wave guide.

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−6 (estimated)



Fast direct solvers and high order methods: “FEM-BEM coupling”
−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The total field u = uin + uout (resulting from an incoming plane wave uin(x) = cos(κ x1)).



Fast direct solvers and high order methods: rank deficiencies in HPS
Recall that at the top level, we need to invert a dense matrix that is defined on the nodes
of the interface high-lighted in red and blue below. This matrix holds restrictions of the
Dirichlet-to-Neumann (DtN) operators for the two blocks. We have claimed that this
matrix is rank-structured. But what are the ranks?

Let T denote the restriction of the DtNma-
trix mapping Dirichlet data on Γ1 to Neu-
mann data on Γ2 for a 1 089× 1 089 grid.
Then T is of size 512× 512.
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Singular values of T.

Laplace problem.
Rank=22.
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Fast direct solvers and high order methods: rank deficiencies in HPS
Recall that at the top level, we need to invert a dense matrix that is defined on the nodes
of the interface high-lighted in red and blue below. This matrix holds restrictions of the
Dirichlet-to-Neumann (DtN) operators for the two blocks. We have claimed that this
matrix is rank-structured. But what are the ranks?

Let T denote the restriction of the DtNma-
trix mapping Dirichlet data on Γ1 to Neu-
mann data on Γ2 for a 1 089× 1 089 grid.
Then T is of size 512× 512.
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Singular values of T.

Helmholtz problem.
Domain is 110λ× 110λ.
Rank=85.



Fast direct solvers and high order methods: Lippmann-Schwinger
Consider the free space acoustic scattering problem

(6)


−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

We addressed this problem earlier using a multidomain spectral discretization.

Let us now use an integral equation formulation. It is well known that (6) has an
alternative formulation in the Lippmann-Schwinger integral equation

(7) σ(x) + κ2b(x)

∫
Ω
φκ(x − y)σ(y)dy = −κ2b(x)v(x), x ∈ Ω,

where φκ is the free space fundamental solution of the Helmholtz equation.

We discretize (7) using the trapezoidal rule on a uniform grid, with Duan-Rokhlin
quadrature corrections of order 10.



Fast direct solvers and high order methods: Lippmann-Schwinger

The scattering potential κ = 50

κ = 201 κ = 804



Fast direct solvers and high order methods: Lippmann-Schwinger
Fixed 10 points per wavelength.
Direct solver is run at accuracy 10−3 and used as a preconditioner.
Weak admissibility is used.

N κ Tbuild Tinv Tgmres mem iter res
6400 50.27 0.23 0.24 0.20 0.04 4 6.97e-11
25600 100.53 0.65 0.99 0.62 0.21 5 6.16e-12
102400 201.06 2.26 4.36 2.49 1.01 6 1.04e-12
409600 402.12 14.91 20.06 9.78 4.67 6 3.23e-11
1638400 804.25 99.01 91.37 56.13 21.16 9 8.12e-12
6553600 1608.50 430.60 398.88 330.91 94.63 13 3.93e-11
26214400 3216.99 3102.09 2024.16 2698.53 418.37 22 3.30e-11

The largest experiment is over 500λ in diameter: Less than 3h total run time.

Hardware: Workstation with dual Intel Xeon Gold 6254 (18 cores at 3.1GHz base
frequency).

Joint with Abi Gopal, arxiv #2007.12718



Fast direct solvers and high order methods: rough surface scattering
Consider acoustic scattering from an infinite half-plane with 8× 8 bumps:

Each bump is 0.5λ tall and 2λ wide. Total domain is 44λ× 44λ.
The problem is formulated as a BIE, and is discretized using a “Zeta-corrected”
quadrature rule. A direct solver with weak admissibility and O(N1.5) scaling is used.
26M points total, Tbuild = 1200s, Tsolve = 184s
About three digits of accuracy in the computed solution. (Tentative!)

Work in progress - with Abi Gopal and Bowei Wu.



Active research area!

HSS-accelerated multifrontal solvers: J. Xia, M. de Hoop, X. Li, . . .

BLR-accelerated multifrontal solvers: P. Amestoy, C. Ashcraft, A. Buttari,
J-Y. l’Excellent, T. Mary, . . .

Linear complexity recursive skeletonization: K. Ho, L. Ying.

Linear complexity inverse FMM / strong recursive skeletonization: S. Ambikasaran,
E. Darve; V. Minden, K. Ho, A. Damle, L. Ying; M. O’Neil, D. Sushnikova, M. Rachh,
L. Greengard; . . .

High frequency problems: Y. Liu, H. Guo, E. Michielssen; B. Engquist, L. Ying; S. Li,
Y. Liu, P. Ghysels, L. Klaus; S. Börm, C. Börst; B. Bonev, J. Hesthaven; . . .

HPC and heterogenous computing environments: D. Keyes, H. Ltaief, G. Turkiyyah;
G. Biros, C. Chen; . . .

High order spectral element methods: A. Townsend, D. Fortunato;

Apologies for omissions!
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Key Ideas:

The solution operator of a linear elliptic PDE is “friendly.”
• Smoothing.
• Stable.

Long range interactions are low rank.
• Cf. St Venant principle, multipole expansions, etc.
• Smoothness is not necessary.
• Numerical compression is essential.
•Wave problems with small λ remain challenging.

High-order discretizations + FDS.
• Maximize the work done by each DOF to save memory.
• Perfect for ill-conditioned problems with oscillatory solutions.
• Requires care in choosing discretization scheme.

New randomized methods for matrix algebra→ acceleration & simplification.



Where we are now:

• We have developed direct solvers with O(N) complexity for elliptic PDEs with
non-oscillatory (or “mildly oscillatory”) solutions for most standard environments:
• Sparse matrices from FEM/FD/composite spectral/... in both 2D and 3D.
• Boundary integral equations in 2D and 3D. (Work in progress . . . )

• Advantages of direct solvers:
• Often instantaneous solves once a solution operator has been built.
• Can eliminate problems with slow convergence of iterative solvers.
• Communication efficient.

• Disadvantages of direct solvers:
• Memory hogs. (But distributed memory is OK.)
• The build stage is still slow for many 3D problems. (I am optimistic that we will fix this!)

Where to go next: New powerful tool available→ lots of opportunities!

• Explore happy couplings:
• Direct solver + high order discretization. (Helps with memory. Wave problems.)
• Direct solver + integral equation formulations. (Need dense matrices anyway.)
• Direct solver + parallelization. (Root of tree is cheap!)
• Direct solver + numerical coarse graining. (Another talk. . . )

• Parabolic and hyperbolic problems. Parallel-in-time methods?



More details in a 2019 monograph:


