

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2016 Society for Industrial and Applied Mathematics
Vol. 38, No. 4, pp. A1959–A1986

COMPRESSING RANK-STRUCTURED MATRICES VIA
RANDOMIZED SAMPLING∗

PER-GUNNAR MARTINSSON†

Abstract. Randomized sampling has recently been proven a highly efficient technique for
computing approximate factorizations of matrices that have low numerical rank. This paper describes
an extension of such techniques to a wider class of matrices that are not themselves rank-deficient
but have off-diagonal blocks that are—specifically, the classes of so-called hierarchically off-diagonal
low rank (HODLR) matrices and hierarchically block separable (HBS) matrices (a.k.a. hierarchically
semiseparable (HSS) matrices). Such matrices arise frequently in numerical analysis and signal
processing, in particular in the construction of fast methods for solving differential and integral
equations numerically. These structures admit algebraic operations (matrix-vector multiplications,
matrix factorizations, matrix inversion, etc.) to be performed very rapidly, but only once a data-
sparse representation of the matrix has been constructed. This paper demonstrates that if an N ×N
matrix, and its transpose, can be applied to a vector in O(N) time, and if the ranks of the off-diagonal
blocks are bounded by an integer k, then the cost for constructing an HODLR representation is
O(k2 N (logN)2), and the cost for constructing an HBS representation is O(k2 N logN) (assuming
that the matrix is compressible in the respective format). The point is that when legacy codes
(based on, e.g., the fast multipole method) can be used for the fast matrix-vector multiply, the
proposed algorithm can be used to obtain the data-sparse representation of the matrix, and then
well-established techniques for HODLR/HBS matrices can be used to invert or factor the matrix.
The proposed scheme is also useful in simplifying the implementation of certain operations on rank-
structured matrices such as matrix-matrix multiplication, low rank update, and addition.

Key words. randomized approximation of matrices, rank-structured matrices, HODLR matrix,
hierarchically block separable matrix, hierarchically semiseparable matrix, fast direct solver

AMS subject classifications. 65N22, 65N38, 15A23, 15A52

DOI. 10.1137/15M1016679

1. Introduction. A ubiquitous task in computational science is to rapidly per-
form linear algebraic operations involving very large matrices. Such operations typi-
cally exploit special “structure” in the matrix since the costs of standard techniques
tend to scale prohibitively quickly with matrix size; for a general N × N matrix,
it costs O(N2) operations to perform a matrix-vector multiplication, O(N3) opera-
tions to perform Gaussian elimination or to invert the matrix, etc. These estimates
can be greatly improved upon, often to O(N), for matrices that are rank-structured,
which means that their off-diagonal blocks have low rank (to some specified toler-
ance). Several different formats for rank-structured matrices have been proposed in
the literature. In this paper, we rely on the so-called hierarchically off-diagonal low
rank (HODLR) format. This name was minted in [1], but this class of matrices has
a long history. It is a special case of the H-matrix format introduced by Hackbusch
and coworkers [18, 3], and it was used explicitly in [26, sec. 4]. The HODLR format is
very easy to describe and easy to use, but it can lead to less than optimal performance
due to the fact that the basis matrices used to represent large blocks are stored ex-
plicitly, leading to an O(kN logN) storage requirement for an HODLR matrix whose

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section April 13,
2015; accepted for publication (in revised form) April 5, 2016; published electronically July 6, 2016.
The research reported was supported by DARPA under contract N66001-13-1-4050 and by the NSF
under contract DMS-1407340.

http://www.siam.org/journals/sisc/38-4/M101667.html
†Dept. of Applied Math., Univ. of Colorado Boulder, Boulder, CO 80309 (martinss@colorado.edu).

A1959

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sisc/38-4/M101667.html
mailto:martinss@colorado.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1960 PER-GUNNAR MARTINSSON

off-diagonal blocks have rank at most k. To attain linear storage requirements and
arithmetic operations, one can switch to a format that expresses all basis matrices
hierarchically ; in other words, the basis matrices used on one level are expressed im-
plicitly in terms of the basis matrices on the next finer level. We sometimes say that
the basis matrices are nested. To be precise, we use the hierarchically block separable
(HBS) format that was described in [29, 15]. This format is closely related to the
hierarchically semiseparable (HSS) [7, 34] format and is also related to the H2-matrix
format [20, 4].

The most straightforward technique for computing a data-sparse representation
of a rank-structured N × N matrix A is to explicitly form all matrix elements and
then compress the off-diagonal blocks using, e.g., the SVD. This approach can be
executed stably [35, 19], but it is often prohibitively expensive, with an O(kN2)
asymptotic cost, where k is the rank of the off-diagonal blocks. Fortunately, there
exist for specific applications much faster methods for constructing rank-structured
representations. When the matrix A approximates a boundary integral operator in the
plane, the technique of [29] computes a representation in O(k2N) time by exploiting
representation results from potential theory. In other environments, it is possible
to use known regularity properties of the off-diagonal blocks in conjunction with
interpolation techniques to obtain a rough initial factorization and then recompress
these to obtain factorizations with close to optimal ranks [4, 30]. A particularly
popular version of the “regularity + recompression” method is the so-called adaptive
cross approximation technique, which was initially proposed for H-matrices [2, 5, 22]
but has recently been modified to obtain a representation of a matrix in a format
similar to the HSS [12].

This paper describes a fast and simple randomized technique for computing a
data-sparse representation of a rank-structured matrix A which can rapidly be ap-
plied to a vector. The existence of such a technique means that the advantages
of the HODLR and HBS formats—fast inversion and factorization algorithms, in
particular—become available for any matrix that can be applied to a vector using
techniques at hand. (For instance, A could be the product of two data-sparse ma-
trices, it could be an operator that can be applied using the fast multipole method
(FMM), etc.) In order to describe the cost of the algorithm precisely, we introduce
some notation: We let A be an N×N matrix whose off-diagonal blocks have maximal
rank k, we let Tmult denote the time required to perform a matrix-vector multiplica-
tion x 7→ A x or x 7→ A∗ x, we let Trand denote the cost of constructing a pseudorandom
number from a normalized Gaussian distribution, and we let Tflop denote the cost of a
floating point operation. The computational cost Ttotal of the algorithm for the HBS
format then satisfies

(1) Ttotal ∼ Tmult × k log(N) + Trand × kN log(N) + Tflop × k2N log(N).

In particular, if Tmult is O(N), then the method presented here has overall complexity
O(k2N log(N)). For the HODLR format, an additional factor of logN arises; cf. (13).

The work presented is directly inspired by [27] (which is based on a 2008 preprint
[25]), which described a similar algorithm with O(k2N) complexity for the compres-
sion of an HBS matrix. This is better by a factor of log(N) compared to the present
work, but the algorithm of [27] has a limitation in that it requires the ability to eval-
uate O(kN) entries of the matrix to be compressed. This algorithm was refined by
Xia [33] and applied to the task of accelerating a “nested dissection” direct solver
[13, 11] for elliptic PDEs to O(N) complexity. In 2011, Lin, Lu, and Ying presented
an alternative algorithm [24] that interacts with the matrix only via matrix-vector

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1961

multiplication, which makes the randomized compression idea much more broadly
applicable than the algorithm in [27]. However, this came at the cost of requiring
O(k log(N)) matrix-vector multiplies (just like the present work). The algorithm
proposed here is an evolution of [24] that does away with a step of least-square fit-
ting in the randomized approximation. Moreover, we here present a new strategy for
enforcing the “nestedness” of the basis matrices that is required in the HBS format,
and unlike [24], we allow the matrix to be nonsymmetric (which means that we must
require that the map x 7→ A∗x also be available).

Remark 1. The technique proposed utilizes a method for computing approximate
low rank factorizations of matrices that is based on randomized sampling [31, 32, 21].
As a consequence, there is in principle a nonzero risk that any given realization of the
algorithm fails to meet the requested tolerance. This risk can be controlled by the
user via the choice of a tuning parameter and can at low cost be set to 10−10 or less;
cf. section 2.5.

2. Preliminaries.

2.1. Notation. Throughout the paper, we measure vectors in Rn using their
Euclidean norm. The default norm for matrices will be the corresponding operator
norm ‖A‖ = sup‖x‖=1 ‖Ax‖, although we will sometimes also use the Frobenius norm

‖A‖Fro = (
∑
i,j |A(i, j)|2)1/2. We use the notation of Golub and Van Loan [16] to spec-

ify submatrices: If B is an m×n matrix, and I = [i1, i2, . . . , ik] and J = [j1, j2, . . . , j`]
are index vectors, then B(I, J) denotes the k × ` matrix

B(I, J) =

B(i1, j1) B(i1, j2) · · · B(i1, j`)
B(i2, j1) B(i2, j2) · · · B(i2, j`)

...
...

...
B(ik, j1) B(ik, j2) · · · B(ik, j`)

 .
We let B(I, :) denote the matrix B(I, [1, 2, . . . , n]) and define B(:, J) analogously. The
transpose of B is denoted B∗, and we say that a matrix U is orthonormal if its columns
are orthonormal, so that U∗U = I.

2.2. The QR factorization. Any m × n matrix A admits a QR factorization
of the form

(2)
A P = Q R,

m× n n× n m× r r × n

where r = min(m,n), Q is orthonormal, R is upper-triangular, and P is a permutation
matrix. The permutation matrix P can more efficiently be represented via a vector
J ∈ Zn+ of column indices such that P = I(:, J), where I is the n× n identity matrix.
As a result, the factorization (2) can be written as

A(: , J) = Q R.
m× n m× r r × n

The QR factorization is often built incrementally via a greedy algorithm such as
column pivoted Gram–Schmidt. This allows one to stop after the first k terms have
been computed (and not complete the full factorization process) to obtain a “partial
QR factorization of A,”

(3)
A(: , J) ≈ Qk Rk.
m× n m× k k × n

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1962 PER-GUNNAR MARTINSSON

2.3. The singular value decomposition (SVD). Let A denote an m × n
matrix, and set r = min(m,n). Then A admits a factorization

(4)
A = U Σ V∗,

m× n m× r r × r r × n

where the matrices U and V are orthonormal, and Σ is diagonal. We let {ui}ri=1

and {vi}ri=1 denote the columns of U and V, respectively. These vectors are the left
and right singular vectors of A. The diagonal elements {σj}rj=1 of Σ are the singular
values of A. We order these so that σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. We let Ak denote the
truncation of the SVD to its first k terms, so that Ak =

∑k
j=1 σj uj v∗j . It is easily

verified that

‖A− Ak‖ = σk+1 and that ‖A− Ak‖Fro =

min(m,n)∑
j=k+1

σ2
j

1/2

.

Moreover, the Eckart–Young theorem states that these errors are the smallest possible
errors that can be incurred when approximating A by a matrix of rank k.

2.4. The interpolative decomposition (ID). Any m×n matrix A of rank k
admits the factorization

A = A(:, J) X,
m× n m× k k × n

where J is a vector of indices marking k of the columns of A, and the k×n matrix X
has the k× k identity matrix as a submatrix and has the property that all its entries
are bounded by 1 in magnitude. In other words, the interpolative decomposition (ID)
picks k columns of A as a basis for the column space of A and expresses the remaining
columns in terms of the chosen ones. The ID can be viewed as a modification to
the so-called rank-revealing QR factorization [6]. It can be computed in a stable and
accurate manner using the techniques of [17], as described in [8]. (Practical algorithms
for computing the ID produce a matrix X whose elements may slightly exceed 1 in
magnitude.)

2.5. Randomized compression. Let A be a given m×n matrix that can accu-
rately be approximated by a matrix of rank k, and suppose that we seek to determine
a matrix Q with orthonormal columns (as few as possible) such that ‖A − Q Q∗A‖
is small. In other words, we seek a matrix Q whose columns form an approximate
orthornomal basis (ON-basis) for the column space of A. This task can efficiently be
solved via the following randomized procedure:

(1) Pick a small integer p representing how much “oversampling” is done. (p = 10
is often good.)

(2) Form an n× (k + p) matrix Ω whose entries are independent and identically
distributed (i.i.d.) normalized Gaussian random numbers.

(3) Form the “sample matrix” Y = A Ω of size m× (k + p).
(4) Construct an m× (k+ p) matrix Q whose columns form an ON-basis for the

columns of Y.
Note that each column of the “sample matrix” Y is a random linear combination of
the columns of A. We would therefore expect the algorithm described to have a high
probability of producing an accurate result when p is a large number. It is perhaps
less obvious that this probability depends only on p (not on m or n, or any other

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1963

properties of A) and that it approaches 1 extremely rapidly as p increases. In fact,
one can show that the basis Q determined by the scheme above satisfies

(5) ‖A−Q Q∗A‖ ≤
[
1 + 11

√
k + p ·

√
min{m,n}

]
σk+1,

with probability at least 1− 6 · p−p; see [21, sec. 1.5]. The error bound (5) indicates
that the error produced by the randomized sampling procedure can be larger than
the theoretically minimal error σk+1 by a factor of 1 + 11

√
k + p ·

√
min{m,n}. This

crude bound is typically very pessimistic, in particular for matrices whose singular
values decay rapidly; cf. [21].

2.6. Functions for low rank factorizations. For future reference, we intro-
duce functions “qr,” “svd,” and “id” that can operate in three different modes. In
the first mode, they produce the full (“economy size”) factorizations described in
sections 2.2, 2.3, and 2.4, respectively,

[Q,R, J] = qr(A), [U,D,V] = svd(A), and [X, J] = id(A).

In practice, we execute these factorizations using standard LAPACK library functions
(proceeding as described in [8] for the ID). In the second mode, we provide an integer
k and obtain partial factorizations of rank k,

[Q,R, J] = qr(A, k), [U,D,V] = svd(A, k), and [X, J] = id(A, k).

Then the matrices Q, U, D, V have precisely k columns, and R and X have precisely
k rows. In the third mode, we provide a real positive number ε and obtain partial
factorizations

[Q,R, J] = qr(A, ε), [U,D,V] = svd(A, ε), and [X, J] = id(A, ε),

such that

‖A(: , J)−QR‖ ≤ ε, ‖A−UDV∗‖ ≤ ε, and ‖A− A(:, J)X‖ ≤ ε.

In practice, for a small input matrix A, we execute mode 2 and mode 3 by calling
the LAPACK routine for a full factorization (the ID can be obtained from the full
QR) and then simply truncating the result. If A is large, then we use the randomized
sampling technique of section 2.5.

Remark 2. The differentiation between modes 2 and 3 for qr, svd, and id is
communicated by whether the second argument is an integer (mode 2) or a real
number ε ∈ (0, 1) (mode 3). This is slightly questionable notation, but it keeps the
formulas clean, and we hope it does not cause confusion.

3. Rank-structured matrices. This section provides exact definitions of the
HODLR and HBS rank-structured matrix formats.

3.1. A binary tree structure. Both the HODLR and the HBS representations
of an N ×N matrix A are based on a partition of the index vector I = [1, 2, . . . , N]
into a binary tree structure. We let I form the root of the tree and give it the index
1, I1 = I. We next split the root into two roughly equisized vectors I2 and I3 so that
I1 = I2 ∪ I3. The full tree is then formed by continuing to subdivide any interval
that holds more than some preset fixed number m of indices. We use the integers
` = 0, 1, . . . , L to label the different levels, with 0 denoting the coarsest level. A leaf

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1964 PER-GUNNAR MARTINSSON

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

Fig. 1. Numbering of nodes in a fully populated binary tree with L = 3 levels. The root is the
original index vector I = I1 = [1, 2, . . . , 400].

is a node corresponding to a vector that never got split. For a nonleaf node τ , its
children are the two boxes σ1 and σ2 such that Iτ = Iσ1

∪Iσ2
, and τ is then the parent

of σ1 and σ2. Two boxes with the same parent are called siblings. These definitions
are illustrated in Figure 1. For any node τ , let nτ denote the number of indices in Iτ .

Remark 3. For simplicity, this paper concentrates on the case where the tree
is uniform in the sense that all leaves belong to the same level, and all nodes on
one level hold roughly equally many points. It is often advantageous to use locally
refined trees, and sometimes even nonbinary trees. One possible reason for such tree
structures arises when the matrix represents a discretized integral operator, and the
tree structure results from a hierarchical partitioning of the points in the discretization
based on their physical positions in the domain. The techniques described in this paper
can be extended to such more general trees. We believe, but have not yet verified,
that the impact on computational speed in going to more general trees is very modest.

3.2. The HODLR data-sparse matrix format. The hierarchically off-
diagonal low rank (HODLR) property is, as the name implies, a condition that the
off-diagonal blocks of a matrix A should have low (numerical) rank. To be precise,
given a hierarchical partitioning of the index vector (cf. section 3.1), a computational
tolerance ε, and a bound on the rank k, we require that for any sibling pair {α, β},
the corresponding block

Aα,β = A(Iα, Iβ)

should have ε-rank at most k. The tessellation resulting from the tree in Figure 1 is
shown in Figure 2. We then represent each off-diagonal block via a rank-k factorization

Aα,β = Uα Ãα,β V∗β ,
nα × nβ nα × k k × k k × nβ

where Uα and Vβ are orthonormal matrices. It is easily verified that if we required
each leaf node to hold at most O(k) points, then it takes O(kN logN) storage to
store all factors required to represent A, and a matrix-vector multiplication can be
executed using O(kN logN) flops.

For future reference, we define for a given HODLR matrix A a “level-truncated”
matrix A(`) as the matrix obtained by zeroing out any block associated with levels
finer than `. In other words,

A(1) =
0 A2,3

A3,2 0
, A(2) =

0 A4,5 A2,3A5,4 0

A3,2
0 A6,7

A7,6 0

, etc.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1965

A =

A2,3

A3,2

A4,5

A5,4

A6,7

A7,6

D8 A8,9

A9,8 D9

D10 A10,11

A11,10 D11

D12 A12,13

A13,12 D13

D14 A14,15

A15,14 D15

Fig. 2. An HODLR matrix A tesselated in accordance with the tree in Figure 1. Every off-
diagonal block Aα,β that is marked in the figure should have ε-rank at most k.

Remark 4. In the interest of notational simplicity, we generally assume that the
numerical rank is the same number k for every off-diagonal block. In practice, we
typically estimate the ε-rank for any specific off-diagonal block adaptively to save
both storage and flops.

3.3. The HBS data-sparse matrix format. The HODLR format is simple
to describe and to use but is slightly inefficient in that it requires the user to store,
for every node τ , the basis matrices Uτ and Vτ , which can be quite long. The
hierarchically block separable (HBS) format is designed to overcome this problem by
expressing these matrices hierarchically. (The relationship between HODLR and HBS
matrices is entirely analogous to the relationship between H-matrices [18, 3] and H2-
matrices [20, 4].) To be precise, suppose that τ is a node with children {α, β} and
that we can find a short matrix Uτ such that

(6)
Uτ =

[
Uα 0
0 Uβ

]
Uτ .

nτ × k nτ × 2k 2k × k

The point is that if we have the long basis matrices Uα and Uβ available for the
children, then all we need to store in order to be able to apply Uτ is the short matrix
Uτ . This process can now be continued recursively. For instance, if {γ, δ} are the
children of α, and {ν, µ} are the children of β, we assume there exist matrices Uα and
Uβ such that

Uα =

[
Uγ 0
0 Uδ

]
Uα,

nα × k nα × 2k 2k × k
and

Uβ =

[
Uµ 0
0 Uν

]
Uβ .

nβ × k nβ × 2k 2k × k

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1966 PER-GUNNAR MARTINSSON

I4

I5 I2

(a)

I5

I4 I2

(b)

Fig. 3. Illustration of the neutered row blocks for the nodes 4 and 5, with parent 2. (a) The
block A(I4, Ic4) is marked in gray. Observe that A(I4, Ic4) = [A(I4, I5), A(I4, I2)]. (b) The block
A(I5, Ic5) is marked in gray. Observe that A(I5, Ic5) = [A(I5, I4), A(I5, I2)].

Then Uτ can be expressed as

Uτ =

Uγ 0 0 0
0 Uδ 0 0
0 0 Uµ 0
0 0 0 Uν

 [
Uα 0
0 Uβ

]
Uτ .

nτ × k nτ × 4k 4k × 2k 2k × k

By continuing this process down to the leaves, it becomes clear that we only need to
store the “long” basis matrices for a leaf node (and they are not in fact long for a leaf
node!); for every other node, it is sufficient to store the small matrix Uτ . The process
for storing the long basis matrices Vτ via small matrices Vτ of size 2k×k is of course
exactly analogous.

In order to guarantee that a relationship such as (6) holds, we need to impose
an additional condition (beyond the HODLR conditions) on the long basis matrices
Uτ and Vτ . To this end, given a node τ , let us define a neutered row block as
the off-diagonal block A(Iτ , I

c
τ), where Ic

τ is the complement of Iτ within the vector
[1, 2, 3, . . . , N]; cf. Figure 3. We then require that the columns of the long basis
matrix Uτ span the columns of A(Iτ , I

c
τ). Observe that for a node τ with sibling σ,

the sibling matrix A(Iτ , Iσ) is a submatrix of the neutered row block A(Iτ , I
c
τ) since

Iσ ⊆ Ic
τ . This means that the new requirement of the basis matrices is more restrictive

and that typically the ranks required will be larger for any given precision. However,
once the long basis matrices satisfy the more restrictive requirement, it is necessarily
the case that (6) holds for some small matrix Uτ . We analogously define the neutered
column block for τ as the matrix A(Ic

τ , Iτ) and require that the columns of Vτ span
the rows of A(Ic

τ , Iτ).

Definition 1. We say that an HODLR matrix A is an HBS matrix if, for every
parent node τ with children {α, β}, there exist “small” basis matrices Uτ and Vτ such

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1967

that

Uτ =

[
Uα 0
0 Uβ

]
Uτ

nτ × k nτ × 2k 2k × k
and

Vτ =

[
Vα 0
0 Vβ

]
Vτ .

nτ × k nτ × 2k 2k × k

While standard practice is to require all basis matrices Uτ and Vτ to be orthonor-
mal, we have found that it is highly convenient to use the interpolative decomposition
(ID) to represent the off-diagonal blocks. The key advantage is that then the sib-
ling interaction matrices will be submatrices of the original matrix. This improves
interpretability and also slightly reduces storage requirements.

Definition 2. We say that an HBS matrix A is in HBSID format if every basis
matrix Uτ and Vτ contains a k × k identity matrix, and every sibling interaction
matrix Ãα,β is a submatrix of A. In other words, there exist some index sets Ĩ in

α and

Ĩout
β such that

Ãα,β = A(Ĩ in
α , Ĩ

out
β).

The index sets Ĩ in
τ and Îout

τ are called the incoming skeleton and the outgoing skeleton
of box τ , respectively. We enforce that these are “nested,” which is to say that if the
children of τ are {α, β}, then

Ĩ in
τ ⊆ Ĩ in

α ∪ Ĩ in
β and Ĩout

τ ⊆ Ĩout
α ∪ Ĩout

β .

Our terminology using the terms “incoming” and “outgoing” skeletons follows
[30] and related literature on generalized fast multipole methods (FMMs). The idea
is that the “incoming” skeleton is where a patch receives information communicated
from other patches and then broadcasts information to the other patches on its “out-
going” skeleton. In other words, the “incoming” and “outgoing” representations are
analogous to “local” and “multipole” expansions in an FMM, respectively.

Remark 5. The straightforward way to build a basis matrix Uτ for a node τ is
to explicitly form the corresponding neutered row block A(Iτ , I

c
τ) and then compress

it (perform column pivoted Gram–Schmidt on its columns to form an ON-basis Uτ ,
or perform column pivoted Gram–Schmidt on its rows to form the ID). However,
suppose that we can somehow construct a smaller matrix Yτ of size nτ × ` with the
property that the columns of Yτ span the columns of A(Iτ , I

c
τ). Then it would be

sufficient to process the columns of Yτ to build a basis for A(Iτ , I
c
τ). For instance, if

we orthonormalize the columns of Yτ to form a basis matrix Uτ = qr(Yτ), then the
columns of Uτ will necessarily form an ON-basis for the columns of A(Iτ , I

c
τ). The

key point here is that one can often find such a matrix Yτ with a small number ` of
columns. In [29] we use a representation theorem from potential theory to find such
a matrix Yτ when A results from discretizing a boundary integral equation (BIE). In
[27] we do this via randomized sampling, so that Yτ = A(Iτ , I

c
τ) Ω for some Gaussian

random matrix Ω. The main point of [27] is that this can be done by applying all of
A to a single random matrix with N × ` columns, where ` ≈ k. In the current paper,
we use a similar strategy, but we now require the application of A to a set of O(k)
random vector for each level.

4. An algorithm for compressing an HODLR matrix. In this section,
we present a randomized algorithm for constructing the HODLR representation of a
given matrix A of size N × N , for which a tree structure (as defined in section 3.1)
has been provided. The algorithm consists of a single sweep through the levels in the

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1968 PER-GUNNAR MARTINSSON

tree of nodes, starting from the root (the entire domain), and processing each level
of successively smaller blocks, one level at a time. The algorithm presented here is
directly inspired by the “peeling algorithm” of [24]. We assume that an upper bound
k on the ranks of the off-diagonal blocks has been given in advance. We then pick an
oversampling parameter p (cf. section 2.5), say, p = 10, and set r = k + p.

In presenting the algorithm, we let Gτ denote a random matrix of size nτ × r
drawn from a Gaussian distribution. Blocked matrices are drawn with the blocks to
be processed set in red type. To minimize clutter, blocks of the matrix that will not
play a part in the current step are marked with a star (*) and may or may not be
zero.

Processing level 0 (the root of the tree). Let {α, β} denote the children of the root
node (for the tree in Figure 1, α = 2 and β = 3). Our objective is now to find low
rank factorizations of the off-diagonal blocks

A =

[
∗ Aα,β

Aα,β ∗

]
.

To this end, we build two random matrices, each of size N × r, and defined by

Ω1 =

[
Gα

0

]
and Ω2 =

[
0

Gβ

]
.

Then we construct the matrices of samples

Y1 = AΩ2 =

[
Aα,βGβ

∗

]
and Y2 = AΩ1 =

[
∗

Aβ,αGα

]
.

Supported by the results on randomized sampling described in section 2.5, we now
know that it is almost certain that the columns in the top block of Y1 will span the
columns of Aα,β . By orthonormalizing the columns of Y1(Iα, :), we therefore obtain
an ON-basis for the column space of Aα,β . In other words, we set

Uα = qr(Y1(Iα, :)) and Uβ = qr(Y2(Iβ , :)),

and then we know that Uα and Uβ will serve as the relevant basis matrices in the
HODLR representation of A. To compute Vα, Vβ , Bα,β , and Bβ,α, we now need to
form the matrices U∗αAα,β and U∗βAβ,α. To do this through our “black-box” matrix-
matrix multiplier, we form the new test matrices

Ω1 =

[
Uα

0

]
and Ω2 =

[
0
Uβ

]
.

Then we construct the matrices of samples

Z1 = A∗Ω2 =

[
A∗β,αUβ

∗

]
and Z2 = A∗Ω1 =

[
∗

A∗α,βUα

]
.

All that remains now is to compute QR factorizations

(7) [Vα,Bβ,α] = qr(Z1(Iα, :)) and [Vβ ,Bα,β] = qr(Z2(Iβ , :)).

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1969

Remark 6. At a slight increase in cost, one can obtain diagonal sibling interaction
matrices Bα,β and Bβ,α. We would then replace the QR factorization in (7) by a full
SVD

(8) [Vα,Bβ,α, Ûβ] = svd(Z1(Iα, :)) and [Vβ ,Bα,β , Ûα] = svd(Z2(Iβ , :)).

This step then requires an update to the long basis matrices for the column space:

(9) Uα ← UαÛα and Uβ ← UβÛβ .

Processing level 1. Now that all off-diagonal blocks on level 1 have been computed,
we use this information to compress the blocks on level 2. Let {α, β, γ, δ} denote the
boxes on level 2 (for the tree in Figure 1, α = 4, β = 5, γ = 6, δ = 7). Our objective
is now to construct low rank approximations to the following off-diagonal blocks:

A =

∗ Aα,β *
Aβ,α ∗

*
∗ Aγ,δ

Aδ,γ ∗

First, observe that

A− A(1) =

∗ Aα,β 0
Aβ,α ∗

0
∗ Aγ,δ

Aδ,γ ∗

We then define two random test matrices, each of size N × r, via

Ω1 =

Gα

0
Gγ

0

 and Ω2 =

0

Gβ

0
Gδ

 .
We compute the sample matrices via
(10)

Y1 = AΩ2 − A(1)Ω2 =

Aα,βGβ

∗
Aγ,δGδ

∗

 and Y2 = AΩ1 − A(1)Ω1 =

∗

Aβ,αGα

∗
Aδ,γGγ

 .
In evaluating Y1 and Y2, we use the black-box multiplier to form AΩ2 and AΩ1, and
the compressed representation of A(1) obtained on the previous level to form A(1)Ω2

and A(1)Ω1. We get ON-bases for the column spaces of the four sibling interaction
matrices by orthonormalizing the pertinent blocks of Y1 and Y2:

Uα = qr(Y1(Iα, :)), Uβ = qr(Y2(Iβ , :)), Uγ = qr(Y1(Iγ , :)), Uδ = qr(Y2(Iδ, :)).

It remains to construct the ON-bases for the corresponding row spaces and the com-
pressed sibling interaction matrices. To this end, we form two new test matrices, both
of size N × r, via

Ω1 =

Uα

0
Uγ

0

 and Ω2 =

0
Uβ

0
Uδ

 .D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1970 PER-GUNNAR MARTINSSON

Then the sample matrices are computed via

Z1 = A∗Ω2 −
(
A(1))∗Ω2 =

A∗βαUβ

∗
A∗δ,γUδ

∗

 and Z2 = A∗Ω1 −
(
A(1))∗Ω1 =

∗

A∗α,βUα

∗
A∗γ,δUγ

 .
We obtain diagonal compressed sibling interaction matrices by taking a sequence of
dense SVDs of the relevant subblocks (cf. (8)),

[Vα,Bβα, Ûβ] = svd(Z1(Iα, :)),

[Vβ ,Bα,β , Ûα] = svd(Z2(Iβ , :)),

[Vγ ,Bδ,γ , Ûδ] = svd(Z1(Iγ , :)),

[Vδ,Bγ,δ, Ûγ] = svd(Z2(Iδ, :)).

Finally we update the bases for the column spaces (cf. (9)),

Uα ← UαÛα, Uβ ← UβÛβ , Uγ ← UγÛγ , Uδ ← UδÛδ.

Processing levels 2 through L − 1. The processing of every level proceeds in a
manner completely analogous to the processing of level 1. The relevant formulas are
given in Figure 4.

Processing the leaves. Once all L levels have been traversed using the proce-
dure described, compressed representations of all off-diagonal blocks will have been
computed. At this point, all that remains is to extract the diagonal blocks. We il-
lustrate the process for a simplistic example of a tree with only L = 2 levels (beyond
the root). Letting {α, β, γ, δ} denote the leaf nodes, our task is then to extract the
diagonal blocks Dα, Dβ , Dγ , Dδ:

A =

Dα ∗
*∗ Dβ

*
Dγ ∗
∗ Dδ

=

Dα 0
0

0 Dβ

0
Dγ 0
0 Dδ

+ A(2).

Since the diagonal blocks are not rank-deficient, we will extract them directly, without
using randomized sampling. To describe the process, we assume at first (for simplicity)
that every diagonal block has the same size, m×m. We then choose a test matrix of
size N ×m,

Ω =

Im
Im
Im
Im

 ,
and trivially extract the diagonal blocks via the sampling

Y = AΩ− A(2)Ω =

Dα

Dβ

Dγ

Dδ

 .
The diagonal blocks can then be read off directly from Y.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1971

Build compressed representations of all off-diagonal blocks.
loop over levels ` = 0 : (L− 1)

Build the random matrices Ω1 and Ω2.
Ω1 = zeros(n, r)
Ω2 = zeros(n, r)
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
Ω1(Iα, :) = randn(nα, r)
Ω2(Iβ , :) = randn(nβ , r)

end loop

Apply A to build the samples for the incoming basis matrices.

Y1 = AΩ2 − A(`)Ω2

Y2 = AΩ1 − A(`)Ω1

Orthonormalize the sample matrices to build the incoming basis matrices.
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
Uα = qr(Y1(Iα, :)).
Uβ = qr(Y2(Iβ , :)).
Ω1(Iα, :) = Uα

Ω2(Iβ , :) = Uβ

end loop

Apply A∗ to build the samples for the outgoing basis matrices.

Z1 = A∗Ω2 −
(
A(`)

)∗
Ω2

Z2 = A∗Ω1 −
(
A(`)

)∗
Ω1

Take local SVDs to build incoming basis matrices and sibling interaction matrices.
We determine the actual rank and update the U∗ basis matrices accordingly.
loop over boxes τ on level `

Let {α, β} denote the children of box τ .

[Vα,Bβ,α, Ûβ] = svd(Z1(Iα, :), ε).

[Vβ ,Bα,β , V̂α] = svd(Z2(Iβ , :), ε).

Uβ ← UβÛβ .

Uα ← UαÛα.
end loop

end loop

Extract the diagonal matrices.
nmax = max {nτ : τ is a leaf}
Ω = zeros(N,nmax)
loop over leaf boxes τ

Ω(Iτ , 1 : nτ) = eye(nτ).
end loop

Y = AΩ− A(L)Ω
loop over leaf boxes τ

Dτ = Y(Iτ , 1 : nτ).
end loop

Fig. 4. Randomized compression of an HODLR matrix.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1972 PER-GUNNAR MARTINSSON

For the general case where the leaves may be of different sizes we simply pad a
few zero columns after the identity matrix for any “smaller” leaves. To be precise, set
m = max{nτ : τ is a leaf}, and then form a test matrix Ω of size N ×m so that for
every leaf τ ,

Ω(Iτ , :) =
[
Inτ zeros(nτ ,m− nτ)

]
.

The entire algorithm is summarized in Figure 4.

4.1. Asymptotic complexity. Let L denote the number of levels in the tree.
We find that L ∼ logN . Let Tmult denote the time required to apply A or A∗ to a
vector, let TA(`) denote the time required to apply A(`) or (A(`))∗ to a vector, and let
Tflop denote the time required for a flop. Then the cost of processing level ` is

(11) T` ∼ Tmult × k + TA(`) × k + Tflop × 2` k2 N

2`
,

since on level ` there are 2` blocks to be processed, and each “long” matrix at this
level has height 2−`N and width r = k + p = O(k). Further, we find that the cost of

applying A(`) to a single vector is

(12) TA(`) ∼ Tflop ×
∑̀
j=0

2j k
N

2j
∼ Tflop × ` k N.

Combining (11) and (12) and summing from ` = 0 to ` = L, we find (using that
L ∼ logN)

(13) Tcompress ∼ Tmult × k logN + Tflop × k2N
(
logN

)2
.

5. An algorithm for compressing an HBS matrix. The algorithm for com-
puting a compressed representation of an HBS matrix is a slight variation of the
algorithm for an HODLR matrix described in section 4. The key difference is that
the long basis matrices Uα and Vα associated with any node now must satisfy a more
rigorous requirement. We will accomplish this objective by constructing, for every
node α, two new “long” sampling matrices Yα and Zα, each of size nα × r, that
help transmit information from the higher levels to the node α. The presentation will
start in section 5.1 with a description of the modification to the scheme of section 4
required to enforce the more rigorous requirement. In this initial description, we will
assume that all four “long” matrices associated with a node (Uτ , Vτ , Yτ , Zτ) are
stored explicitly, resulting in an O(kN logN) memory requirement, just like for the
HODLR algorithm. In section 5.2 we show that while these “long” matrices do need
to be temporarily built and processed, they can be stored implicitly, which will allow
the algorithm to use only O(kN) memory. Finally, section 5.3 will describe how to
construct a representation using IDs in all low-rank approximations.

5.1. A basic scheme for compressing an HBS matrix. Throughout this
section, let α denote a node with a parent τ that is not the root, and with a sibling
β. We will first describe the process for building the long basis matrices {Uτ}τ . To
this end, recall that the difference in requirements on the long basis matrices in the
two frameworks is as follows:

HODLR framework: The columns of Uα need to span the columns of A(Iα, Iβ).

HBS framework: The columns of Uα need to span the columns of A(Iα, I
c
α).

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1973

The assertion that the requirements on a basis in the HBS framework is more stringent
follows from the fact that Iβ ⊆ Ic

α, and that Iβ is in general much smaller than Ic
α;

cf. Figure 3. Now note that

(14) A(Iα, I
c
α) =

[
A(Iα, Iβ) A(Iα, I

c
τ)
]

P.

In (14), the matrix P is a permutation matrix whose effect is to reorder the columns.
For purposes of constructing a basis for the column space, the matrix P can be ignored.
The idea is now to introduce a new sampling matrix Yα of size nα × r that encodes
all the information that needs to be transmitted from the parent τ . Specifically, we
ask that:

The columns of Yα span the columns of A(Iα, I
c
τ) (to within precision ε).

Then, when processing box α, we will sample A(Iα, Iβ) using a Gaussian matrix Gβ

of size nβ × r just as in the HODLR algorithm. In the end, we will build Uα by
combining the two sets of samples

[Uα,Dα,∼] = svd
([

A(Iα, Iβ)Gβ , Yα

]
, r
)
.

In other words, we take a matrix
[
A(Iα, Iβ)Gβ , Yα

]
of size nα × 2r and extract

its leading r singular components (the trailing r components are ignored). All that
remains is to build the sample matrices Yγ and Yδ that transmit information to the
children {γ, δ} of α. To be precise, let Jγ and Jδ denote the local relative index
vectors, so that

Iγ = Iα(Jγ) and Iδ = Iα(Jδ).

Then set

Yγ = U(Jγ , :)Dα and Yδ = U(Jδ, :)Dα.

The process for building the long basis matrices {Vα}α is entirely analogous to the
process described for building the {Uα}α matrices. We first recall that the difference
between the HODLR and the HBS frameworks is as follows:

HODLR framework: The columns of Vα need to span the rows of A(Iβ , Iα).

HBS framework: The columns of Vα need to span the rows of A(Ic
α, Iα).

With P again denoting a permutation matrix, we have

A(Ic
α, Iα) = P

[
A(Iβ , Iα)
A(Ic

τ , Iα)

]
.

It follows that the role that was played by Yα in the construction of Uα is now played
by a sampling matrix Zα of size nα × r that satisfies the following:

The columns of Zα span the rows of A(Ic
τ , Iα) (to within precision ε).

The algorithm for computing the HBS representation of a matrix is given in Figure
5.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1974 PER-GUNNAR MARTINSSON

loop over levels ` = 0 : (L− 1)

Build the random matrices Ω1 and Ω2.
Ω1 = zeros(n, r)
Ω2 = zeros(n, r)
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
Ω1(Iα, :) = randn(nα, r)
Ω2(Iβ , :) = randn(nβ , r)

end loop

Apply A to build the samples
for the incoming basis matrices.

Y1 = AΩ2 − A(`)Ω2

Y2 = AΩ1 − A(`)Ω1

Orthonormalize the sample matrices to
build the incoming basis matrices.
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
if (τ is the root)

Yloc
1 = Y1(Iα, :)

Yloc
2 = Y2(Iβ , :)

else

Yloc
1 = [Y1(Iα, :), Yτ (Jα, :)]

Yloc
2 = [Y2(Iβ , :), Yτ (Jβ , :)]

end if

[Uα, yα,∼] = svd(Yloc
1 , r).

[Uβ , yβ ,∼] = svd(Yloc
2 , r).

Yα = Uα diag(yα).
Yβ = Uβ diag(yβ).
Ω1(Iα, :) = Uα

Ω2(Iβ , :) = Uβ

Uτ =

[
U∗αUτ (Jα, :)
U∗βUτ (Jβ , :)

]
.

end loop

Apply A∗ to build the samples
for the outgoing basis matrices.

Z1 = A∗Ω2 −
(
A(`)

)∗
Ω2

Z2 = A∗Ω1 −
(
A(`)

)∗
Ω1

Take local SVDs to build incoming basis
matrices and sibling interaction matrices.
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
if (τ is the root)

Zloc
1 = Z1(Iα, :)

Zloc
2 = Z2(Iβ , :)

else

Zloc
1 = [Z1(Iα, :), Zτ (Jα, :)]

Zloc
2 = [Z2(Iβ , :), Zτ (Jβ , :)]

end if

[Vα, b21,X1] = svd(Zloc
1 , r).

[Vβ , b12,X2] = svd(Zloc
2 , r).

Zα = Vαdiag(b21)
Zβ = Vβdiag(b12)
Bα,β = X1(1 : r, :)diag(b12)
Bβ,α = X2(1 : r, :)diag(b21)

Vτ =

[
V∗αVτ (Jα, :)
V∗βVτ (Jβ , :)

]
.

end loop
end loop

Extract the diagonal matrices.
nmax = max {nτ : τ is a leaf}
Ω = zeros(N,nmax)
loop over leaf boxes τ

Ω(Iτ , 1 : nτ) = eye(nτ).
end loop

Y = AΩ− A(L)Ω
loop over leaf boxes τ

Dτ = Y(Iτ , 1 : nτ).
end loop

Fig. 5. A basic scheme for compressing an HBS matrix.

5.2. A storage efficient scheme for compressing an HBS matrix. The
scheme described in section 5.1 assumes that all “long” basis and spanning matrices
(Uτ , Vτ , Yτ , Zτ) are stored explicitly, resulting in an O(kN logN) storage require-
ment. We will now demonstrate that, in fact, only O(kN) is required.

First, observe that in the HBS framework, we only need to keep at hand the
long basis matrices Uτ and Vτ for nodes τ on the level ` that is currently being
processed. In the HODLR compression algorithm in Figure 4, we needed the long
basis matrices associated with nodes on coarser levels in order to apply A(`), but
in the HBS framework, all we need in order to apply A(`) is the long basis matrices
{Uτ , Vτ} on the level currently being processed, and then only the short basis matrices
Uτ and Vτ for any box τ on a level coarser than `; cf. the algorithm in Figure 13.

Next, observe that the long “spanning” matrices Yτ and Zτ that were introduced

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1975

loop over levels ` = 0 : (L− 1)

Build the random matrices Ω1 and Ω2.
Ω1 = zeros(n, r)
Ω2 = zeros(n, r)
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
Ω1(Iα, :) = randn(nα, r)
Ω2(Iβ , :) = randn(nβ , r)

end loop

Apply A to build the samples
for the incoming basis matrices.

Y1 = AΩ2 − A(`)Ω2

Y2 = AΩ1 − A(`)Ω1

Orthonormalize the sample matrices to
build the incoming basis matrices.
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
if (τ is the root)

Yloc
1 = Y1(Iα, :)

Yloc
2 = Y2(Iβ , :)

else

Yloc
1 = [Y1(Iα, :), Uτ (Jα, :)diag(yτ)]

Yloc
2 = [Y2(Iβ , :), Uτ (Jβ , :)diag(yτ)]

end if

[Uα, yα,∼] = svd(Yloc
1 , r).

[Uβ , yβ ,∼] = svd(Yloc
2 , r).

Ω1(Iα, :) = Uα

Ω2(Iβ , :) = Uβ

Uτ =

[
U∗αUτ (Jα, :)
U∗βUτ (Jβ , :)

]
.

Delete Uτ .
end loop

Apply A∗ to build the samples
for the outgoing basis matrices.

Z1 = A∗Ω2 −
(
A(`)

)∗
Ω2

Z2 = A∗Ω1 −
(
A(`)

)∗
Ω1

Take local SVDs to build incoming basis
matrices and sibling interaction matrices.
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
if (τ is the root)

Zloc
1 = Z1(Iα, :)

Zloc
2 = Z2(Iβ , :)

else

Zloc
1 = [Z1(Iα, :), Vτ (Jα, :)diag(zτ)]

Zloc
2 = [Z2(Iβ , :), Vτ (Jβ , :)diag(zτ)]

end if

[Vα, b21,X1] = svd(Zloc
1 , r).

[Vβ , b12,X2] = svd(Zloc
2 , r).

zα = b21

zβ = b12

Bα,β = X1(1 : r, :)diag(b12)
Bβ,α = X2(1 : r, :)diag(b21)

Vτ =

[
V∗αVτ (Jα, :)
V∗βVτ (Jβ , :)

]
.

Delete Vτ .
end loop

end loop

Extract the diagonal matrices.
nmax = max {nτ : τ is a leaf}
Ω = zeros(N,nmax)
loop over leaf boxes τ

Ω(Iτ , 1 : nτ) = eye(nτ).
end loop

Y = AΩ− A(L)Ω
loop over leaf boxes τ

Dτ = Y(Iτ , 1 : nτ).
end loop

Fig. 6. A storage efficient algorithm for compressing an HBS matrix.

in section 5.1 do not need to be stored explicitly either. The reason is that these
matrices can be expressed in terms of the long basis matrices Uτ and Vτ . In fact, in
the algorithm in Figure 4, we compute Yτ and Zτ via the relations

Yτ = Uτ diag(yτ) and Zτ = Vτ diag(zτ).

Since the long basis matrices Uτ and Vτ are available during the processing of level
`, we only need to store the short vectors yτ and zτ , and can then construct Yτ and
Zτ when they are actually needed.

The memory efficient algorithm we described in this section is summarized in
Figure 6.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1976 PER-GUNNAR MARTINSSON

5.3. Adaptive rank determination and conversion to the HBSID for-
mat. The schemes presented in sections 5.1 and 5.2 do not adaptively determine the
ranks of the off-diagonal blocks being compressed. Instead, every block is factored
using a preset uniform rank r = k + p that must be picked to be larger than any
actual numerical rank encountered. It is possible to incorporate adaptive rank de-
termination into the scheme, but we found it easier to perform this step in a second
sweep that travels through the tree in the opposite direction—from smaller boxes to
larger. In this second sweep, we also convert the standard HBS format to the HBSID
format, which leads to a slight improvement in storage requirements and improves
interpretability of the sibling interaction matrices, as discussed in section 3.3 and
Definition 2.

The conversion to the HBSID is a “postprocessing” step, so in what follows, we
assume that the compression algorithm in Figure 6 has already been executed so that
both the HBS basis matrices Uτ and Vτ and the sample matrices Yτ and Zτ are
available for every node (these are stored implicitly in terms of the short basis matrices
Uτ and Vτ , as described in section 5.2).

The first step is to sweep over all leaves τ in the tree. For each leaf, we now have
available spanning matrices Yτ and Zτ whose columns span the columns of A(Iτ , I

c
τ)

and A(Ic
τ , Iτ)∗, respectively. In order to find a set of spanning rows Ĩ in

τ of A(Iτ , I
c
τ)

and a set of spanning columns Ĩout
τ of A(Ic

τ , Iτ)∗, all we need to do is compute IDs of
the small matrices Yτ and Zτ (cf. Remark 5):

(15) [Tin, Jin] = id(Y∗τ , ε) and [Tout, Jout] = id(Z∗τ , ε).

In (15), we give the computational tolerance ε as an input parameter. This reveals
the “true” ε-ranks kin and kout. Then the skeleton index vectors for τ are given by

Ĩ in
τ = Iτ (Jin(1 : kin)) and Ĩout

τ = Iτ (Jout(1 : kout)).

Now define the subsampled basis matrices Usamp
τ and Vsamp

τ via

(16) Usamp
τ = U(Jin(1 : kin), :) and Vsamp

τ = V(Jout(1 : kout), :).

Once all leaves have been processed, we can determine the sibling interaction
matrices Bskel

α,β in the HBSID representation. Let {α, β} denote a sibling pair consisting
of two leaves. First, observe that, by definition,

(17) Bskel
α,β = A(Ĩ in

α , Ĩ
out
β).

Next, recall that

(18) A(Iα, Iβ) = UαBα,βV∗β .

Combining (16), (17), and (18), we find that

Bskel
α,β = Usamp

α Bα,β (Vsamp
β)∗.

Once all leaves have been processed, we next proceed to the parent nodes. We
do this by transversing the tree, going from smaller to larger boxes. When a box τ
is processed, its children {α, β} have already been processed. The key observation is
now that if we set Î in

τ = Ĩ in
α ∪ Ĩ in

β and Îout
τ = Ĩout

α ∪ Ĩout
β , then these index vectors

form skeletons for τ . These skeletons are inefficient, but by simply compressing the

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1977

Execute the compression algorithm described in Figure 6.
loop over leaves τ

Ytmp = Uτdiag(yτ)
Ztmp = Vτdiag(zτ)
[Tin, Jin] = id(Y∗tmp, ε)
[Tout, Jout] = id(Z∗tmp, ε)
Usamp
τ = Uτ (Jin(1 : kin), :).

Vsamp
τ = Vτ (Jout(1 : kout), :).

end loop

loop over levels ` = (L− 1) : (−1) : 1
loop over boxes τ on level `

Let {α, β} denote the children of box τ .

Utmp =

[
Usamp
α 0
0 Usamp

β

]
Uτ .

Vtmp =

[
Vsamp
α 0
0 Vsamp

β

]
Vτ .

Ytmp = Utmpdiag(yτ)
Ztmp = Vtmpdiag(zτ)
[Tin, Jin] = id(Y∗tmp, ε)
[Tout, Jout] = id(Z∗tmp, ε)
Usamp
τ = Utmp(Jin(1 : kin), :).

Vsamp
τ = Vtmp(Jout(1 : kout), :).

Bskel
α,β = Usamp

α Bα,β(V
samp
β)∗.

Bskel
β,α = Usamp

β Bβ,α(V
samp
α)∗.

end loop
end loop
Let {α, β} denote the children of the root.

Bskel
α,β = Usamp

α Bα,β(V
samp
β)∗.

Bskel
β,α = Usamp

β Bβ,α(V
samp
α)∗.

Fig. 7. An algorithm for computing the HBSID representation of a given matrix A. This
algorithm adaptively determines the ranks of the off-diagonal blocks of A.

corresponding rows of Yτ and Zτ , we can build the skeletons and the interpolation
matrices associated with τ . Due to the self-similarity between levels in the HBS
representation, the compression is entirely analogous to the compression of a leaf,
with the only difference being that the role played by the basis matrices Uτ and Vτ

for a leaf are now played by the subsampled matrices Usamp
τ and Vsamp

τ which represent
the restriction of Uτ and Vτ to the index rows and columns indicated by the index
vectors Î in

τ and Îout
τ , respectively. The process is summarized in Figure 7.

5.4. Asymptotic complexity. The asymptotic complexity for the HBSID al-
gorithm is very similar to that for the HODLR algorithm. But, since A(`) is now
applied using nested basis matrices, we find that

TA(`) ∼ Tflop ×

2` k
N

2`
+

`−1∑
j=0

2j k2

 ∼ Tflop × kN.

In other words, the complexity of applying TA(`) is now less by a factor of O(`), so

(19) Tcompress ∼ Tmult × k logN + Tflop × k2N logN.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1978 PER-GUNNAR MARTINSSON

Comparing (19) to (13), we see that the HBS method beats the HODLR algorithm
by a factor of logN .

6. Numerical experiments. In this section, we present results from numerical
experiments that substantiate claims on asymptotic complexity made in sections 4.1
and 5.4, and we demonstrate that the practical execution time is very competitive
(in other words, that the scaling constants suppressed in the asymptotic analysis are
moderate). We investigate three different test problems: In section 6.1 we apply the
randomized compression schemes to a discretized boundary integral operator for which
other compression techniques are already available. This allows us to benchmark the
new algorithms and verify their accuracy. In section 6.2 we demonstrate how the
proposed scheme can be used to form a compressed representation of a product of
two compressed matrices, thus illustrating how our method can be used to avoid the
expensive algorithms currently available for directly multiplying two rank-structured
matrices. In section 6.3 we apply the scheme to compress large dense matrices that
arise in the classical “nested dissection” or “multifrontal” direct solvers for the sparse
matrices arising from finite element or finite difference discretization of elliptic PDEs.
The ability to efficiently manipulate such matrices allows for the construction of O(N)
complexity direct solvers for the associated sparse linear systems.

For each test problem, we compare two different techniques for computing a data-
sparse representation of A: (1) The technique for computing an HODLR-representation
in Figure 4. (2) The technique for computing an HBSID-representation in Figure 7.
We report the following quantities:

N Number of DOFs (so that A is of size N ×N).
ε Requested local precision.
r Number of random vectors used at each level (r must be larger than maximal rank).
k Largest actual ε-rank encountered during the compression.
Nmatvec Number of applications of A required (so that Nmatvec = (L + 1)× r ∼ log(N)× r).
Tcompress Time required for compression (in seconds).
Tnet Time required for compression, excluding time to apply A and A∗ (in seconds).
Tapp Time required for applying the compressed matrix to a vector (in seconds).
M Amount of memory required to store A (in MB).

The reason that we report the time Tnet (which does not count time spent in the
black-box matrix-vector multiplier) is to validate our claims (13) and (19) regarding
the asymptotic complexity of the method. To summarize, our predictions are, for the
HODLR algorithm,

Tnet ∼ N (logN)2, Tapp ∼ N logN, M ∼ N log(N),

and, for the HBSID algorithm,

Tnet ∼ N logN, Tapp ∼ N, M ∼ N.

We also provide a randomized estimate E of the compression error, computed as
follows: We drew ten vectors {ωi}10

i=1 from a uniform distribution on the unit sphere
in RN . Then E is defined via

E = max
1≤i≤10

||Aωi − Acompressedωi||
||Aωi||

.

All experiments were run through MATLAB on an office desktop with 32GB of
RAM and an Intel i7-3820 CPU with 4 cores running at 3.6GHz. The technical report
[28] upon which this publication is based provides one additional numerical example
and tables giving additional details on the examples included here.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1979

Fig. 8. Contour Γ on which the BIE (20) in section 6.1 is defined.

6.1. Compressing a boundary integral equation. Our first numerical ex-
ample concerns compression of a discretized version of the boundary integral equation
(BIE)

(20)
1

2
q(x) +

∫
Γ

(x− y) · n(y)

4π|x− y|2
q(y) ds(y) = f(x), x ∈ Γ,

where Γ is the simple curve shown in Figure 8, and where n(y) is the outward pointing
unit normal of Γ at y. The BIE (20) is a standard integral equation formulation of
the Laplace equation with boundary condition f on the domain interior to Γ. We
discretize the BIE (20) using the Nyström method on N equispaced points on Γ, with
the trapezoidal rule as the quadrature. Note that the kernel in (20) is smooth, so the
trapezoidal rule has exponential convergence. This problem is artificial in that only
about a couple of hundred points are needed to attain full double precision accuracy
in the discretization, meaning that the examples we present are vastly overresolved.
We include it for benchmarking purposes to verify the scaling of the proposed method.

To be precise, the matrix A used in this numerical experiment is itself an HBS
representation of the matrix resulting from discretization of (20), computed using the
technique of [29]. To minimize the risk of spurious effects due to both the “exact” and
the computed A being HBS representations, we used a higher precision in computing
the reference A, and also a shifted tree structure to avoid having the compressed blocks
of our reference A align with the compressed blocks constructed by the randomized
sampling algorithms.

For this experiment, we benchmark the proposed algorithms against (a) the O(N)
randomized algorithm described in [27], and (b) the compression technique based on
potential theory of [29], run at the same precision as the proposed schemes. The
results of the experiments are given in Figure 9.

6.2. Operator multiplication. We next apply the proposed schemes to com-
pute the Neumann-to-Dirichlet operator for the boundary value problem

(21)

{
−∆u(x) = 0, x ∈ Ω,

∂nu(x) = g(x), x ∈ Γ,

where Γ is again the contour shown in Figure 8, where Ω is the domain exterior to
Γ, and where n is the unit normal vector pointing in the outward direction from Γ.
With u the solution of (21), let f denote the restriction of u to Γ, and let T denote
the linear operator T : g 7→ f , known as the Neumann-to-Dirichlet (NtD) operator.
It is well known (see Remark 7) that T can be built explicitly as the product

(22) T = S
(

1
2I +D∗

)−1
,

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1980 PER-GUNNAR MARTINSSON

10
3

10
4

10
5

N

10
-1

10
0

10
1

T
c
o
m

p
re

s
s

Time for matrix compression (seconds)

HODLR

HODLR (net)

HBSID

HBSID (net)

REF[26]

REF[26] (net)

GREEN

O(N log(N))

10
3

10
4

10
5

N

10
-3

10
-2

10
-1

T
a
p
p
ly

Time for matrix-vector multiplication (seconds)

HODLR

HBSID

REF[26]

GREEN

linear

10
3

10
4

10
5

N

0

50

100

150

200

M
e

m
o

ry
 (

m
e

a
s
u

re
d

 i
n

 r
e

a
ls

 n
u

m
b

e
rs

 p
e

r
p

o
in

t) Memory requirements (reals/dof)

HODLR

HBSID

REF[26]

GREEN

10
3

10
4

10
5

N

10
-10

10
-9

10
-8

E
rr

o
r

Error

HODLR

HBSID

REF[26]

GREEN

Fig. 9. Results from compressing the double layer potential on a simple contour in the plane,
as described in section 6.1. Here ε = 10−9 and r = 35.

where S is the single-layer operator [Sq](x) =
∫

Γ
− 1

2π log |x−y| q(y) ds(y), and where

D∗ is the adjoint of the double-layer operator [D∗q](x) =
∫

Γ
n(x)·(x−y)
2π|x−y|2 q(y) ds(y). We

form discrete approximations S and D∗ to S and D∗, and we compute (1
2 I + D∗)−1

using the techniques in [15], with sixth order Kapur–Rokhlin quadrature used to
discretize the singular integral operator S. Then we can evaluate a discrete approxi-
mation T to T via

T = S
(

1
2 I + D∗

)−1
.

For this example, we evaluated an additional error metric by testing the computed
NtD operator to an exact solution uexact to (21). The function uexact is given as the
potential from a collection of five randomly placed charges inside Γ, and then fexact and
gexact are simply the evaluations of uexact and its normal derivative on the quadrature
nodes on Γ. Then the new error measure is given by

Epot =
‖fexact − Tapprox gexact‖max

‖fexact‖max
,

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1981

10
3

10
4

10
5

10
−1

10
0

10
1

N

T
c
o
m

p
re

s
s

Time for matrix compression (seconds)

10
3

10
4

10
5

10
−3

10
−2

10
−1

N

T
a
p
p
ly

Time for matrix−vector multiplication (seconds)

10
3

10
4

10
5

0

50

100

150

200

250

300

350

400

450

500

N

M
e
m

o
ry

 (
m

e
a
s
u
re

d
 i
n
 r

e
a
ls

 n
u
m

b
e
rs

 p
e
r

p
o
in

t)

Memory requirements (reals/dof)

10
3

10
4

10
5

10
−10

10
−9

10
−8

10
−7

N

E
rr

o
r

Error

HODLR

HODLR (net)

HBSID

HBSID (net)

linear

HODLR

HBSID

HODLR

HODLR (pot)

HBSID

HBSID (pot)

HODLR

HBSID

linear

Fig. 10. Results from compressing the NtD operator for a simple contour in the plane. This
operator is given as a product of two compressed operators, as described in section 6.2. Here ε =
10−9 and r = 60.

where ‖ · ‖max is the maximum norm, and where Tapprox is the compressed represen-
tation of T determined by the randomized sampling scheme proposed. The results
are given in Figure 10.

Remark 7. The formula (22) for the NtD operator is derived as follows: We first
look for a solution to (21) of the form u = Sq. Then it can be shown that q must
satisfy (1/2)q +D∗q = g. Solving for q and using f = Sq, we obtain (22).

6.3. Compression of frontal matrices in nested dissection. Our final ex-
ample applies the proposed compression schemes to the problem of constructing O(N)
direct solvers for the sparse linear systems arising upon the discretization of elliptic
PDEs via finite difference or finite element methods. The idea is to build a solver
on the classical “nested dissection” scheme of George [13, 11, 10]. In standard im-
plementations, the problem of this direct solver is that it requires the inversion or
LU factorization of a set of successively larger dense matrices. However, it has re-
cently been demonstrated that while these matrices are dense, they have an internal

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1982 PER-GUNNAR MARTINSSON

I1 I2

I3

Fig. 11. Geometry of problem described in section 6.3. We consider a grid conduction problem
on the grid shown. As N is increased, the width of the grid is fixed at 41 nodes, while the height
of the grid equals N .

structure that allows for linear or close to linear time matrix algebra to be executed
[23, 34, 26, 14]. In this paper, we test the proposed compression scheme on a set
of matrices whose behavior is directly analogous to the matrices encountered in the
algorithms of [23, 34, 26, 14]. To be precise, let B denote the sparse coefficient matrix
associated with a grid conduction problem on the grid shown in Figure 11. Each
bar has a conductivity that is drawn at random from a uniform distribution on the
interval [1, 2]. Let I1, I2, I3 denote three index vectors that mark the three regions
shown in Figure 11, set Bij = B(Ii, Ij) for i, j = 1, 2, 3, and then define the N × N
matrix A via (cf. Remark 8)

(23) A = B33 − B31B−1
11 B13 − B32B−1

22 B23.

In our numerical experiments, the black-box application of A, as defined by (23),
was executed using the sparse matrix built-in routines in MATLAB, which relies on
UMFPACK [9] for the sparse solves implicit in the application of B−1

11 and B−1
22 . The

results are given in Figure 12.

Remark 8. To illustrate the significance of the matrix A defined by (23) to the
LU factorization of a matrix such as B, observe first that the blocks B12 = B21 = 0,
so that (up to a permutation of the rows and columns)

B =

 B11 0 B13

0 B22 B23

B31 B32 B33

 .
Next suppose that we can somehow determine the LU factorizations of B11 and B22,

B11 = L11U11 and B22 = L22U22.

Then the LU factorization of B is given by

B =

 L11 0 0
0 L22 0

B31U−1
11 B32U−1

22 L33

 U11 0 L−1
11 B13

0 U22 L−1
22 B23

0 0 U33

 ,
where L33 and U33 are defined as the LU factors of

(24) L33U33 = B33 − B31U−1
11 L−1

11 B13 − B32U−1
22 L−1

22 B23︸ ︷︷ ︸
=:A

.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1983

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

N

T
c
o
m

p
re

s
s

Time for matrix compression (seconds)

10
3

10
4

10
5

10
−3

10
−2

10
−1

N

T
a
p
p
ly

Time for matrix−vector multiplication (seconds)

10
3

10
4

10
5

0

50

100

150

200

250

N

M
e
m

o
ry

 (
m

e
a
s
u
re

d
 i
n
 r

e
a
ls

 n
u
m

b
e
rs

 p
e
r

p
o
in

t)

Memory requirements (reals/dof)

10
3

10
4

10
5

10
−14

10
−13

N

E
rr

o
r

Error

HODLR

HODLR (net)

HBSID

HBSID (net)

linear

HODLR

HBSID

linear

HODLR

HBSID

HODLR

HBSID

Fig. 12. Results from the example involving compression of a “frontal matrix” in the nested
dissection algorithm, as described in section 6.3. Here ε = 10−9 and r = 25.

Observe that since the matrices L11, U11, L22, U22 are all triangular, their inverses are
inexpensive to apply. To summarize, if one can cheaply evaluate the LU factorization
(24), then the task of LU-factoring B directly reduces to the task of LU-factoring the
two matrices B11 and B22, which are of roughly half the size of B. The idea of nested
dissection is now to apply this observation recursively to factor B11 and B22. The
problem of this scheme has been that in order to evaluate L33 and U33 in (24), one
must factorize the dense matrix A.

6.4. Summary of observations from numerical experiments.
• The numerical examples support the claims on asymptotic scaling made in

sections 4.1 and 5.4. The experiments indicate that while the algorithms for
compression to HODLR format have slightly higher asymptotic complexity,
the break-even point where HBSID wins is higher than the range of problem
sizes tested and appears to be in the range of N between 200 000 and 300 000.
The high practical efficiency of HODLR (despite the less favorable asymptotic
scaling) is due to the numerical ranks being lower when this format is used.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1984 PER-GUNNAR MARTINSSON

Build outgoing expansions on level m.
loop over all nodes τ on level m

q̂τ = V∗τ q(Iτ)
end loop

Build outgoing expansions on levels coarser than m (upward pass).
loop over levels ` = (m− 1) : (−1) : 1

loop over boxes τ on level `
Let {α, β} denote the children of τ .

q̂τ = V∗τ

[
q̂α
q̂β

]
.

end loop
end loop

Build incoming expansions for the children of the root.
Let {α, β} denote the children of the root node.
ûα = Bα,β q̂β .
ûβ = Bβ,α q̂α.

Build incoming expansions on levels coarser than m (downward pass).
loop over levels ` = (m− 1) : (−1) : 1

loop over boxes τ on level `
Let {α, β} denote the children of τ .
ûα = Bα,β q̂β + Uτ (Jα, :) ûτ .
ûβ = Bβ,α q̂α + Uτ (Jβ , :) ûτ .

end loop
end loop

Build incoming expansions on level m.
loop over boxes τ on level m

u(Iτ) = Uτ ûτ
end loop

Fig. 13. Application of A(m) in the HBS framework. Given a vector q of charges, build the
vector u = A(m) q of potentials.

• Excellent approximation errors are obtained in every case. In three of the
four examples, aggregation of errors over levels is almost imperceptible, and
is modest for the fourth example.

• The computational time is in all cases dominated by the time spent in the
external black-box multiplier. As a consequence, the primary route by which
the proposed algorithm could be improved would be to lessen the number of
matrix-vector multiplications required.

• For modest problem sizes, the HODLR algorithm is very fast and easy to use.
However, as problems grow large, the memory requirements of the HODLR
format become slightly problematic, and the HBSID algorithm gains a more
pronounced advantage.

• The example in section 6.1 indicates that when matrix entries can be evalu-
ated explicitly, the previously published algorithm [27] is substantially faster
than the techniques presented here, primarily due to the fact that it requires
far fewer matrix-vector multiplications.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RANDOMIZED COMPRESSION OF RANK-STRUCTURED MATRICES A1985

7. Conclusions. This paper describes two randomized algorithms for construct-
ing a data-sparse representation of a rank-structured matrix A of size N ×N . These
algorithms require as inputs (1) a method for applying A and A∗ to vectors, (2) the
hierarchical partitioning of the index set that specifies the structure of the off-diagonal
blocks, and (3) an upper bound k on the numerical ranks of the off-diagonal blocks.
Numerical experiments demonstrate that the method is computationally efficient, sta-
ble, and highly accurate. The execution time is dominated by the time required to
apply A and A∗ to L sets of O(k) vectors, where L is the number of levels in the
hierarchical tree (so that, typically, L ∼ logN).

REFERENCES

[1] S. Ambikasaran and E. Darve, An o(n logn) fast direct solver for partial hierarchically semi-
separable matrices, J. Sci. Comput., 57 (2013), pp. 477–501.

[2] M. Bebendorf, Approximation of boundary element matrices, Numer. Math., 86 (2000),
pp. 565–589.

[3] M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary Value
Problems, Lect. Notes Comput. Sci. Eng. 63, Springer-Verlag, Berlin, 2008.

[4] S. Börm, Efficient Numerical Methods for Non-local Operators. H2-Matrix Compression, Al-
gorithms and Analysis, EMS Tracts in Math. 14, European Mathematical Society (EMS),
Zürich, Switzerland, 2010.

[5] S. Börm and L. Grasedyck, Hybrid cross approximation of integral operators, Numer. Math.,
101 (2005), pp. 221–249.

[6] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88–89 (1987), pp. 67–82.
[7] S. Chandrasekaran, M. Gu, and W. Lyons, A fast adaptive solver for hierarchically semi-

separable representations, Calcolo, 42 (2005), pp. 171–185.
[8] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin, On the compression of low

rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404, doi:10.1137/030602678.
[9] T. A. Davis, Algorithm 832: UMFPACK V 4.3—an unsymmetric-pattern multifrontal method,

ACM Trans. Math. Software, 30 (2004), pp. 196–199.
[10] T. A. Davis, Direct Methods for Sparse Linear Systems, Fundamentals of Algorithms 2, SIAM,

Philadelphia, 2006.
[11] I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices, 2nd ed., The Clarendon

Press, Oxford University Press, New York, 1989.
[12] K. Frederix and M. V. Barel, Solving a large dense linear system by adaptive cross approx-

imation, J. Comput. Appl. Math., 234 (2010), pp. 3181–3195.
[13] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10

(1973), pp. 345–363, doi:10.1137/0710032.
[14] A. Gillman and P. G. Martinsson, A direct solver with O(N) complexity for variable co-

efficient elliptic PDEs discretized via a high-order composite spectral collocation method,
SIAM J. Sci. Comput., 36 (2014), pp. A2023–A2046, doi:10.1137/130918988.

[15] A. Gillman, P. Young, and P. G. Martinsson, A direct solver o(n) complexity for inte-
gral equations on one-dimensional domains, Front. Math. China, 7 (2012), pp. 217–247,
doi:10.1007/s11464-012-0188-3.

[16] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins Studies in
the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996.

[17] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869, doi:10.1137/0917055.

[18] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. I: Introduction to H-
matrices, Computing, 62 (1999), pp. 89–108.

[19] W. Hackbusch and S. Börm, Data-sparse approximation by adaptive H2-matrices, Comput-
ing, 69 (2002), pp. 1–35.

[20] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lectures on Applied
Mathematics, Springer, Berlin, 2002, pp. 9–29.

[21] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288, doi:10.1137/090771806.

[22] D. Huybrechs, Multiscale and Hybrid Methods for the Solution of Oscillatory Integral Equa-
tions, Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2006.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://dx.doi.org/10.1137/030602678
http://dx.doi.org/10.1137/0710032
http://dx.doi.org/10.1137/130918988
http://dx.doi.org/10.1007/s11464-012-0188-3
http://dx.doi.org/10.1137/0917055
http://dx.doi.org/10.1137/090771806

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1986 PER-GUNNAR MARTINSSON

[23] S. Le Borne, L. Grasedyck, and R. Kriemann, Domain-decomposition based H-LU precon-
ditioners, in Domain Decomposition Methods in Science and Engineering XVI, Lect. Notes
Comput. Sci. Eng. 55, Springer, Berlin, 2007, pp. 667–674.

[24] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from
matrix–vector multiplication, J. Comput. Phys., 230 (2011), pp. 4071–4087.

[25] P. G. Martinsson, Rapid Factorization of Structured Matrices via Randomized Sampling,
preprint, arXiv:0806.2339 [math.NA], 2008.

[26] P. G. Martinsson, A fast direct solver for a class of elliptic partial differential equations, J.
Sci. Comput., 38 (2009), pp. 316–330.

[27] P. G. Martinsson, A fast randomized algorithm for computing a hierarchically semisepara-
ble representation of a matrix, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1251–1274,
doi:10.1137/100786617.

[28] P. G. Martinsson, Compressing Rank-Structured Matrices via Randomized Sampling, pre-
print, arXiv:1503.07152 [math.NA], 2015.

[29] P. G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in
two dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[30] P. G. Martinsson and V. Rokhlin, An accelerated kernel-independent fast multipole method
in one dimension, SIAM J. Sci. Comput., 29 (2007), pp. 1160–1178, doi:10.1137/060662253.

[31] P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the Ap-
proximation of Matrices, Tech. report, Yale CS research report YALEU/DCS/RR-1361,
Computer Science Department, Yale University, New Haven, CT, 2006.

[32] P. G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the decompo-
sition of matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68.

[33] J. Xia, Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 197–227,
doi:10.1137/12087116X.

[34] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large
structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1382–
1411, doi:10.1137/09074543X.

[35] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semi-
separable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

D
ow

nl
oa

de
d

07
/1

1/
16

 to
 1

98
.1

1.
29

.8
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://arxiv.org/abs/0806.2339
http://dx.doi.org/10.1137/100786617
http://arxiv.org/abs/1503.07152
http://dx.doi.org/10.1137/060662253
http://dx.doi.org/10.1137/12087116X
http://dx.doi.org/10.1137/09074543X

	Introduction
	Preliminaries
	Notation
	The QR factorization
	The singular value decomposition (SVD)
	The interpolative decomposition (ID)
	Randomized compression
	Functions for low rank factorizations

	Rank-structured matrices
	A binary tree structure
	The HODLR data-sparse matrix format
	The HBS data-sparse matrix format

	An algorithm for compressing an HODLR matrix
	Asymptotic complexity

	An algorithm for compressing an HBS matrix
	A basic scheme for compressing an HBS matrix
	A storage efficient scheme for compressing an HBS matrix
	Adaptive rank determination and conversion to the HBSID format
	Asymptotic complexity

	Numerical experiments
	Compressing a boundary integral equation
	Operator multiplication
	Compression of frontal matrices in nested dissection
	Summary of observations from numerical experiments

	Conclusions
	References

