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Halko, Nathan P. (Ph. D., Applied Mathematics)

Randomized methods for computing low-rank approximations of matrices

Thesis directed by Professor Per-Gunnar Martinsson

Randomized sampling techniques have recently proved capable of efficiently solving many standard

problems in linear algebra, and enabling computations at scales far larger than what was previously

possible. The new algorithms are designed from the bottom up to perform well in modern computing

environments where the expense of communication is the primary constraint. In extreme cases, the

algorithms can even be made to work in a streaming environment where the matrix is not stored

at all, and each element can be seen only once.

The dissertation describes a set of randomized techniques for rapidly constructing a low-rank ap-

proximation to a matrix. The algorithms are presented in a modular framework that first computes

an approximation to the range of the matrix via randomized sampling. Secondly, the matrix is pro-

jected to the approximate range, and a factorization (SVD, QR, LU, etc.) of the resulting low-rank

matrix is computed via variations of classical deterministic methods. Theoretical performance

bounds are provided.

Particular attention is given to very large scale computations where the matrix does not fit in

RAM on a single workstation. Algorithms are developed for the case where the original matrix

must be stored out-of-core but where the factors of the approximation fit in RAM. Numerical

examples are provided that perform Principal Component Analysis of a data set that is so large

that less than one hundredth of it can fit in the RAM of a standard laptop computer. Furthermore,

the dissertation presents a parallelized randomized scheme for computing a reduced rank Singular

Value Decomposition. By parallelizing and distributing both the randomized sampling stage and

the processing of the factors in the approximate factorization, the method requires an amount



iv

of memory per node which is independent of both dimensions of the input matrix. Numerical

experiments are performed on Hadoop clusters of computers in Amazon’s Elastic Compute Cloud

with up to 64 total cores. Finally, we directly compare the performance and accuracy of the

randomized algorithm with the classical Lanczos method on extremely large, sparse matrices and

substantiate the claim that randomized methods are superior in this environment.
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Chapter 1

Introduction

Techniques based on randomized sampling have recently proved capable of solving many
standard problems in linear algebra far more efficiently than classical techniques. This dissertation
describes a set of such randomized techniques for rapidly constructing low-rank approximations to
matrices.

The primary focus of the work presented has been to develop methods for numerical linear
algebra that perform well in a modern computing environment where floating point operations are
becoming ever cheaper, and communication costs are emerging as the real bottleneck. The disserta-
tion demonstrates that randomized methods can dramatically reduce the amount of communication
required to complete a computation when compared to classical deterministic methods. Particular
attention is paid to out-of-core computing, and computing in a distributed environment.

1.1 Approximation by low rank matrices

A standard task in scientific computing is to determine for a given m × n matrix A, an
approximate factorization

A ≈ B C
m× n m× k k × n (1.1)

where the inner dimension k is called the numerical rank of the matrix. When the numerical rank
is much smaller than either m or n, a factorization such as (2.1) allows the matrix to be stored
inexpensively, and to be multiplied to vectors or other matrices rapidly. Factorizations such as
(2.1) can also be used to analyze and synthesize the data.

Matrices for which the numerical rank k is much smaller than either m or n abound in
applications. Examples include:

• Principal Component Analysis (PCA) is a basic tool in statistics and data mining. By
projecting the data onto the orthogonal directions of maximal variance (principal compo-
nents) we can visualize or explain the data in far fewer degrees of freedom than the ambient
dimension. This amounts to computing a truncated Singular Value Decomposition [19].



2

• A particular application of PCA is a technique in facial recognition called Eigenfaces [33].
Representing faces as 2-D vectors, the eigenfaces are the significant features (principal
components) among the known faces in the database. Just a small number of eigenfaces
are needed to span the significant variations so faces can accurately be described by a
weighted sum of each eigenface. The task of matching a face against the entire database
reduces to comparing only the hand full of weights which greatly reduces the complexity
of the problem.

• PCA is popular in the analysis of population genetic variation [26]. Though problems exist
with its interpretation and more advanced nonlinear methods have been developed, PCA
still remains an indispensable data analysis tool in the sciences.

• Estimating parameters via least squares in biology, engineering, and physics often leads to
large over determined linear systems. Low rank factorization of the coefficient matrix leads
to efficient solutions of the problem [29].

• The fast multipole method for rapidly evaluating potential fields relies on low rank approx-
imations of continuum operators with exponentially decaying spectra [16].

• Laplacian Eigenmaps arise in image processing. A few eigenvectors of a graph derived
from the image provide a non-linear embedding [5]. This is also an example of how linear
approximations are used to solve non-linear problems.

• Low cost sensor networks provide a wealth of data. Their low cost enables many sensors
to be densely deployed while limiting their on board data processing capability [4]. This
inevitably results in lots of redundant data to be processed by the user.

As the list indicates, in most applications, the task that needs to be performed is not just to
compute any factorization satisfying (2.1), but also to enforce additional constraints on the factors
B and C. We will describe techniques for constructing several different specific factorizations,
including:

The pivoted QR factorization: Each m× n matrix A of rank k admits a decomposition

A = QR, (1.2)

where Q is an m× k orthonormal matrix, and R is an k × n weakly upper-triangular matrix. That
is, there exists a permutation J of the numbers {1, 2, . . . , n} such that R( : , J) is upper triangular.
Moreover, the diagonal entries of R( : , J) are weakly decreasing. See [15, §5.4.1] for details.

The singular value decomposition (SVD): Each m× n matrix A of rank k admits a factorization

A = UΣV∗, (1.3)

where U is an m × k orthonormal matrix, V is an n × k orthonormal matrix, and Σ is a k × k
nonnegative, diagonal matrix
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Σ =


σ1

σ2

. . .

σk

 (1.4)

The numbers σj are called the singular values of A. They are arranged in weakly decreasing
order:

σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0. (1.5)

The columns of U and V are called left singular vectors and right singular vectors, respectively.

The interpolative decomposition (ID): The ID identifies a collection of k columns from a rank-k
matrix A that span the range of A. To be precise, there exists an index set J = [j1, . . . , jk] such
that

A = A( : , J) X, (1.6)

where X is a k × n matrix that contains the k × k identity matrix Ik. Specifically, X( : , J) = Ik.
Furthermore, no entry of X has magnitude larger than one.

1.2 Existing methods for computing low-rank approximations

The best method to choose for computing factorizations depends on several factors and is not
the same for every problem. Current state of the art procedures are very well suited and optimized
for matrices that fit in RAM. That is, they achieve excellent accuracy and robustness at the cost
of much random access to the elements of, or many passes over, the matrix A.

1.2.1 Truncated Factorizations

The singular value decomposition, when truncated to the leading k terms, provides the opti-
mal approximation in terms of `2 error. This often is accomplished by bidiagonalizing the matrix
via orthogonal transformations from the left and the right, and then using a quickly converging
iterative process to compute the SVD of the resulting bidiagonal matrix [15]. It is not possible to
extract the first k components without completing the entire factorization.

A = U Σ VT ≈ U( : , 1 : k) Σ(1 : k, 1 : k) V( : , 1 : k)T

m× n m×m m× n n× n m× k k × k k × n (1.7)

At a cost of O(mn ·min{m,n}) this method provides the minimal error ‖A− Aapprox‖ = σk+1 and
has an advantage when the matrix is not too large and most of the singular values/vectors are
needed.



4

1.2.2 Direct Access

The thin QR factorization is an O(kmn) method that uses a subset of columns of A to build
a basis for the column space or range of A. Variations differ based on how columns are selected as
described below. These methods require extensive random access to the matrix elements but work
very well when the matrix is small enough to fit into RAM.

The classic Golub-Businger algorithm [7] computes a pivoted QR decomposition using House-
holder reflections. Pivoting is done greedily by choosing the column with maximal norm at each
iteration. In other words, the column least similar to the columns already selected is added to the
basis. This approach is fast and easy to implement, but can fail in some pathological cases.

Gu and Eisenstat’s strong rank-revealing QR [17] seeks to maximize the determinant of the
upper left k block of R by interchanging columns of A. The jth diagonal entry of R represents
the norm of the jth basis vector projected away from basis vectors 1, . . . , j − 1. Maximizing the
determinant, or sum of R’s diagonal entries, seeks to minimize the similarity among basis vectors.
This approach is more robust and accurate than Golub-Businger, but can fail to work quickly
costing as much as a full QR decomposition in worst case scenarios.

1.2.3 Iterative methods

Iterative methods are appealing when random access to the matrix is unavailable or there is
a fast matrix vector multiply as when A is sparse. They operate by only requiring the action of
the matrix on a vector rather than random access to its elements. In large sparse systems, these
methods avoid fill-in common to the methods of §1.2.2. Typically O(k) passes over the matrix are
needed.

Lanczos method [21] uses the Krylov subspace generated by initial starting vector ω:

K(A, ω) = [ω,Aω,A2ω, . . .] (1.8)

for a symmetric n× n matrix. The coordinates of this basis map A to a tridiagonal matrix whose
eigenvalues can be found very efficiently. The method can also be used on non-symmetric matrices
by substituting ATA or AAT . Additionally, Arnoldi and non-symmetric Lanczos methods generalize
to working directly with a non-symmetric matrix A. In practice, stability issues are a huge concern
and the method is sensitive and difficult to implement robustly. The method is also a serial process
requiring many passes over the matrix A.

Simultaneous iteration, also orthogonal iteration, is a blocked generalization of the power
method [30]. For a symmetric matrix A, an O(k) dimensional subspace is constructed by repeatedly
multiplying an initial subspace by A. Each iteration amplifies the components of the leading k
eigenspace and continues until the iterated subspace converges to the leading k eigenvectors of A.
To avoid collapse of all vectors onto the leading eigenvector (or eigenspace associated with the
eigenvalue of largest magnitude) the subspace is orthogonalized between iterations. In addition,
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solution of an intermediate eigenproblem is done as an acceleration step [32] to improve the error
analysis.

These type of iterative methods are similar in spirit to the randomized techniques. The main
contribution of this research was to consider carefully the properties of the initial starting subspace.
This approach generated tight error bounds that required only a constant number of passes over
the data improving greatly upon previous O(k) pass methods. In some situations, only a single
pass is required for high accuracy.

1.3 Changes in computer architecture, and the need for new algorithms

With the current shift towards a heterogeneous computing environment, the algorithms of
§1.2.2-3 leave room for improvement. They are optimized to minimize flops and are not always
well suited for computer architecture that is constrained by communication and data flow. In
this environment reducing complexity and reorganizing computation become very important. For
example:

Multi-core and multi-processor CPU speeds are no longer improving at Moore’s pace leading
to changes in architecture to keep up. Multi-core chips are standard in nearly all new
computers. Access to parallel computing clusters are widely available to utilize parallelized
data analysis techniques.

Communication Data transfer between processors, from disk, or through networks is slow and
typically dominates the cost of parallel computation.

Amount of data Disk storage is very cheap leading to massive amounts of stored data. Data
acquisition out paces the speed up in computing power. An additional problem with large
data sets is noise and propagation of rounding errors.

It is necessary to develop new algorithms optimized for this changing environment.

1.4 Computational framework and problem formulation

The dissertation describes a set of techniques for computing approximate low rank factoriza-
tions to a given matrix A. In order to obtain a flexible set of algorithms that perform well in a
broad range of different environments, we suggest that it is convenient to split the computational
task into two stages:

Stage A Construct a low dimensional subspace that approximates the range of A. In other words,
given an ε > 0 compute a matrix Q with orthonormal columns so that ‖A− QQ∗A‖ < ε.

Stage B Given an approximate basis Q, use Q to help compute a factorization of A.
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For example, consider computing an SVD via the two stage procedure. Stage A computes an
approximate basis and Stage B utilizes the basis as follows:

• Form B = QTA.

• Compute SVD of the rectangular matrix B = ŨΣVT.

• Set U = QŨ so that A ≈ UΣVT.

The randomized methods that form the focus of the current work are aimed primarily at solving
Stage A above. It turns out that randomization allows this task to be executed in a very robust
manner that permits minimal interaction with the matrix A.

Stage B is well suited for deterministic techniques whenever the matrices B and Q fit in RAM.
We demonstrate in Section 5 of Chapter 2 that with slight modifications, the classical methods of
numerical linear algebra can produce the QR and SVD factorizations (see equations (1.2) and (1.3))
identified as targets in Section 1.1. For the interpolative decomposition (1.6) which is important
in data mining, Section 5 of Chapter 2 provides some substantially new techniques.

Chapter 3 develops methods for cases where matrix A is too large to fit in RAM of a single
workstation. In this situation, interaction with A must be minimized since reading A from disk is
prohibitively slow. The matrices B and Q are still assumed to fit in memory. This is often the
case with large dense matrices. Chapter 4 extends the methods even further to accommodate cases
where not only A cannot fit in RAM, but also matrices B and Q are too large for RAM. We develop
a distributed variant of the algorithm that utilizes multiple processors and out-of-core techniques
to construct B and Q. The SVD for example, is constructed via

• BBT = ŨΣ2ŨT

• U = QŨ

• VT = Σ−1ŨTB

The small square matrix BBT fits comfortably in RAM and the factorization is computed with
classical methods. The factors U and V are the same size as Q and B respectively and are computed
out-of-core.

Remark 1. The division of the computation in to two stages is convenient in many ways: It allows
us to present the proposed algorithms in a clear manner, it allows for a unified error analysis,
and — perhaps most importantly — it allows for the development of a set of different software
modules that can be put together in different configurations to suit any particular computational
environment. However, it should be noted that it is occasionally beneficial to deviate from the strict
2-stage template. For instance, we demonstrate in Section 5.5 of Chapter 2 an algorithm that
executes Stages A and B simultaneously in order to obtain an algorithm that works in a streaming
environment where you get to look at each element of the matrix only once (we call such algorithms
“single-pass” in the text).



7

1.5 Randomized algorithms for approximating the range of a matrix

In this section, we describe a set of randomized methods for executing the task we introduced
as “Stage A” in Section 2.1.2, namely how to construct a basis for an approximation to the range
of a given matrix. Early versions of these techniques were described in [24, 34], and are based on
randomized sampling. As a consequence, they have in theory a non-zero risk of “failing” in the
sense that the factorizations computed may not satisfy the requested tolerance. However, this risk
can be controlled by the user, and can for a very low cost be rendered negligible. Failure risks of
less that 10−15 are entirely standard.

1.5.1 Intuition

To get a feel for the randomized sampling technique let us consider an n × n matrix A of
exact rank k < n. For simplicity assume that A is symmetric so we can easily discuss a set of real,
orthogonal eigenvectors. Note that these restrictions are purely for convenience and the randomized
sampling technique is effective on any matrix regardless of dimension or distribution of entries. It
is most insightful to view the range of matrix A as a linear combination of its columns.

ran (A) =


n∑
j=1

αjA( : , j) : αj ∈ R

 (1.9)

For any vector ω ∈ Rn, the vector formed by multiplying by A is a vector in the range of A,

y = Aω =
∑

j ωjA(:, j). (1.10)

We call y a sample vector of ran(A). If we can collect k sample vectors that are linearly independent,
then we can find a basis for ran(A) by orthogonalizing the k samples. If ω is a random vector in
Rn then we call y = Aω a random sample of ran(A). For the purpose of illustration and analysis
it is convenient to choose each entry of ω from the standard normal distribution,

ω ∈ Rn : ωi ∼ N (0, 1) . (1.11)

Vectors chosen in this manner, known as Gaussian vectors, have important properties that help
clarify analysis of the randomized sampling technique. First, k independently drawn Gaussian
vectors {ω(i)}ki=1, are almost surely in general position. This means that no linear combination
of ω’s will fall in the null space of A and implies that the sample vectors {y(i) = Aω(i)}ki=1 are
linearly independent. Below we use this fact to show that k sample vectors span the range of A.
Secondly, Gaussian vectors are rotationally invariant meaning that for any orthogonal matrix U
and Gaussian vector ω, the vector Uω is also Gaussian.

Consider the eigenexpansion of sample vector y

y =
∑
j

λj〈ω, xj〉xj (1.12)
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where {xj}nj=1 are the eigenvectors of A. Pick an eigenvector x and then pick an orthogonal rotation
matrix U such that Ux = e1. The quantity 〈ω, xj〉 in equation (1.12) is itself a Gaussian random
variable

〈ω, xj〉 = 〈Uω,Uxj〉
= 〈ω̃, e1〉
= ω̃1 the first element of ω̃
∼ N (0, 1)

(1.13)

The probability of this quantity being indentically zero is non-existent and we get a non-zero
contribution of the eigenvector in the sample vector y. We can easily repeat this argument for each
eigenvector to show that the sample vector has a non-zero contribution from every eigendirection.
Therefore we do not miss any of the range in our sampling process. Putting this all together we
have k linearly independent vectors in the k dimensional space ran(A) and we can orthonormalize
the samples to create a basis for ran (A).

The situation is not so clear if A is not exactly rank k. It is possible that the last n − k
singular values reflect noise in our data or we simply want a low rank approximation of the matrix.
Consider A to be the sum of an exact rank k matrix and a perturbation.

A =
∑k

j=1 λjxjx
T
j +

∑n
j=k+1 λjxjx

T
j

= B + E
(1.14)

We have reasoned that if E ≡ 0, as in the exact rank case, then k sample vectors will capture every
direction in ran(A). For rank of A greater than k, E 6= 0 and the perturbation shifts some of the
direction of each sample vector outside the range of A. We already saw how the quantity 〈ω, xj〉
was uniform over j, implying that we are actually more likely to sample the range of E as we are
the range of B (assuming k � n). However, the quantity

λj〈ω, xj〉 (1.15)

is weighted to favor the components of B, the dominant rank k subspace we are after. Since the
eigenvalues of E are generally much smaller than those of B, the sample vectors are naturally more
heavily weighted with components of ran(B) and the perturbation only adds a slight shift outside
the desired range. In the event of an unlucky (and unlikely) sample, though the perturbation is
small, it can also be the case that λj〈ω, xj〉 is even smaller for j = 1, . . . , k and we miss the target
range space. We can view this as a wasted sample and simply take another one to augment the
sample pool. Since it is not known whether or not the sample is good at this point, the remedy is
to assume that some samples are unlucky and take an extra p samples to account for them. The
number of extra samples p is small and adds a great deal of accuracy for a small computational
cost. Typically p = 10 is sufficient though we can take up to p = k and not change the asymptotic
qualities of the algorithm. Further analysis will provide insight to choosing p and its effect on
accuracy of the method.

1.5.2 Basic Algorithm

Given an m × n matrix A, a target rank k, and an oversampling parameter p, the follow-
ing algorithm computes an m × (k + p) matrix Q whose columns are orthonormal and form an
approximate basis for the range of A.
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INPUT Am×n , k , p

(1) Draw a Gaussian n× (k + p) test matrix Ω.

(2) Form the product Y = AΩ.

(3) Orthogonalize the columns of Y 7→ Q

OUTPUT Q

This algorithm can also easily be summarized in Matlab notation

Q = orth(A*randn(n,k+p)) (1.16)

and we see that this is the first step of an orthogonal iteration. The novelty of the algorithm lies in
Theorem 1.5.1 of Chapter 2 that depending on properties of A, this is the only step of the iteration
we need to take.

Theorem 1.5.1. Let A be a real valued m×n matrix. Choose a target rank k and an oversampling
parameter p so that p ≥ 4 and k+p ≤ min{m,n}. Execute the algorithm with a standard Gaussian
test matrix Ω. Then the approximate basis Qm×(k+p) satisfies

E‖A− QQTA‖2 ≤

(
1 +

√
k

p− 1

)
σk+1 +

e
√
k + p

p
·

∑
j>k

σ2
j

1/2

≤
[
1 +

4
√
k + p

p− 1
·
√

min{m,n}
]
σk+1

= C · σk+1.

Traditional analysis of orthogonal iteration [15], [32] relies on a parameter q which defines
the number of times the method needs to access the elements of A. The analysis shows that by
increasing q, the approximate basis Q converges to the dominant, invariant subspace of A. With
q = 0 as in the basic algorithm, the existing theory would not provide any certainty of an accurate
basis after one step. Notice that with a small oversampling parameter, say p = 10, Theorem 1.5.1
puts us within a small polynomial factor of the minimum possible error. The error bound is also
slightly sharper than bounds for the rank revealing QR algorithms [17].

1.5.3 Probabilistic error bounds

Theoretical results that guarantee the effectiveness of randomized methods such as the one
described in Section 1.5.2 must first establish that in the “typical” outcome, they provide close to
optimal results. In the context described in Section 1.5.2, the best possible basis for the column
space is given by the left singular vectors of A [15]. To be precise, if Q consists of the first k left
singular vectors, then

||A− Q Q∗ A|| = inf
rank(B)=k

||A− B|| = σk+1,
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where σj denotes the jth singular value of A. We consequently seek to prove that for a matrix Q
constructed via randomized sampling, the quantity ||A − Q Q∗ A|| is typically close to σk+1. An
upper bound on the expected value of the error as in Theorem 1.5.1 is an example of a result of
this kind.

Once the behavior in the typical case has been established, the second task of the analysis
is to assert that the probability of a non-typical outcome is small. The probability is controlled by
the oversampling parameter p where by moderately increasing p the probability of a larger than
typical error is vanishingly small (less than 10−15 is entirely typical).

To illustrate this type of result, we give here a simplified version of a result that first appeared
in [24] and that was sharpened and reproved in Chapter 2. For details, see Section 2.10 of Chapter
2.

Theorem 1.5.2. Let m, n, and k be positive integers such that m ≥ n ≥ k. Let p be a positive
integer. Let A be an m× n matrix with singular values {σj}nj=1. Let Ω be an n× (k+ p) Gaussian
random matrix, and let Q have k+p orthonormal columns such that QR = A Ω. Then the inequality

||A− QQT A|| ≤ 10
√

(k + p) (n− k)σk+1. (1.17)

holds with probability at least
1− ϕ(p)

where ϕ is a universal function that decreases monotonically, and satisfies, e.g.

ϕ(5) < 3 · 10−6, ϕ(10) < 3 · 10−13, ϕ(15) < 8 · 10−21, ϕ(20) < 6 · 10−27.

The very rapid decay of the “failure probability” is a key feature of randomized methods.
For the method to go wrong, it is necessary for a large number of random variables to be drawn
not only from their individual tail probabilities, but in a way that conspires to produce the error.

Theorem 1.5.2 shows that slightly loosening the upper bound dramatically improves the
probability of success. Setting p = 5 renders the probability of failure extremely negligible. Theo-
rem 1.5.1 gives a different picture of the oversampling parameter. Here we can see that choosing
an increasingly larger p in fact diminishes the error. In practice, a value of p = 10 offers a good
balance between accuracy, assurance of success, and computational efficiency.

There are two other quantities of interest in the error bounds: the singular values of A and
the factor

√
nk. If the singular values decay rapidly the factor

√
nk becomes irrelevant. In the

case of Theorem 1.5.1, the
√
n factor is a worse case approximation to the Frobenius factor

σk+1 ≤
(∑

j>k σ
2
j

)1/2
≤
√
n− k · σk+1, (1.18)

where equality holds on the right only if the singular values exhibit no decay at all. If the singular
values decay sufficiently the quantity is closer to the lower bound on the left. For matrices with
slowly decaying singular values, the factor

√
nk can be improved upon via power iteration type

methods discussed in §1.6.2.
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Finally, the a priori error bounds of Theorems 1.5.1 and 1.5.2 are not the only assurance we
have of constructing an accurate basis Q. A posteriori estimates provide a computationally cheap
and effective way of assessing the quantity ‖A−QQTA‖. In addition, the techniques provide a way
to adaptively determine Q for cases where the rank is not known in advance but rather a tolerance
is given as in the fixed precision problem. In other words, given a tolerance ε, construct a matrix
Q of minimal rank such that

‖A− QQTA‖ < ε. (1.19)

It is unlikely that the randomized methods will initially produce a minimal rank matrix Q, however,
post-processing will reveal the true rank. For example, from an m × (k + p) matrix Q satisfying
equation (1.28) we can compute a rank k + p approximate singular value decomposition satisfying
the same tolerance ε. Truncating the factorization to the leading k terms produces rank k factors
that satisfy

‖A− UΣVT‖ < σk+1 + ε. (1.20)

Since k is not know in this situation, we can determine it as accurate as we like by examining the
entries of Σ. See Theorem 2.9.3 page 91 of Chapter 2 for details.

1.5.4 Computational cost

The algorithm described in Section 1.5.2 is particularly efficient in situations where the matrix
A can rapidly be applied to a vector. In this situation, its computational cost Ttotal satisfies

Ttotal ∼ k n× Trand + k × Tmult +mk2 × Tflop, (1.21)

where Trand is the cost of generating a pseudo-random number, Tmult is the cost of applying A to
a vector, and Tflop is the cost of a floating point operation.

For a dense matrix, Tmult = mn, and the estimate (1.21) reduces to the O(mnk) complexity
of standard dense matrix techniques. However, it was shown in [34] that the scheme can be modified
by using a random matrix Ω that has some internal structure that allows the matrix-vector product
Y = A Ω to be evaluated in O(mn log(k)) operations. It turns out that the constants involved are
sufficiently small that this algorithm beats standard techniques for very moderate problem sizes
(say m,n ∼ 103 and k ∼ 102).

In order to implement the algorithms described in this section, a number of practical issues
must be addressed: What random matrix Ω should be used? How is the matrix Q computed
from the columns of Y? How do you solve the “fixed precision” problem where the computational
tolerance is given and the numerical rank is to be determined? How do you compute the singular
value decomposition once you have constructed the basis Q? Answering questions of this type was
a principal motivation behind the paper [18] that forms Chapter 2 of this dissertation.

1.6 Variations of the basic theme

The basic algorithm leaves room for modifications depending on the computational setting
and performance requirements. We describe a technique to speed up the matrix product AΩ that
lowers the complexity of the algorithm below that of Krylov methods. We also present techniques
that achieve arbitrarily high accuracy and ensure numerical stability.
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1.6.1 Structured Random Matrices

The bottleneck in the basic algorithm, when applied to dense matrices stored in fast memory,
is the matrix product AΩ costing O(mn`) flops for ` = k + p. Using a dense Gaussian test matrix
Ω is appropriate in certain situations and tighten analysis of the methods, but are expensive to
compute with. We can lift the restriction of test matrix Ω being Gaussian and instead use a random
test matrix that is structured, reducing the complexity of the matrix product to O(mn log(`)).
One such matrix, the Fast Johnson Lindenstrauss Transform (FJLT) is described in [3] to solve the
approximate nearest neighbor problem. The FJLT uses a sparse projection matrix preconditioned
with a randomized Fourier transform to achieve a low distortion embedding at reduced cost. Adap-
tation of this idea to the problem of randomized sampling is given in [34] known as the subsampled
randomized Fourier transform (SRFT):

Ωn×` =

√
n

`
DFR (1.22)

where

• D is an n× n diagonal matrix with dii drawn randomly from the complex cirle.

• F is the n× n unitary discrete Fourier transform.

• R is an operator that randomly selects ` of the n columns.

For a real variant of the SRFT, consider dii = ±1 and F a Hadamard matrix. Other matrices
that exhibit structure and randomness have been proposed in [22] and [1]. While the analysis of
using these structured matrices call for more oversampling in the worst case scenerios, in practice
they often require no more oversampling than Gaussian test matrices.

1.6.2 Increasing accuracy

As we alluded to in §1.5.3, the decay of the singular values plays a large role in the accuracy of
the randomized methods. If we have sufficient decay in the singular values then the basic algorithm
will produce excellent results. However, as indicated by inequality (1.18), if the tail singular values
{σj}j>k+1 are significant, we can be penalized with a

√
n factor in the error. In order to reduce

the contribution of these singular values we can sample a similar matrix B =
(
AAT

)q
A that has

the same singular vectors as A and related singular values µ (B) = σ (A)2q+1. The adaptation
exponentially shrinks the constant in the error bound [28]:

E‖ (I− PZ) A‖2 ≤ (E‖ (I− PZ) B‖2)1/(2q+1)

≤
[
1 +

4
√
k + p

p− 1
·
√

min{m,n}
]1/(2q+1)

σk+1

= C1/(2q+1)σk+1
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where PZ is the orthogonal projector onto the space spanned by Z = BΩ. With a small q we
can get a nearly optimal approximation since C1/(2q+1) → 1 rapidly as q moderately increases.
Arbitrarily high precision can be achieved by increasing the parameter q. Numerical experiments
confirm that q ≤ 3 in almost all cases produces excellent results. In fact, often results from q = 2
are indistinguishable from q = 3 which implies that the computed spectrum has fully converged
after just two iterations.

Sampling matrix B is more expensive than the basic scheme and requires multiplication by
A and AT at each iteration. However, the cost is controlled by the fact that q does not depend on
k, and that the method is able to compute any size k factorization in a constant number of passes.
Contrast this with iterative Krylov methods that require O(k) passes over the input matrix. Of
course, for matrices that admit a fast matrix multiply, such as sparse matrices, the cost is even
further reduced. In addition, the matrix product ATAx can be computed in a single pass through
A. Assuming A is stored row-wise so that we have access to A one row at a time, compute the outer
product

ATAx =
m∑
i=1

〈A(i, : ), x〉 · (A(i, : ))T . (1.23)

If we view the matrix B as A
(
ATA

)q
, then the scheme needs only q + 1 passes over matrix A.

1.6.3 Numerical Stability

The basic randomized sampling scheme is numerically very stable. Both the major compo-
nents of the algorithm, matrix multiplication and orthogonalization are well understood and can
be stably implemented. However, there is a possibility that we can loose some accuracy in the
smaller eigenvalues of our approximation. Each sample vector can be decomposed as (assuming A
is symmetric)

y =
∑
j

λ2q+1
j 〈ω, xj〉xj (1.24)

where q is the parameter we introduced in §1.6.2. For q = 0, as in the basic scheme, any eigenvalue
of interest is larger than machine precision, for example λj > ε. For q ≥ 1 it can be the case that

λ2q+1
j < ε and that small eigenvalues are pushed below machine precision and appear as noise. If

this happens we are unable to detect the eigenvectors associated with the small eigenvalues. Note
however that this is not detrimental. Often it is the case that the largest eigenvalues are of interest
in which case the method still retains excellent accuracy for their associated eigenvectors.

One solution to the problem is inspired by a block Lanczos procedure and explored in Chapter
3. We keep intermediate iterates in the sample matrix as follows

Y =
[
Y(0) Y(1) . . . Y(q)

]
(1.25)

where the matrices Y(i) are defined recursively as

Y(0) = AΩ
Y(i) = AATY(i−1) for i = 1, 2, . . . , q.

(1.26)
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Test matrix Ω has ` columns but typically ` is very close to k, that is ` = k+2 for example. The need
for oversampling is greatly reduced with this method. Small eigenvalues are preserved in Y0 and
thus do not get buried by exponentiation with q. This technique results in a larger m× (q+1)` size
basis. There is extra work in orthogonalizing the larger basis and increased memory requirements.
However, it can be effective when there is sufficient RAM to hold the basis.

A more space efficient solution is to orthogonalize the basis between iterations [25].

Q(0)R(0) = AΩ
Q(i) = AQ(i−1) for i = 1, 2, . . . , q.

(1.27)

The orthogonalization preserves linear independence among the sample vectors.

Remark 2. Both methods are slightly paranoid in the sense that for most cases, not every inter-
mediate sample matrix needs to be kept nor does orthogonalization need to be done between every
iteration.

1.6.4 Adaptive methods

Thus far we have assumed that k is specified in advance. In other words, we have been solving
the fixed rank problem. If instead a tolerance ε is specified and the rank is not provided, we need
to solve the fixed precision problem. That is, find a matrix Q with orthonormal columns such that

‖A− QQTA‖ < ε (1.28)

To assess the quantity in (1.28) the following theorem of [34] and [10] provides a cheap way to
estimate an upper bound by examining the action of the matrix on random vectors. Substitute
B =

(
I− QQT

)
A in the following,

Theorem 1.6.1. For any matrix B, positive integer r and normalized i.i.d. Gaussian vectors
{ω(i)}ri=1,

‖B‖ ≤ 10

√
2

π
max
i=1,...,r

‖Bω(i)‖

except with probability 10−r.

The theorem states that if we observe ‖
(
I− QQT

)
A‖ < ε/

(
10
√

2
π

)
for r consecutive random

vectors, then we can be sure with probability 10−r that (1.28) is satisfied.

Not only does the theorem provide an accessible way to assess the norm of the approximation,
it comes at virtually no cost when integrated into the randomized sampling scheme. Consider an
initial starting block of ` > r samples and compute the QR factorization of Y. The estimates of
Theorem 1.6.1 are contained in the R factor! To see this partition Q and R as follows

Y = QR =

 Q1 Q2

[ R1 R2

0 R3

]
(1.29)
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where Q1 is the first `− r basis vectors, Q2 are the remaining r, and R is partitioned conformally.
We want to use Q1 as the basis and use the last r columns of the sample matrix Y( : , ` − r : `) =
Q1R2 + Q2R3, to assess the error.(

I− Q1QT
1

)
Y( : , `− r : `) =

(
I− Q1QT

1

)
(Q1R2 + Q2R3) = Q2R3

If each of the columns of R3 have sufficiently small norms, then Q1 is a suitable basis. If not, we
double the amount of samples and repeat the process adding `, 2`, 4`, . . . vectors to the basis until
the tolerance is satisfied. There is a slight computational cost in that we compute r extra samples,
but these can also be kept as part of the basis for free and provide an accuracy boost. On the
other extreme, if we significantly overshoot the number of samples, it is a simple matter to work
backwards until we find a partial column norm of R that is above the threshold.

1.7 Numerical linear algebra in a distributed computing environment

Data sets and their associated matrices can easily grow beyond the size of random access
memory necessitating out-of-core algorithms. If the size of the approximation factors are small
enough to fit in RAM then we only need to perform the randomized sampling stage out-of-core
while the remainder of the calculations can be done in memory. For example, dense matrices
can take an enormous amount of space on disk but the dimensions of the matrix are such that
a few hundred singular vectors can fit comfortably in memory. Consider a 1,000,000 × 1,000,000
dense matrix which occupies over 7TB of disk, meanwhile the factors of its rank 100 singular value
decomposition take only 1.5GB. The situation is much different for sparse matrices whose low rank
factorizations do not generally provide savings in storage. Assuming a density of 1%, a 7TB sparse
matrix has dimensions 100,000,000 × 100,000,00 and its factors occupy 150GB, 100 times the size
of the dense example. For cases where the size of the factors are too large to fit in memory we need
to do all computations out-of-core.

1.7.1 Distributed computing environment

MapReduce is a distributed programming model popularized by Google. Algorithms are
structured into map tasks and reduce tasks and communication is restricted to a shuffle and sort
phase in between. Input data is partitioned into chunks and an identical map task operates on each
of the chunks independently of each other. During processing, data that needs to be communicated
is marked with a key. The shuffle and sort phase groups the data by key and delivers all data with the
same key to a reduce task for further processing. These tasks can be chained together to construct
complex algorithms. The restrictive model allows for many of the complexities of distributed
computing to be handled by a framework. Hadoop is the scalable distributed computing framework
that implements MapReduce algorithms. It handles filesystem level tasks such as load balancing
and locality optimization, and details of parallelization such as fault tolerance and execution of the
algorithms.

The basic unit of parallelism in a MapReduce algorithm is the task. The number of tasks
is determined by the size of the input data which is partitioned into chunks of equal size. A node
in a Hadoop cluster can run multiple tasks concurrently. A Hadoop cluster has the ability to
coordinate thousands of nodes harnessing massive computing power. In addition, Hadoop can run
on a standard single processor computer attesting to the scalable nature of the framework.
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1.7.2 Distributed operations

The two major operations in a randomized scheme are the matrix multiplication Y = AΩ
and the orthogonalization of Y to form the projector matrix Q. It is necessary to parallelize and
distribute these operations to reduce computation time on large data sets, and as we discussed, the
matrix Y (and consequently Q or U,V of a partial svd) is too large to fit in memory.

1.7.2.1 Matrix multiplication

Matrix A is partitioned into blocks of rows and each block is processed by a map task. We
form Y row by row via outer products of row of A and Ω

Y(i, : ) =
∑
j

A(i, j) · Ω(j, : ) (1.30)

where row blocks of Y are formed in each task. Notice this requires a copy of Ω in each task to
form a block of Y. Luckily we can avoid this by generating entries of Ω on the fly using a seeded
random number generator. Equation (1.30) can be done with only a map phase, there is no further
communication required after the map tasks have completed and the reducers are unnecessary
in this case. Taking each entry of A individually uncouples memory requirements from n. For
blocksize s, the multiplication only requires s` memory.

The power method of §1.6.2 presented a way to increase accuracy but also presents another
challenge. After the first matrix multiplication with Ω we need to multiply A by a dense matrix that
cannot be generated on the fly but rather needs to be distributed to each task. Let BT = ATAΩ,
then the product Y = ABT is done via blocked outer products. A treatment of this operation is
given in Chapter 4.

1.7.2.2 Orthogonalization

Givens rotations are well suited to parallel computations. Operating on a small scale by
zeroing entries one by one allows Givens rotations to effect only two rows (or columns) of a matrix
at a time. From §1.7.2.1 we see that row wise blocks of Y are available in each task. We can form
QR decompositions of the blocks of Y independently and then merge them together using Givens
rotations. All that is needed is a communication phase to distribute a copy of the R factor from
each task to each of the other partial factorizations. The sequence of rotations that achieves

GTseq

 R1

R2
...

 =

 R
0
...

 , (1.31)

when applied to the block decomposition of Y, will form a block of the full factorization QR = Y.
The computation of the block factorizations and the blocks of the final factorizations are carried
out in parallel with only the communication of the R factors in between. Memory requirements for
this method are proportional to the block size and require only 2 · s` memory.
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1.7.3 Stochastic Singular Value Decomposition in MapReduce

The Stochastic Singular Value Decomposition (ssvd) is a combination of algorithms in Chap-
ter 2 and the distributed techniques described in §1.7.2. The algorithm incorporates optional power
iterations of §1.6.2 to increase accuracy and orthogonalization between the iterations as described
in §1.6.3 to increase numerical stability. Given a user specified rank k, it computes a rank k singular
value decomposition of a matrix on Hadoop clusters of computers. Owing to the distributed matrix
multiplication and orthogonalization schemes, memory requirements for ssvd are independent of
both dimensions of the input matrix.

1.7.4 Lanczos comparison

An important question to answer is how does the ssvd method compare to the Lanczos svd.
We examine the following areas:

Execution time The Hadoop environment is ill suited for iterative computations. With each pass
through the data an algorithm should extract as much information as possible thus limiting
interaction with the data and minimizing set up and data movement costs. The Lanczos
algorithm computes only a vector’s worth of data each pass through the matrix. This not
only requires many passes through the data incurring set up and data movement costs, but
also fails to fully utilize processor capability. The ssvd visits the matrix only twice (and
two additional times per power iteration). It also does computation in bulk which fully
utilizes the processors and minimizes overhead costs of the framework. The ssvd is faster
than the Lanczos method in this environment.

Accuracy The Lanczos method provides excellent accuracy. It was designed to do this at the
expense of many passes through the data. The ssvd provides comparable accuracy. In
particular, for q = 0, the ssvd is not as accurate as Lanczos method, however, with just
one power iteration we obtain a slightly better approximation.

Scalability This is perhaps the most important feature since if a method does not scale, then
it cannot compete on large data sets. The implementation of Lanczos we tested only
distributed the matrix vector multiplication, orthogonalization was done in serial on a
single machine. We ran into memory (java heap) problems on modest sized data sets and
could not use the methods on our larger data sets. The ssvd was able to compute a rank
100 singular value decomposition of a matrix whose dimensions both exceeded 37,000,000.
Theoretically, the ssvd’s memory usage is not dependent on either dimension of the matrix
so we believe that the method will scale to much larger data sets.

1.7.5 Numerical Experiments

Extensive numerical experiments validate the claims of §1.7.4. As discussed in the intro-
duction of this section, sparse matrices provide challenging problems since often the approximation
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factors are too large to fit in memory. Term-frequency document-frequency (tf-df) matrices are com-
mon in vectorizing textual documents. We used a data set of Wikipedia articles and constructed
extremely sparse tf-df matrices of various sizes. Crucial to the success of the algorithm are the
computational parameters that involve intermediate blocking sizes and Hadoop system settings. A
thorough investigation is done on how to tune a cluster to run the ssvd. Experiments are carried
out on Hadoop clusters in Amazon’s Elastic Compute Cloud with up to 64 total cores.

1.8 Survey of prior work on randomized algorithms in linear algebra

That randomized sampling techniques can advantageously be used to compute partial spec-
tral decompositions of matrices was demonstrated in [24, 34, 23]. These papers describe algorithms
that greatly improve upon both the speed and the robustness of the prevailing standard techniques
for both sparse and dense matrices. The algorithms of [24, 34, 23] had a shortcoming in that they
did not perform optimally for matrices whose singular values decay slowly, making them unsuit-
able for very large matrices with low “signal-to-noise” ratios. This shortcoming was overcome by
Rokhlin, Tygert, and Szlam [28], who demonstrated that with certain modifications, the random-
ized techniques produce results that are significantly more accurate than the standard methods,
while still retaining advantages in speed and robustness. This development was game-changing since
standard techniques would have been entirely unable to handle the large noisy matrices described
throughout this dissertation.

The techniques of [24, 34, 23] can be viewed as intellectual descendants of earlier work in
functional analysis and probability theory by Johnson and Lindenstraus [20], Bourgain [6], and
others, who demonstrated the power of randomized projections in reducing the effective dimension
of data sets. In fact, the work of [24, 34, 23] can be viewed as an application of these ideas
to standard problems of numerical linear algebra in a sense similar to how the celebrated work on
compressed sensing [8, 11] could be viewed as an application of these ideas to signal processing. The
techniques described here are also indirectly inspired by other recent work on randomized techniques
in linear algebra, including, [14, 2, 12, 9, 13, 31], and in particular the work of Papadimitriou [27]
and Frieze, Kannan and Vempala [14].

Remark 3. A more detailed review of the literature on randomized methods can be found in Section
2 of Chapter 2.

1.9 Structure of dissertation and overview of principal contributions

Structure: Beyond this introductory chapter, the dissertation consists of three independent chap-
ters, two of which have previously appeared as independent articles in refereed journals. Each
chapter is self-contained and can be read by itself. While improving readability and accessibility,
this organization necessitates some repetition of material across the different chapters. Notation is
consistent within chapters, but not necessarily across the entire dissertation.

In the remainder of this section, we will briefly summarize the key contributions in each
chapter.

Chapter 2: The material in this chapter has appeared as:
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N. Halko, P. G. Martinsson, and J. A. Tropp.Finding Structure with Randomness:
Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM
Review 53, pp. 217–288, 2011.

This paper presents several new algorithms, provides a new theoretical analysis of randomized
methods for low-rank approximation, and also serves as a review of recent work on randomized
methods for matrix approximation. Principal contributions include:

• A unified framework for computing low-rank factorizations via randomized methods is
presented. The idea is to organize a computation into two distinct “stages” — one that
constructs an approximate basis for the range of a matrix, and one that factorizes the matrix
within the computed range. The first stage is executed via any of several randomized
methods presented, and the second stage is executed via deterministic methods. It is
demonstrated that by organizing the computation in this way, theoretical analysis of the
methods is substantially simplified. It also leads to a very flexible set of algorithms that can
readily be adapted to different computing environment: sparse or dense matrices, storage
in RAM or out-of-core, single processor or parallel computing, etc.

• A new set of techniques for adaptively computing the rank of a matrix is presented. Earlier
randomized algorithms tended to rely on the numerical rank (or at least an upper bound
for the numerical rank) to be provided as an input to the computation.

• Earlier versions of randomized methods focussed on computing an approximate singular
value decomposition. The paper demonstrates how these algorithms can be modified to
compute other factorizations such as QR, LU, or ULV-factorizations. In particular, it
is demonstrated that randomized methods are particularly well suited for the so called
skeletonization problem which is the task of finding a subset of columns of the matrix that
form an optimal basis for the column space. (To be precise, the paper demonstrates that
a very slightly relaxed version of the skeletonization problem can be solved efficiently.)

• The paper provides a new theoretical framework for analyzing randomized methods for
computing low-rank approximations. It is demonstrated that the task of proving proba-
bilistic error bounds naturally splits into two distinct components: one consisting of mostly
classical linear algebra, and one that relies on precise estimates for the probability distri-
bution of certain classes of random matrices. The paper furnishes the needed estimates
and provides new bounds both on the expected error and on the tail probabilities for the
risk of incurring an atypical large error. Two different classes of sampling are considered:
Gaussian random matrices, and the Fast Johnson-Lindenstrauss transform.

Chapter 3: The material in this chapter has appeared as:

N. Halko, P.G. Martinsson, Y. Shkolnisky, and M. Tygert. An algorithm for the prin-
cipal component analysis of large data sets. SIAM Journal on Scientific Computing,
33(5):2580–2594, 2011.
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This paper exploits techniques described in Chapter 2, but focuses on the implementation of the
methods in a situation where the data is stored out-of-core. The purpose is to demonstrate that
randomized algorithms involve a sufficiently small amount of communication that very large dense
matrices (of size n,m ∼ 105 or more) can be factored even on a modest office laptop. Specific
contributions include:

• The algorithms described in Chapter 2 are customized for executing out-of-core. That is,
the input matrix is too large to fit in RAM and each entry must be read from slow memory
when needed. The algorithms seek to minimize interaction with the input matrix as the
cost of data movement dominates execution time.

• A technique for improving the accuracy of the computed factorization is developed. The
observation here is that in the out-of-core environment, the only relevant cost is moving
data between slow and fast memory. This allows us to perform extra computations on the
data in fast memory to reduce approximation errors.

• A key contribution of this paper are the extensive numerical experiments. The algorithms
are tested on several very large data sets including standard test sets, numerical simulations,
and physical measurements. The tests are carried out on both a modest office laptop and
a high performance workstation to show the scheme succeeds in a variety of environments.

Chapter 4: This chapter describes modifications to the basic algorithms developed in Chapter
2 that allows them to run efficiently in a distributed computing environment. While Chapter 3
focusses on the case where the matrix is stored outside the fast memory for a single processor, we
now involve very large numbers of processors with distributed storage (that could be out-of-core as
well). Specific contributions include:

• A parallel versions of algorithms in Chapter 2 are developed that include distributed matrix
multiplication and a distributed orthogonalization scheme. Givens rotations are used to
compute blocks of orthonormal matrix Q independently of each other. The scheme dis-
tributes and parallelizes computation to as many nodes as are available greatly reducing
the execution time of the orthogonalization phase. With this modification we can efficiently
orthogonalize the basis in between power iterations thus increasing stability. In addition,
the parallel adaptations uncouple memory requirements from both dimensions of the input
matrix allowing great scalability in both the size of the input matrix and the size of the
reduced rank factorization.

• The algorithm is implemented in Hadoop, a scalable distributed computing framework.
MapReduce, a programming model based on restricted communication, is well suited to
the bulk and infrequent communication patterns of the algorithm. The algorithm, termed
Stochastic Singular Value Decomposion (ssvd), was incorporated into Mahout, a scalable
machine learning library that uses MapReduce algorithms to leverage the power of Hadoop.
Mahout’s popularity has grown as the need to extract knowledge from massive data sets
continues to rise.
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• This paper provides thorough numerical experiments that both study the mathematical
and computational parameters of the algorithm, and showcase its scalability. Experiments
are carried out on clusters of computers from Amazon Elastic Compute Cloud. We discuss
parameters and settings necessary to run the algorithm in this environment. Experiments
are done on matrices whose dimensions are millions of times larger than in previous works.

• This paper also provides an analysis and comparison of the ssvd with the classical Lanczos
SVD method. Both methods are available in Mahout. An important contribution of
this paper is to show that ssvd out scales and out performs Lanczos in this environment,
making data analysis feasible on matrices much larger than previously possible with classical
methods.

The material in this chapter has not yet been published.
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Chapter 2

Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions

Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp

Note: The work described in this chapter was carried out in collaboration with Professors Joel
Tropp of Caltech and Per-Gunnar Martinsson of the University of Colorado. It appeared in the
June 2011 issue of SIAM Review (volume 53, pages 217–288) under the title: “Finding Structure
with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions”

Abstract: Low-rank matrix approximations, such as the truncated singular value decomposition and the
rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work
surveys and extends recent research which demonstrates that randomization offers a powerful tool for
performing low-rank matrix approximation. These techniques exploit modern computational architectures
more fully than classical methods and open the possibility of dealing with truly massive data sets.

This paper presents a modular framework for constructing randomized algorithms that compute partial matrix
decompositions. These methods use random sampling to identify a subspace that captures most of the action
of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the
reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases,
this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are
supported by extensive numerical experiments and a detailed error analysis.

The specific benefits of randomized techniques depend on the computational environment. Consider the model
problem of finding the k dominant components of the singular value decomposition of an m×n matrix. (i) For
a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast
with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov
subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-
processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques
require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms.
In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.

Keywords: Dimension reduction, eigenvalue decomposition, interpolative decomposition, Johnson–
Lindenstrauss lemma, matrix approximation, parallel algorithm, pass-efficient algorithm, principal
component analysis, randomized algorithm, random matrix, rank-revealing QR factorization, sin-
gular value decomposition, streaming algorithm.

AMS classification: Primary: 65F30. Secondary: 68W20, 60B20.
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Part I: Introduction

2.1 Overview

On a well-known list of the “Top 10 Algorithms” that have influenced the practice of science
and engineering during the 20th century [40], we find an entry that is not really an algorithm: the
idea of using matrix factorizations to accomplish basic tasks in numerical linear algebra. In the
accompanying article [127], Stewart explains that

The underlying principle of the decompositional approach to matrix computation is
that it is not the business of the matrix algorithmicists to solve particular problems
but to construct computational platforms from which a variety of problems can be
solved.

Stewart goes on to argue that this point of view has had many fruitful consequences, including
the development of robust software for performing these factorizations in a highly accurate and
provably correct manner.

The decompositional approach to matrix computation remains fundamental, but develop-
ments in computer hardware and the emergence of new applications in the information sciences
have rendered the classical algorithms for this task inadequate in many situations:

• A salient feature of modern applications, especially in data mining, is that the matrices are
stupendously big. Classical algorithms are not always well adapted to solving the type of
large-scale problems that now arise.

• In the information sciences, it is common that data are missing or inaccurate. Classical
algorithms are designed to produce highly accurate matrix decompositions, but it seems
profligate to spend extra computational resources when the imprecision of the data inher-
ently limits the resolution of the output.

• Data transfer now plays a major role in the computational cost of numerical algorithms.
Techniques that require few passes over the data may be substantially faster in practice,
even if they require as many—or more—floating-point operations.

• As the structure of computer processors continues to evolve, it becomes increasingly impor-
tant for numerical algorithms to adapt to a range of novel architectures, such as graphics
processing units.



27

The purpose of this paper is make the case that randomized algorithms provide a powerful
tool for constructing approximate matrix factorizations. These techniques are simple and effective,
sometimes impressively so. Compared with standard deterministic algorithms, the randomized
methods are often faster and—perhaps surprisingly—more robust. Furthermore, they can produce
factorizations that are accurate to any specified tolerance above machine precision, which allows
the user to trade accuracy for speed if desired. We present numerical evidence that these algorithms
succeed for real computational problems.

In short, our goal is to demonstrate how randomized methods interact with classical tech-
niques to yield effective, modern algorithms supported by detailed theoretical guarantees. We have
made a special effort to help practitioners identify situations where randomized techniques may
outperform established methods.

Throughout this article, we provide detailed citations to previous work on randomized tech-
niques for computing low-rank approximations. The primary sources that inform our presentation
include [17, 46, 58, 91, 105, 112, 113, 118, 137].

Remark 4. Our experience suggests that many practitioners of scientific computing view random-
ized algorithms as a desperate and final resort. Let us address this concern immediately. Classical
Monte Carlo methods are highly sensitive to the random number generator and typically produce
output with low and uncertain accuracy. In contrast, the algorithms discussed herein are relatively
insensitive to the quality of randomness and produce highly accurate results. The probability of
failure is a user-specified parameter that can be rendered negligible (say, less than 10−15) with a
nominal impact on the computational resources required.

2.1.1 Approximation by low-rank matrices

The roster of standard matrix decompositions includes the pivoted QR factorization, the
eigenvalue decomposition, and the singular value decomposition (SVD), all of which expose the
(numerical) range of a matrix. Truncated versions of these factorizations are often used to express
a low-rank approximation of a given matrix:

A ≈ B C,
m× n m× k k × n. (2.1)

The inner dimension k is sometimes called the numerical rank of the matrix. When the numer-
ical rank is much smaller than either dimension m or n, a factorization such as (2.1) allows the
matrix to be stored inexpensively and to be multiplied rapidly with vectors or other matrices. The
factorizations can also be used for data interpretation or to solve computational problems, such as
least squares.

Matrices with low numerical rank appear in a wide variety of scientific applications. We list
only a few:

• A basic method in statistics and data mining is to compute the directions of maximal
variance in vector-valued data by performing principal component analysis (PCA) on
the data matrix. PCA is nothing other than a low-rank matrix approximation [71, §14.5].
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• Another standard technique in data analysis is to perform low-dimensional embedding
of data under the assumption that there are fewer degrees of freedom than the ambient
dimension would suggest. In many cases, the method reduces to computing a partial SVD
of a matrix derived from the data. See [71, §§14.8–14.9] or [30].

• The problem of estimating parameters from measured data via least-squares fitting often
leads to very large systems of linear equations that are close to linearly dependent. Effective
techniques for factoring the coefficient matrix lead to efficient techniques for solving the
least-squares problem, [113].

• Many fast numerical algorithms for solving PDEs and for rapidly evaluating potential fields
such as the fast multipole method [66] andH-matrices [65], rely on low-rank approximations
of continuum operators.

• Models of multiscale physical phenomena often involve PDEs with rapidly oscillating coef-
ficients. Techniques for model reduction or coarse graining in such environments are
often based on the observation that the linear transform that maps the input data to the
requested output data can be approximated by an operator of low rank [56].

2.1.2 Matrix approximation framework

The task of computing a low-rank approximation to a given matrix can be split naturally
into two computational stages. The first is to construct a low-dimensional subspace that captures
the action of the matrix. The second is to restrict the matrix to the subspace and then compute
a standard factorization (QR, SVD, etc.) of the reduced matrix. To be slightly more formal, we
subdivide the computation as follows.

Stage A: Compute an approximate basis for the range of the input matrix A. In other words,
we require a matrix Q for which

Q has orthonormal columns and A ≈ QQ∗A. (2.2)

We would like the basis matrix Q to contain as few columns as possible, but it is even more
important to have an accurate approximation of the input matrix.

Stage B: Given a matrix Q that satisfies (2.2), we use Q to help compute a standard factorization
(QR, SVD, etc.) of A.

The task in Stage A can be executed very efficiently with random sampling methods, and
these methods are the primary subject of this work. In the next subsection, we offer an overview
of these ideas. The body of the paper provides details of the algorithms (§2.4) and a theoretical
analysis of their performance (§§2.8–2.11).
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Stage B can be completed with well-established deterministic methods. Section 2.3.3.3 con-
tains an introduction to these techniques, and §2.5 shows how we apply them to produce low-rank
factorizations.

At this point in the development, it may not be clear why the output from Stage A facilitates
our job in Stage B. Let us illustrate by describing how to obtain an approximate SVD of the input
matrix A given a matrix Q that satisfies (2.2). More precisely, we wish to compute matrices U and
V with orthonormal columns and a nonnegative, diagonal matrix Σ such that A ≈ UΣV∗. This goal
is achieved after three simple steps:

(1) Form B = Q∗A, which yields the low-rank factorization A ≈ QB.

(2) Compute an SVD of the small matrix: B = ŨΣV∗.

(3) Set U = QŨ.

When Q has few columns, this procedure is efficient because we can easily construct the
reduced matrix B and rapidly compute its SVD. In practice, we can often avoid forming B explicitly
by means of subtler techniques. In some cases, it is not even necessary to revisit the input matrix
A during Stage B. This observation allows us to develop single-pass algorithms, which look at each
entry of A only once.

Similar manipulations readily yield other standard factorizations, such as the pivoted QR
factorization, the eigenvalue decomposition, etc.

2.1.3 Randomized algorithms

This paper describes a class of randomized algorithms for completing Stage A of the matrix
approximation framework set forth in §2.1.2. We begin with some details about the approximation
problem these algorithms target (§2.1.3.1). Afterward, we motivate the random sampling technique
with a heuristic explanation (§2.1.3.2) that leads to a prototype algorithm (§2.1.3.3).

2.1.3.1 Problem formulations

The basic challenge in producing low-rank matrix approximations is a primitive question that
we call the fixed-precision approximation problem. Suppose we are given a matrix A and a positive
error tolerance ε. We seek a matrix Q with k = k(ε) orthonormal columns such that

‖A− QQ∗A‖ ≤ ε, (2.3)

where ‖·‖ denotes the `2 operator norm. The range of Q is a k-dimensional subspace that captures
most of the action of A, and we would like k to be as small as possible.
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The singular value decomposition furnishes an optimal answer to the fixed-precision prob-
lem [97]. Let σj denote the jth largest singular value of A. For each j ≥ 0,

min
rank(X)≤j

‖A− X‖ = σj+1. (2.4)

One way to construct a minimizer is to choose X = QQ∗A, where the columns of Q are k dominant
left singular vectors of A. Consequently, the minimal rank k where (2.3) holds equals the number
of singular values of A that exceed the tolerance ε.

To simplify the development of algorithms, it is convenient to assume that the desired rank k
is specified in advance. We call the resulting problem the fixed-rank approximation problem. Given
a matrix A, a target rank k, and an oversampling parameter p, we seek to construct a matrix Q
with k + p orthonormal columns such that

‖A− QQ∗A‖ ≈ min
rank(X)≤k

‖A− X‖ . (2.5)

Although there exists a minimizer Q that solves the fixed rank problem for p = 0, the opportunity
to use a small number of additional columns provides a flexibility that is crucial for the effectiveness
of the computational methods we discuss.

We will demonstrate that algorithms for the fixed-rank problem can be adapted to solve the
fixed-precision problem. The connection is based on the observation that we can build the basis
matrix Q incrementally and, at any point in the computation, we can inexpensively estimate the
residual error ‖A− QQ∗A‖. Refer to §2.4.4 for the details of this reduction.

2.1.3.2 Intuition

To understand how randomness helps us solve the fixed-rank problem, it is helpful to consider
some motivating examples.

First, suppose that we seek a basis for the range of a matrix A with exact rank k. Draw a
random vector ω, and form the product y = Aω. For now, the precise distribution of the random
vector is unimportant; just think of y as a random sample from the range of A. Let us repeat this
sampling process k times:

y(i) = Aω(i), i = 1, 2, . . . , k. (2.6)

Owing to the randomness, the set {ω(i) : i = 1, 2, . . . , k} of random vectors is likely to be in general
linear position. In particular, the random vectors form a linearly independent set and no linear
combination falls in the null space of A. As a result, the set {y(i) : i = 1, 2, . . . , k} of sample vectors
is also linearly independent, so it spans the range of A. Therefore, to produce an orthonormal basis
for the range of A, we just need to orthonormalize the sample vectors.

Now, imagine that A = B + E where B is a rank-k matrix containing the information we seek
and E is a small perturbation. Our priority is to obtain a basis that covers as much of the range
of B as possible, rather than to minimize the number of basis vectors. Therefore, we fix a small
number p, and we generate k + p samples

y(i) = Aω(i) = Bω(i) + Eω(i), i = 1, 2, . . . , k + p. (2.7)
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Proto-Algorithm: Solving the Fixed-Rank Problem

Given an m×n matrix A, a target rank k, and an oversampling parameter p, this procedure
computes an m × (k + p) matrix Q whose columns are orthonormal and whose range
approximates the range of A.

1 Draw a random n× (k + p) test matrix Ω.
2 Form the matrix product Y = AΩ.
3 Construct a matrix Q whose columns form an orthonormal basis for

the range of Y.

The perturbation E shifts the direction of each sample vector outside the range of B, which can
prevent the span of {y(i) : i = 1, 2, . . . , k} from covering the entire range of B. In contrast, the
enriched set {y(i) : i = 1, 2, . . . , k+p} of samples has a much better chance of spanning the required
subspace.

Just how many extra samples do we need? Remarkably, for certain types of random sampling
schemes, the failure probability decreases superexponentially with the oversampling parameter p;
see (2.9). As a practical matter, setting p = 5 or p = 10 often gives superb results. This observation
is one of the principal facts supporting the randomized approach to numerical linear algebra.

2.1.3.3 A prototype algorithm

The intuitive approach of §2.1.3.2 can be applied to general matrices. Omitting computational
details for now, we formalize the procedure in the figure labeled Proto-Algorithm.

This simple algorithm is by no means new. It is essentially the first step of a subspace iteration
with a random initial subspace [61, §7.3.2]. The novelty comes from the additional observation
that the initial subspace should have a slightly higher dimension than the invariant subspace we
are trying to approximate. With this revision, it is often the case that no further iteration is
required to obtain a high-quality solution to (2.5). We believe this idea can be traced to [118, 91,
105].

In order to invoke the proto-algorithm with confidence, we must address several practical and
theoretical issues:

• What random matrix Ω should we use? How much oversampling do we need?

• The matrix Y is likely to be ill-conditioned. How do we orthonormalize its columns to form
the matrix Q?

• What are the computational costs?
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• How can we solve the fixed-precision problem (2.3) when the numerical rank of the matrix
is not known in advance?

• How can we use the basis Q to compute other matrix factorizations?

• Does the randomized method work for problems of practical interest? How does its
speed/accuracy/robustness compare with standard techniques?

• What error bounds can we expect? With what probability?

The next few sections provide a summary of the answers to these questions. We describe several
problem regimes where the proto-algorithm can be implemented efficiently, and we present a theo-
rem that describes the performance of the most important instantiation. Finally, we elaborate on
how these ideas can be applied to approximate the truncated SVD of a large data matrix. The rest
of the paper contains a more exhaustive treatment—including pseudocode, numerical experiments,
and a detailed theory.

2.1.4 A comparison between randomized and traditional techniques

To select an appropriate computational method for finding a low-rank approximation to
a matrix, the practitioner must take into account the properties of the matrix. Is it dense or
sparse? Does it fit in fast memory or is it stored out of core? Does the singular spectrum decay
quickly or slowly? The behavior of a numerical linear algebra algorithm may depend on all these
factors [13, 61, 132]. To facilitate a comparison between classical and randomized techniques, we
summarize their relative performance in each of three representative environments. Section 2.6
contains a more in-depth treatment.

We focus on the task of computing an approximate SVD of an m×n matrix A with numerical
rank k. For randomized schemes, Stage A generally dominates the cost of Stage B in our matrix
approximation framework (§2.1.2). Within Stage A, the computational bottleneck is usually the
matrix–matrix product AΩ in Step 2 of the proto-algorithm (§2.1.3.3). The power of randomized
algorithms stems from the fact that we can reorganize this matrix multiplication for maximum
efficiency in a variety of computational architectures.

2.1.4.1 A general dense matrix that fits in fast memory

A standard deterministic technique for computing an approximate SVD is to perform a rank-
revealing QR factorization of the matrix, and then to manipulate the factors to obtain the final
decomposition. The cost of this approach is typically O(kmn) floating-point operations, or flops,
although these methods require slightly longer running times in rare cases [68].

In contrast, randomized schemes can produce an approximate SVD using only O(mn log(k)+
(m+ n)k2) flops. The gain in asymptotic complexity is achieved by using a random matrix Ω that
has some internal structure, which allows us to evaluate the product AΩ rapidly. For example,
randomizing and subsampling the discrete Fourier transform works well. Sections 2.4.6 and 2.11
contain more information on this approach.
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2.1.4.2 A matrix for which matrix–vector products can be evaluated rapidly

When the matrix A is sparse or structured, we may be able to apply it rapidly to a vector.
In this case, the classical prescription for computing a partial SVD is to invoke a Krylov subspace
method, such as the Lanczos or Arnoldi algorithm. It is difficult to summarize the computational
cost of these methods because their performance depends heavily on properties of the input matrix
and on the amount of effort spent to stabilize the algorithm. (Inherently, the Lanczos and Arnoldi
methods are numerically unstable.) For the same reasons, the error analysis of such schemes is
unsatisfactory in many important environments.

At the risk of being overly simplistic, we claim that the typical cost of a Krylov method for
approximating the k leading singular vectors of the input matrix is proportional to k Tmult + (m+
n)k2, where Tmult denotes the cost of a matrix–vector multiplication with the input matrix and the
constant of proportionality is small. We can also apply randomized methods using a Gaussian test
matrix Ω to complete the factorization at the same cost, O(k Tmult + (m+ n)k2) flops.

With a given budget of floating-point operations, Krylov methods sometimes deliver a more
accurate approximation than randomized algorithms. Nevertheless, the methods described in this
survey have at least two powerful advantages over Krylov methods. First, the randomized schemes
are inherently stable, and they come with very strong performance guarantees that do not depend
on subtle spectral properties of the input matrix. Second, the matrix–vector multiplies required to
form AΩ can be performed in parallel. This fact allows us to restructure the calculations to take
full advantage of the computational platform, which can lead to dramatic accelerations in practice,
especially for parallel and distributed machines.

A more detailed comparison or randomized schemes and Krylov subspace methods is given
in §2.6.2.

2.1.4.3 A general dense matrix stored in slow memory or streamed

When the input matrix is too large to fit in core memory, the cost of transferring the matrix
from slow memory typically dominates the cost of performing the arithmetic. The standard tech-
niques for low-rank approximation described in §2.1.4.1 require O(k) passes over the matrix, which
can be prohibitively expensive.

In contrast, the proto-algorithm of §2.1.3.3 requires only one pass over the data to produce the
approximate basis Q for Stage A of the approximation framework. This straightforward approach,
unfortunately, is not accurate enough for matrices whose singular spectrum decays slowly, but we
can address this problem using very few (say, 2 to 4) additional passes over the data [112]. See
§2.1.6 or §2.4.5 for more discussion.

Typically, Stage B uses one additional pass over the matrix to construct the approximate
SVD. With slight modifications, however, the two-stage randomized scheme can be revised so that
it only makes a single pass over the data. Refer to §2.5.5 for information.
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2.1.5 Performance analysis

A principal goal of this paper is to provide a detailed analysis of the performance of the
proto-algorithm described in §2.1.3.3. This investigation produces precise error bounds, expressed
in terms of the singular values of the input matrix. Furthermore, we determine how several choices
of the random matrix Ω impact the behavior of the algorithm.

Let us offer a taste of this theory. The following theorem describes the average-case behavior
of the proto-algorithm with a Gaussian test matrix, assuming we perform the computation in exact
arithmetic. This result is a simplified version of Theorem 2.10.6.

Theorem 2.1.1. Suppose that A is a real m × n matrix. Select a target rank k ≥ 2 and an
oversampling parameter p ≥ 2, where k + p ≤ min{m,n}. Execute the proto-algorithm with a
standard Gaussian test matrix to obtain an m× (k+ p) matrix Q with orthonormal columns. Then

E ‖A− QQ∗A‖ ≤
[
1 +

4
√
k + p

p− 1
·
√

min{m,n}
]
σk+1, (2.8)

where E denotes expectation with respect to the random test matrix and σk+1 is the (k+1)th singular
value of A.

We recall that the term σk+1 appearing in (2.8) is the smallest possible error (2.4) achievable
with any basis matrix Q. The theorem asserts that, on average, the algorithm produces a basis
whose error lies within a small polynomial factor of the theoretical minimum. Moreover, the
error bound (2.8) in the randomized algorithm is slightly sharper than comparable bounds for
deterministic techniques based on rank-revealing QR algorithms [68].

The reader might be worried about whether the expectation provides a useful account of
the approximation error. Fear not: the actual outcome of the algorithm is almost always very
close to the typical outcome because of measure concentration effects. As we discuss in §2.10.3, the
probability that the error satisfies

‖A− QQ∗A‖ ≤
[
1 + 11

√
k + p ·

√
min{m,n}

]
σk+1 (2.9)

is at least 1−6 ·p−p under very mild assumptions on p. This fact justifies the use of an oversampling
term as small as p = 5. This simplified estimate is very similar to the major results in [91].

The theory developed in this paper provides much more detailed information about the
performance of the proto-algorithm.

• When the singular values of A decay slightly, the error ‖A− QQ∗A‖ does not depend on
the dimensions of the matrix (§§2.10.2–2.10.3).

• We can reduce the size of the bracket in the error bound (2.8) by combining the proto-
algorithm with a power iteration (§2.10.4). For an example, see §2.1.6 below.

• For the structured random matrices we mentioned in §2.1.4.1, related error bounds are in
force (§2.11).

• We can obtain inexpensive a posteriori error estimates to verify the quality of the ap-
proximation (§2.4.3).
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2.1.6 Example: Randomized SVD

We conclude this introduction with a short discussion of how these ideas allow us to perform
an approximate SVD of a large data matrix, which is a compelling application of randomized matrix
approximation [112].

The two-stage randomized method offers a natural approach to SVD computations. Unfortu-
nately, the simplest version of this scheme is inadequate in many applications because the singular
spectrum of the input matrix may decay slowly. To address this difficulty, we incorporate q steps
of a power iteration, where q = 1 or q = 2 usually suffices in practice. The complete scheme
appears in the box labeled Prototype for Randomized SVD. For most applications, it is important
to incorporate additional refinements, as we discuss in §§2.4–2.5.

The Randomized SVD procedure requires only 2(q+1) passes over the matrix, so it is efficient
even for matrices stored out-of-core. The flop count satisfies

TrandSVD = (2q + 2) k Tmult + O(k2(m+ n)),

where Tmult is the flop count of a matrix–vector multiply with A or A∗. We have the following
theorem on the performance of this method in exact arithmetic, which is a consequence of Corol-
lary 2.10.10.

Theorem 2.1.2. Suppose that A is a real m×n matrix. Select an exponent q and a target number
k of singular vectors, where 2 ≤ k ≤ 0.5 min{m,n}. Execute the Randomized SVD algorithm to
obtain a rank-2k factorization UΣV∗. Then

E ‖A− UΣV∗‖ ≤

[
1 + 4

√
2 min{m,n}

k − 1

]1/(2q+1)

σk+1, (2.10)

where E denotes expectation with respect to the random test matrix and σk+1 is the (k+1)th singular
value of A.

This result is new. Observe that the bracket in (2.10) is essentially the same as the bracket
in the basic error bound (2.8). We find that the power iteration drives the leading constant to one
exponentially fast as the power q increases. The rank-k approximation of A can never achieve an
error smaller than σk+1, so the randomized procedure computes 2k approximate singular vectors
that capture as much of the matrix as the first k actual singular vectors.

In practice, we can truncate the approximate SVD, retaining only the first k singular values
and vectors. Equivalently, we replace the diagonal factor Σ by the matrix Σ(k) formed by zeroing
out all but the largest k entries of Σ. For this truncated SVD, we have the error bound

E
∥∥A− UΣ(k)V

∗∥∥ ≤ σk+1 +

[
1 + 4

√
2 min{m,n}

k − 1

]1/(2q+1)

σk+1. (2.11)

In words, we pay no more than an additive term σk+1 when we perform the truncation step. Our
numerical experience suggests that the error bound (2.11) is pessimistic. See Remark 13 and §2.9.4
for some discussion of truncation.
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Prototype for Randomized SVD

Given an m× n matrix A, a target number k of singular vectors, and an exponent q (say
q = 1 or q = 2), this procedure computes an approximate rank-2k factorization UΣV∗,
where U and V are orthonormal, and Σ is nonnegative and diagonal.

Stage A:

1 Generate an n× 2k Gaussian test matrix Ω.
2 Form Y = (AA∗)qAΩ by multiplying alternately with A and A∗.
3 Construct a matrix Q whose columns form an orthonormal basis for

the range of Y.

Stage B:

4 Form B = Q∗A.

5 Compute an SVD of the small matrix: B = ŨΣV∗.

6 Set U = QŨ.

Note: The computation of Y in Step 2 is vulnerable to round-off errors. When high
accuracy is required, we must incorporate an orthonormalization step between each ap-
plication of A and A∗; see Algorithm 4.4.
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2.1.7 Outline of paper

The paper is organized into three parts: an introduction (§§2.1–2.3), a description of the
algorithms (§§2.4–2.7), and a theoretical performance analysis (§§2.8–2.11). The two latter parts
commence with a short internal outline. Each part is more or less self-contained, and after a brief
review of our notation in §§2.3.1–2.3.2, the reader can proceed to either the algorithms or the theory
part.

2.2 Related work and historical context

Randomness has occasionally surfaced in the numerical linear algebra literature; in particular,
it is quite standard to initialize iterative algorithms for constructing invariant subspaces with a
randomly chosen point. Nevertheless, we believe that sophisticated ideas from random matrix
theory have not been incorporated into classical matrix factorization algorithms until very recently.
We can trace this development to earlier work in computer science and—especially—to probabilistic
methods in geometric analysis. This section presents an overview of the relevant work. We begin
with a survey of randomized methods for matrix approximation; then we attempt to trace some of
the ideas backward to their sources.

2.2.1 Randomized matrix approximation

Matrices of low numerical rank contain little information relative to their apparent dimension
owing to the linear dependency in their columns (or rows). As a result, it is reasonable to expect
that these matrices can be approximated with far fewer degrees of freedom. A less obvious fact is
that randomized schemes can be used to produce these approximations efficiently.

Several types of approximation techniques build on this idea. These methods all follow the
same basic pattern:

(1) Preprocess the matrix, usually to calculate sampling probabilities.

(2) Take random samples from the matrix, where the term sample refers generically to a linear
function of the matrix.

(3) Postprocess the samples to compute a final approximation, typically with classical tech-
niques from numerical linear algebra. This step may require another look at the matrix.

We continue with a description of the most common approximation schemes.



38

2.2.1.1 Sparsification

The simplest approach to matrix approximation is the method of sparsification or the related
technique of quantization. The goal of sparsification is to replace the matrix by a surrogate that
contains far fewer nonzero entries. Quantization produces an approximation whose components
are drawn from a (small) discrete set of values. These methods can be used to limit storage
requirements or to accelerate computations by reducing the cost of matrix–vector and matrix–
matrix multiplies [94, Ch. 6]. The manuscript [33] describes applications in optimization.

Sparsification typically involves very simple elementwise calculations. Each entry in the
approximation is drawn independently at random from a distribution determined from the corre-
sponding entry of the input matrix. The expected value of the random approximation equals the
original matrix, but the distribution is designed so that a typical realization is much sparser.

The first method of this form was devised by Achlioptas and McSherry [2], who built on
earlier work on graph sparsification due to Karger [75, 76]. Arora–Hazan–Kale presented a different
sampling method in [7]. See [123, 60] for some recent work on sparsification.

2.2.1.2 Column selection methods

A second approach to matrix approximation is based on the idea that a small set of columns
describes most of the action of a numerically low-rank matrix. Indeed, classical existential re-
sults [117] demonstrate that every m× n matrix A contains a k-column submatrix C for which∥∥∥A− CC†A

∥∥∥ ≤√1 + k(n− k) ·
∥∥A− A(k)

∥∥ , (2.12)

where k is a parameter, the dagger † denotes the pseudoinverse, and A(k) is a best rank-k approxi-
mation of A. It is NP-hard to perform column selection by optimizing natural objective functions,
such as the condition number of the submatrix [27]. Nevertheless, there are efficient determinis-
tic algorithms, such as the rank-revealing QR method of [68], that can nearly achieve the error
bound (2.12).

There is a class of randomized algorithms that approach the fixed-rank approximation prob-
lem (2.5) using this intuition. These methods first compute a sampling probability for each column,
either using the squared Euclidean norms of the columns or their leverage scores. (Leverage scores
reflect the relative importance of the columns to the action of the matrix; they can be calculated
easily from the dominant k right singular vectors of the matrix.) Columns are then selected ran-
domly according to this distribution. Afterward, a postprocessing step is invoked to produce a
more refined approximation of the matrix.

We believe that the earliest method of this form appeared in a 1998 paper of Frieze–Kannan–
Vempala [57, 58]. This work was refined substantially in the papers [44, 43, 46]. The basic algorithm
samples columns from a distribution related to the squared `2 norms of the columns. This sampling
step produces a small column submatrix whose range is aligned with the range of the input matrix.
The final approximation is obtained from a truncated SVD of the submatrix. Given a target rank
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k and a parameter ε > 0, this approach samples ` = `(k, ε) columns of the matrix to produce a
rank-k approximation B that satisfies

‖A− B‖F ≤
∥∥A− A(k)

∥∥
F

+ ε ‖A‖F , (2.13)

where ‖·‖F denotes the Frobenius norm. We note that the algorithm of [46] requires only a constant
number of passes over the data.

Rudelson and Vershynin later showed that the same type of column sampling method also
yields spectral-norm error bounds [116]. The techniques in their paper have been very influential;
their work has found other applications in randomized regression [52], sparse approximation [133],
and compressive sampling [19].

Deshpande et al. [37, 38] demonstrated that the error in the column sampling approach can
be improved by iteration and adaptive volume sampling. They showed that it is possible to produce
a rank-k matrix B that satisfies

‖A− B‖F ≤ (1 + ε)
∥∥A− A(k)

∥∥
F

(2.14)

using a k-pass algorithm. Around the same time, Har-Peled [70] independently developed a re-
cursive algorithm that offers the same approximation guarantees. Very recently, Desphande and
Rademacher have improved the running time of volume-based sampling methods [36].

Drineas et al. and Boutsidis et al. have also developed randomized algorithms for the col-
umn subset selection problem, which requests a column submatrix C that achieves a bound of the
form (2.12). Via the methods of Rudelson and Vershynin [116], they showed that sampling columns
according to their leverage scores is likely to produce the required submatrix [50, 51]. Subsequent
work [17, 18] showed that postprocessing the sampled columns with a rank-revealing QR algorithm
can reduce the number of output columns required (2.12). The argument in [17] explicitly decouples
the linear algebraic part of the analysis from the random matrix theory. The theoretical analysis
in the present work involves a very similar technique.

2.2.1.3 Approximation by dimension reduction

A third approach to matrix approximation is based on the concept of dimension reduction.
Since the rows of a low-rank matrix are linearly dependent, they can be embedded into a low-
dimensional space without altering their geometric properties substantially. A random linear map
provides an efficient, nonadaptive way to perform this embedding. (Column sampling can also be
viewed as an adaptive form of dimension reduction.)

The proto-algorithm we set forth in §2.1.3.3 is simply a dual description of the dimension
reduction approach: collecting random samples from the column space of the matrix is equivalent
to reducing the dimension of the rows. No precomputation is required to obtain the sampling
distribution, but the sample itself takes some work to collect. Afterward, we orthogonalize the
samples as preparation for constructing various matrix approximations.
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We believe that the idea of using dimension reduction for algorithmic matrix approximation
first appeared in a 1998 paper of Papadimitriou et al. [104, 105], who described an application to
latent semantic indexing (LSI). They suggested projecting the input matrix onto a random subspace
and compressing the original matrix to (a subspace of) the range of the projected matrix. They
established error bounds that echo the result (2.13) of Frieze et al. [58]. Although the Euclidean
column selection method is a more computationally efficient way to obtain this type of error bound,
dimension reduction has other advantages, e.g., in terms of accuracy.

Sarlós argued in [118] that the computational costs of dimension reduction can be reduced
substantially by means of the structured random maps proposed by Ailon–Chazelle [3]. Sarlós
used these ideas to develop efficient randomized algorithms for least-squares problems; he also
studied approximate matrix multiplication and low-rank matrix approximation. The recent pa-
per [102] analyzes a very similar matrix approximation algorithm using Rudelson and Vershynin’s
methods [116].

The initial work of Sarlós on structured dimension reduction did not immediately yield al-
gorithms for low-rank matrix approximation that were superior to classical techniques. Woolfe et
al. showed how to obtain an improvement in asymptotic computational cost, and they applied these
techniques to problems in scientific computing [137]. Related work includes [86, 88].

Martinsson–Rokhlin–Tygert have studied dimension reduction using a Gaussian transform
matrix, and they demonstrated that this approach performs much better than earlier analyses had
suggested [91]. Their work highlights the importance of oversampling, and their error bounds are
very similar to the estimate (2.9) we presented in the introduction. They also demonstrated that
dimension reduction can be used to compute an interpolative decomposition of the input matrix,
which is essentially equivalent to performing column subset selection.

Rokhlin–Szlam–Tygert have shown that combining dimension reduction with a power it-
eration is an effective way to improve its performance [112]. These ideas lead to very efficient
randomized methods for large-scale PCA [69]. An efficient, numerically stable version of the power
iteration is discussed in §2.4.5, as well as [92]. Related ideas appear in a paper of Roweis [114].

Very recently, Clarkson and Woodruff [29] have developed one-pass algorithms for performing
low-rank matrix approximation, and they have established lower bounds which prove that many of
their algorithms have optimal or near-optimal resource guarantees, modulo constants.

2.2.1.4 Approximation by submatrices

The matrix approximation literature contains a subgenre that discusses methods for building
an approximation from a submatrix and computed coefficient matrices. For example, we can
construct an approximation using a subcollection of columns (the interpolative decomposition),
a subcollection of rows and a subcollection of columns (the CUR decomposition), or a square
submatrix (the matrix skeleton). This type of decomposition was developed and studied in several
papers, including [26, 64, 126]. For data analysis applications, see the recent paper [89].

A number of works develop randomized algorithms for this class of matrix approximations.
Drineas et al. have developed techniques for computing CUR decompositions, which express A ≈
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CUR, where C and R denote small column and row submatrices of A and where U is a small
linkage matrix. These methods identify columns (rows) that approximate the range (corange) of
the matrix; the linkage matrix is then computed by solving a small least-squares problem. A
randomized algorithm for CUR approximation with controlled absolute error appears in [47]; a
relative error algorithm appears in [51]. We also mention a paper on computing a closely related
factorization called the compact matrix decomposition [129].

It is also possible to produce interpolative decompositions and matrix skeletons using ran-
domized methods, as discussed in [91, 112] and §2.5.2 of the present work.

2.2.1.5 Other numerical problems

The literature contains a variety of other randomized algorithms for solving standard prob-
lems in and around numerical linear algebra. We list some of the basic references.

Tensor skeletons. Randomized column selection methods can be used to produce CUR-type de-
compositions of higher-order tensors [49].

Matrix multiplication. Column selection and dimension reduction techniques can be used to
accelerate the multiplication of rank-deficient matrices [45, 118]. See also [10].

Overdetermined linear systems. The randomized Kaczmarz algorithm is a linearly convergent
iterative method that can be used to solve overdetermined linear systems [101, 128].

Overdetermined least squares. Fast dimension-reduction maps can sometimes accelerate the
solution of overdetermined least-squares problems [52, 118].

Nonnegative least squares. Fast dimension reduction maps can be used to reduce the size of
nonnegative least-squares problems [16].

Preconditioned least squares. Randomized matrix approximations can be used to precondition
conjugate gradient to solve least-squares problems [113].

Other regression problems. Randomized algorithms for `1 regression are described in [28]. Re-
gression in `p for p ∈ [1,∞) has also been considered [31].

Facility location. The Fermat–Weber facility location problem can be viewed as matrix approx-
imation with respect to a different discrepancy measure. Randomized algorithms for this
type of problem appear in [121].

2.2.1.6 Compressive sampling

Although randomized matrix approximation and compressive sampling are based on some
common intuitions, it is facile to consider either one as a subspecies of the other. We offer a short
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overview of the field of compressive sampling—especially the part connected with matrices—so we
can highlight some of the differences.

The theory of compressive sampling starts with the observation that many types of vector-
space data are compressible. That is, the data are approximated well using a short linear combi-
nation of basis functions drawn from a fixed collection [42]. For example, natural images are well
approximated in a wavelet basis; numerically low-rank matrices are well approximated as a sum
of rank-one matrices. The idea behind compressive sampling is that suitably chosen random sam-
ples from this type of compressible object carry a large amount of information. Furthermore, it is
possible to reconstruct the compressible object from a small set of these random samples, often by
solving a convex optimization problem. The initial discovery works of Candès–Romberg–Tao [20]
and Donoho [41] were written in 2004.

The earliest work in compressive sampling focused on vector-valued data; soon after, re-
searchers began to study compressive sampling for matrices. In 2007, Recht–Fazel–Parillo demon-
strated that it is possible to reconstruct a rank-deficient matrix from Gaussian measurements [111].
More recently, Candès–Recht [22] and Candès–Tao [23] considered the problem of completing a low-
rank matrix from a random sample of its entries.

The usual goals of compressive sampling are (i) to design a method for collecting informative,
nonadaptive data about a compressible object and (ii) to reconstruct a compressible object given
some measured data. In both cases, there is an implicit assumption that we have limited—if
any—access to the underlying data.

In the problem of matrix approximation, we typically have a complete representation of the
matrix at our disposal. The point is to compute a simpler representation as efficiently as possible
under some operational constraints. In particular, we would like to perform as little computation
as we can, but we are usually allowed to revisit the input matrix. Because of the different focus,
randomized matrix approximation algorithms require fewer random samples from the matrix and
use fewer computational resources than compressive sampling reconstruction algorithms.

2.2.2 Origins

This section attempts to identify some of the major threads of research that ultimately led
to the development of the randomized techniques we discuss in this paper.

2.2.2.1 Random embeddings

The field of random embeddings is a major precursor to randomized matrix approximation.
In a celebrated 1984 paper [74], Johnson and Lindenstrauss showed that the pairwise distances
among a collection of N points in a Euclidean space are approximately maintained when the
points are mapped randomly to a Euclidean space of dimension O(logN). In other words, random
embeddings preserve Euclidean geometry. Shortly afterward, Bourgain showed that appropriate
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random low-dimensional embeddings preserve the geometry of point sets in finite-dimensional `1
spaces [15].

These observations suggest that we might be able to solve some computational problems of
a geometric nature more efficiently by translating them into a lower-dimensional space and solving
them there. This idea was cultivated by the theoretical computer science community beginning in
the late 1980s, with research flowering in the late 1990s. In particular, nearest-neighbor search can
benefit from dimension-reduction techniques [73, 78, 80]. The papers [57, 104] were apparently the
first to apply this approach to linear algebra.

Around the same time, researchers became interested in simplifying the form of dimension
reduction maps and improving the computational cost of applying the map. Several researchers
developed refined results on the performance of a Gaussian matrix as a linear dimension reduction
map [32, 73, 93]. Achlioptas demonstrated that discrete random matrices would serve nearly as
well [1]. In 2006, Ailon and Chazelle proposed the fast Johnson–Lindenstrauss transform [3], which
combines the speed of the FFT with the favorable embedding properties of a Gaussian matrix.
Subsequent refinements appear in [4, 87]. Sarlós then imported these techniques to study several
problems in numerical linear algebra, which has led to some of the fastest algorithms currently
available [88, 137].

2.2.2.2 Data streams

Muthukrishnan argues that a distinguishing feature of modern data is the manner in which it
is presented to us. The sheer volume of information and the speed at which it must be processed
tax our ability to transmit the data elsewhere, to compute complicated functions on the data,
or to store a substantial part of the data [100, §3]. As a result, computer scientists have started to
develop algorithms that can address familiar computational problems under these novel constraints.
The data stream phenomenon is one of the primary justifications cited by [45] for developing pass-
efficient methods for numerical linear algebra problems, and it is also the focus of the recent
treatment [29].

One of the methods for dealing with massive data sets is to maintain sketches, which are
small summaries that allow functions of interest to be calculated. In the simplest case, a sketch is
simply a random projection of the data, but it might be a more sophisticated object [100, §5.1].
The idea of sketching can be traced to the work of Alon et al. [6, 5].

2.2.2.3 Numerical linear algebra

Classically, the field of numerical linear algebra has focused on developing deterministic algo-
rithms that produce highly accurate matrix approximations with provable guarantees. Nevertheless,
randomized techniques have appeared in several environments.

One of the original examples is the use of random models for arithmetical errors, which was
pioneered by von Neumann and Goldstine. Their papers [135, 136] stand among the first works
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to study the properties of random matrices. The earliest numerical linear algebra algorithm that
depends essentially on randomized techniques is probably Dixon’s method for estimating norms
and condition numbers [39].

Another situation where randomness commonly arises is the initialization of iterative methods
for computing invariant subspaces. For example, most numerical linear algebra texts advocate
random selection of the starting vector for the power method because it ensures that the vector
has a nonzero component in the direction of a dominant eigenvector. Woźniakowski and coauthors
have analyzed the performance of the power method and the Lanczos iteration given a random
starting vector [79, 85].

Among other interesting applications of randomness, we mention the work by Parker and
Pierce, which applies a randomized FFT to eliminate pivoting in Gaussian elimination [106], work
by Demmel et al. who have studied randomization in connection with the stability of fast methods
for linear algebra [35], and work by Le and Parker utilizing randomized methods for stabilizing fast
linear algebraic computations based on recursive algorithms, such as Strassen’s matrix multiplica-
tion [81].

2.2.2.4 Scientific computing

One of the first algorithmic applications of randomness is the method of Monte Carlo in-
tegration introduced by Von Neumann and Ulam [95], and its extensions, such as the Metropolis
algorithm for simulations in statistical physics. (See [9] for an introduction.) The most basic tech-
nique is to estimate an integral by sampling m points from the measure and computing an empirical
mean of the integrand evaluated at the sample locations:∫

f(x) dµ(x) ≈ 1

m

m∑
i=1

f(Xi),

where Xi are independent and identically distributed according to the probability measure µ. The
law of large numbers (usually) ensures that this approach produces the correct result in the limit
as m → ∞. Unfortunately, the approximation error typically has a standard deviation of m−1/2,
and the method provides no certificate of success.

The disappointing computational profile of Monte Carlo integration seems to have inspired a
distaste for randomized approaches within the scientific computing community. Fortunately, there
are many other types of randomized algorithms—such as the ones in this paper—that do not suffer
from the same shortcomings.

2.2.2.5 Geometric functional analysis

There is one more character that plays a central role in our story: the probabilistic method
in geometric analysis. Many of the algorithms and proof techniques ultimately come from work in
this beautiful but recondite corner of mathematics.



45

Dvoretsky’s theorem [53] states (roughly) that every infinite-dimensional Banach space con-
tains an n-dimensional subspace whose geometry is essentially the same as an n-dimensional Hilbert
space, where n is an arbitrary natural number. In 1971, V. D. Milman developed a striking proof of
this result by showing that a random n-dimensional subspace of an N -dimensional Banach space
has this property with exceedingly high probability, provided that N is large enough [96]. Milman’s
article debuted the concentration of measure phenomenon, which is a geometric interpreta-
tion of the classical idea that regular functions of independent random variables rarely deviate far
from their mean. This work opened a new era in geometric analysis where the probabilistic method
became a basic instrument.

Another prominent example of measure concentration is Kashin’s computation of the Gel’fand
widths of the `1 ball [77], subsequently refined in [59]. This work showed that a random (N − n)-
dimensional projection of the N -dimensional `1 ball has an astonishingly small Euclidean diameter:
approximately

√
(1 + log(N/n))/n. In contrast, a nonzero projection of the `2 ball always has

Euclidean diameter one. This basic geometric fact undergirds recent developments in compressive
sampling [21].

We have already described a third class of examples: the randomized embeddings of Johnson–
Lindenstrauss [74] and of Bourgain [15].

Finally, we mention Maurey’s technique of empirical approximation. The original work was
unpublished; one of the earliest applications appears in [24, §1]. Although Maurey’s idea has not
received as much press as the examples above, it can lead to simple and efficient algorithms for
sparse approximation. For some examples in machine learning, consider [8, 84, 119, 110]

The importance of random constructions in the geometric analysis community has led to
the development of powerful techniques for studying random matrices. Classical random matrix
theory focuses on a detailed asymptotic analysis of the spectral properties of special classes of
random matrices. In contrast, geometric analysts know methods for determining the approximate
behavior of rather complicated finite-dimensional random matrices. See [34] for a fairly current
survey article. We also mention the works of Rudelson [115] and Rudelson–Vershynin [116], which
describe powerful tools for studying random matrices drawn from certain discrete distributions.
Their papers are rooted deeply in the field of geometric functional analysis, but they reach out
toward computational applications.

2.3 Linear algebraic preliminaries

This section summarizes the background we need for the detailed description of randomized
algorithms in §§2.4–2.6 and the analysis in §§2.8–2.11. We introduce notation in §2.3.1, describe
some standard matrix decompositions in §2.3.2, and briefly review standard techniques for com-
puting matrix factorizations in §2.3.3.
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2.3.1 Basic definitions

The standard Hermitian geometry for Cn is induced by the inner product

〈x, y〉 = x · y =
∑

j
xj yj .

The associated norm is
‖x‖2 = 〈x, x〉 =

∑
j
|xj |2.

We usually measure the magnitude of a matrix A with the operator norm

‖A‖ = max
x6=0

‖Ax‖
‖x‖

,

which is often referred to as the spectral norm. The Frobenius norm is given by

‖A‖F =
[∑

jk
|ajk|2

]1/2
.

The conjugate transpose, or adjoint, of a matrix A is denoted A∗. The important identities

‖A‖2 = ‖A∗A‖ = ‖AA∗‖

hold for each matrix A.

We say that a matrix U is orthonormal if its columns form an orthonormal set with respect to
the Hermitian inner product. An orthonormal matrix U preserves geometry in the sense that ‖Ux‖ =
‖x‖ for every vector x. A unitary matrix is a square orthonormal matrix, and an orthogonal
matrix is a real unitary matrix. Unitary matrices satisfy the relations UU∗ = U∗U = I. Both the
operator norm and the Frobenius norm are unitarily invariant, which means that

‖UAV∗‖ = ‖A‖ and ‖UAV∗‖F = ‖A‖F

for every matrix A and all orthonormal matrices U and V

We use the notation of [61] to denote submatrices. If A is a matrix with entries aij , and
if I = [i1, i2, . . . , ip] and J = [j1, j2, . . . , jq] are two index vectors, then the associated p × q
submatrix is expressed as

A(I,J) =

ai1,j1 · · · ai1,jq
...

...
aip,j1 · · · aip,jq

 .
For column- and row-submatrices, we use the standard abbreviations

A( : ,J) = A([1, 2, ...,m],J), and A(I, : ) = A(I,[1, 2, ..., n]).

2.3.2 Standard matrix factorizations

This section defines three basic matrix decompositions. Methods for computing them are
described in §2.3.3.
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2.3.2.1 The pivoted QR factorization

Each m× n matrix A of rank k admits a decomposition

A = QR,

where Q is an m × k orthonormal matrix, and R is a k × n weakly upper-triangular matrix. That
is, there exists a permutation J of the numbers {1, 2, . . . , n} such that R( : ,J) is upper triangular.
Moreover, the diagonal entries of R( : ,J) are weakly decreasing. See [61, §5.4.1] for details.

2.3.2.2 The singular value decomposition (SVD)

Each m× n matrix A of rank k admits a factorization

A = UΣV∗,

where U is an m × k orthonormal matrix, V is an n × k orthonormal matrix, and Σ is a k × k
nonnegative, diagonal matrix

Σ =


σ1

σ2

. . .

σk

 .
The numbers σj are called the singular values of A. They are arranged in weakly decreasing order:

σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0.

The columns of U and V are called left singular vectors and right singular vectors, respectively.

Singular values are connected with the approximability of matrices. For each j, the number
σj+1 equals the spectral-norm discrepancy between A and an optimal rank-j approximation [97].
That is,

σj+1 = min{‖A− B‖ : B has rank j}. (2.15)

In particular, σ1 = ‖A‖. See [61, §2.5.3 and §5.4.5] for additional details.

2.3.2.3 The interpolative decomposition (ID)

Our final factorization identifies a collection of k columns from a rank-k matrix A that span
the range of A. To be precise, we can compute an index set J = [j1, . . . , jk] such that

A = A( : ,J) X,

where X is a k × n matrix that satisfies X( : ,J) = Ik. Furthermore, no entry of X has magnitude
larger than two. In other words, this decomposition expresses each column of A using a linear
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combination of k fixed columns with bounded coefficients. Stable and efficient algorithms for
computing the ID appear in the papers [26, 68].

It is also possible to compute a two-sided ID

A = W A(J ′,J) X,

where J ′ is an index set identifying k of the rows of A, and W is an m × k matrix that satisfies
W(J ′, : ) = Ik and whose entries are all bounded by two.

Remark 5. There always exists an ID where the entries in the factor X have magnitude bounded
by one. Known proofs of this fact are constructive, e.g., [103, Lem. 3.3], but they require us to
find a collection of k columns that has “maximum volume.” It is NP-hard to identify a subset of
columns with this type of extremal property [27]. We find it remarkable that ID computations are
possible as soon as the bound on X is relaxed.

2.3.3 Techniques for computing standard factorizations

This section discusses some established deterministic techniques for computing the factoriza-
tions presented in §2.3.2. The material on pivoted QR and SVD can be located in any major text
on numerical linear algebra, such as [61, 132]. References for the ID include [68, 26].

2.3.3.1 Computing the full decomposition

It is possible to compute the full QR factorization or the full SVD of an m × n matrix to
double-precision accuracy with O(mnmin{m,n}) flops. Techniques for computing the SVD are
iterative by necessity, but they converge so fast that we can treat them as finite for practical
purposes.

2.3.3.2 Computing partial decompositions

Suppose that an m×n matrix has numerical rank k, where k is substantially smaller than m
and n. In this case, it is possible to produce a structured low-rank decomposition that approximates
the matrix well. Sections 2.4 and 2.5 describe a set of randomized techniques for obtaining these
partial decompositions. This section briefly reviews the classical techniques, which also play a role
in developing randomized methods.

To compute a partial QR decomposition, the classical device is the Businger–Golub algo-
rithm, which performs successive orthogonalization with pivoting on the columns of the matrix.
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The procedure halts when the Frobenius norm of the remaining columns is less than a computa-
tional tolerance ε. Letting ` denote the number of steps required, the process results in a partial
factorization

A = QR + E, (2.16)

where Q is an m × ` orthonormal matrix, R is a ` × n weakly upper-triangular matrix, and E is
a residual that satisfies ‖E‖F ≤ ε. The computational cost is O(`mn), and the number ` of steps
taken is typically close to the minimal rank k for which precision ε (in the Frobenius norm) is
achievable. The Businger–Golub algorithm can in principle significantly overpredict the rank, but
in practice this problem is very rare provided that orthonormality is maintained scrupulously.

Subsequent research has led to strong rank-revealing QR algorithms that succeed for all
matrices. For example, the Gu–Eisenstat algorithm [68] (setting their parameter f = 2) produces
an QR decomposition of the form (2.16), where

‖E‖ ≤
√

1 + 4k(n− k) · σk+1.

Recall that σk+1 is the minimal error possible in a rank-k approximation [97]. The cost of the Gu–
Eisenstat algorithm is typically O(kmn), but it can be slightly higher in rare cases. The algorithm
can also be used to obtain an approximate ID [26].

To compute an approximate SVD of a general m× n matrix, the most straightforward tech-
nique is to compute the full SVD and truncate it. This procedure is stable and accurate, but it
requires O(mnmin{m,n}) flops. A more efficient approach is to compute a partial QR factorization
and postprocess the factors to obtain a partial SVD using the methods described below in §2.3.3.3.
This scheme takes only O(kmn) flops. Krylov subspace methods can also compute partial SVDs
at a comparable cost of O(kmn), but they are less robust.

Note that all the techniques described in this section require extensive random access to the
matrix, and they can be very slow when the matrix is stored out-of-core.

2.3.3.3 Converting from one partial factorization to another

Suppose that we have obtained a partial decomposition of a matrix A by some means:

‖A− CB‖ ≤ ε,

where B and C have rank k. Given this information, we can efficiently compute any of the basic
factorizations.

We construct a partial QR factorization using the following three steps:

(1) Compute a QR factorization of C so that C = Q1R1.

(2) Form the product D = R1B, and compute a QR factorization: D = Q2R.

(3) Form the product Q = Q1Q2.
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The result is an orthonormal matrix Q and a weakly upper-triangular matrix R such that ‖A− QR‖ ≤
ε.

An analogous technique yields a partial SVD:

(1) Compute a QR factorization of C so that C = Q1R1.

(2) Form the product D = R1B, and compute an SVD: D = U2ΣV∗.

(3) Form the product U = Q1U2.

The result is a diagonal matrix Σ and orthonormal matrices U and V such that ‖A− UΣV∗‖ ≤ ε.

Converting B and C into a partial ID is a one-step process:

(1) Compute J and X such that B = B( : ,J)X.

Then A ≈ A( : ,J)X, but the approximation error may deteriorate from the initial estimate. For
example, if we compute the ID using the Gu–Eisenstat algorithm [68] with the parameter f = 2,
then the error

∥∥A− A( : ,J)X
∥∥ ≤ (1 +

√
1 + 4k(n− k)) · ε. Compare this bound with Lemma 2.5.1

below.

2.3.3.4 Krylov-subspace methods

Suppose that the matrix A can be applied rapidly to vectors, as happens when A is sparse or
structured. Then Krylov subspace techniques can very effectively and accurately compute partial
spectral decompositions. For concreteness, assume that A is Hermitian. The idea of these techniques
is to fix a starting vector ω and to seek approximations to the eigenvectors within the corresponding
Krylov subspace

Vq(ω) = span {ω,Aω,A2ω, . . . ,Aq−1ω}.
Krylov methods also come in blocked versions, in which the starting vector ω is replaced by a
starting matrix Ω. A common recommendation is to draw a starting vector ω (or starting matrix
Ω) from a standardized Gaussian distribution, which indicates a significant overlap between Krylov
methods and the methods in this paper.

The most basic versions of Krylov methods for computing spectral decompositions are nu-
merically unstable. High-quality implementations require that we incorporate restarting strategies,
techniques for maintaining high-quality bases for the Krylov subspaces, etc. The diversity and com-
plexity of such methods make it hard to state a precise computational cost, but in the environment
we consider in this paper, a typical cost for a fully stable implementation would be

TKrylov ∼ k Tmult + k2(m+ n), (2.17)

where Tmult is the cost of a matrix–vector multiplication.
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Part II: Algorithms

This part of the paper, §§2.4–2.7, provides detailed descriptions of randomized algorithms
for constructing low-rank approximations to matrices. As discussed in §2.1.2, we split the problem
into two stages. In Stage A, we construct a subspace that captures the action of the input matrix.
In Stage B, we use this subspace to obtain an approximate factorization of the matrix.

Section 2.4 develops randomized methods for completing Stage A, and §2.5 describes de-
terministic methods for Stage B. Section 2.6 compares the computational costs of the resulting
two-stage algorithm with the classical approaches outlined in §2.3. Finally, §2.7 illustrates the
performance of the randomized schemes via numerical examples.

2.4 Stage A: Randomized schemes for approximating the range

This section outlines techniques for constructing a subspace that captures most of the action
of a matrix. We begin with a recapitulation of the proto-algorithm that we introduced in §2.1.3.
We discuss how it can be implemented in practice (§2.4.1) and then consider the question of how
many random samples to acquire (§2.4.2). Afterward, we present several ways in which the basic
scheme can be improved. Sections 2.4.3 and 2.4.4 explain how to address the situation where the
numerical rank of the input matrix is not known in advance. Section 2.4.5 shows how to modify
the scheme to improve its accuracy when the singular spectrum of the input matrix decays slowly.
Finally, §2.4.6 describes how the scheme can be accelerated by using a structured random matrix.

2.4.1 The proto-algorithm revisited

The most natural way to implement the proto-algorithm from §2.1.3 is to draw a random
test matrix Ω from the standard Gaussian distribution. That is, each entry of Ω is an independent
Gaussian random variable with mean zero and variance one. For reference, we formulate the
resulting scheme as Algorithm 4.1.

The number Tbasic of flops required by Algorithm 4.1 satisfies

Tbasic ∼ `n Trand + ` Tmult + `2m (2.18)

where Trand is the cost of generating a Gaussian random number and Tmult is the cost of multiplying
A by a vector. The three terms in (2.18) correspond directly with the three steps of Algorithm 4.1.

Empirically, we have found that the performance of Algorithm 4.1 depends very little on the
quality of the random number generator used in Step 1.

The actual cost of Step 2 depends substantially on the matrix A and the computational
environment that we are working in. The estimate (2.18) suggests that Algorithm 4.1 is especially
efficient when the matrix–vector product x 7→ Ax can be evaluated rapidly. In particular, the
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Algorithm 4.1: Randomized Range Finder

Given an m×n matrix A, and an integer `, this scheme computes an m× ` orthonormal
matrix Q whose range approximates the range of A.

1 Draw an n× ` Gaussian random matrix Ω.
2 Form the m× ` matrix Y = AΩ.
3 Construct an m× ` matrix Q whose columns form an orthonormal

basis for the range of Y, e.g., using the QR factorization Y = QR.

scheme is appropriate for approximating sparse or structured matrices. Turn to §2.6 for more
details.

The most important implementation issue arises when performing the basis calculation in
Step 3. Typically, the columns of the sample matrix Y are almost linearly dependent, so it is
imperative to use stable methods for performing the orthonormalization. We have found that the
Gram–Schmidt procedure, augmented with the double orthogonalization described in [12], is both
convenient and reliable. Methods based on Householder reflectors or Givens rotations also work
very well. Note that very little is gained by pivoting because the columns of the random matrix Y
are independent samples drawn from the same distribution.

2.4.2 The number of samples required

The goal of Algorithm 4.1 is to produce an orthonormal matrix Q with few columns that
achieves

‖(I− QQ∗)A‖ ≤ ε, (2.19)

where ε is a specified tolerance. The number of columns ` that the algorithm needs to reach this
threshold is usually slightly larger than the minimal rank k of the smallest basis that verifies (2.19).
We refer to this discrepancy p = `−k as the oversampling parameter. The size of the oversampling
parameter depends on several factors:

The matrix dimensions. Very large matrices may require more oversampling.

The singular spectrum. The more rapid the decay of the singular values, the less oversampling
is needed. In the extreme case that the matrix has exact rank k, it is not necessary to
oversample.

The random test matrix. Gaussian matrices succeed with very little oversampling, but are not
always the most cost-effective option. The structured random matrices discussed in §2.4.6
may require substantial oversampling, but they still yield computational gains in certain
settings.
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The theoretical results in Part III provide detailed information about how the behavior of
randomized schemes depends on these factors. For the moment, we limit ourselves to some general
remarks on implementation issues.

For Gaussian test matrices, it is adequate to choose the oversampling parameter to be a small
constant, such as p = 5 or p = 10. There is rarely any advantage to select p > k. This observation,
first presented in [91], demonstrates that a Gaussian test matrix results in a negligible amount of
extra computation.

In practice, the target rank k is rarely known in advance. Randomized algorithms are usu-
ally implemented in an adaptive fashion where the number of samples is increased until the error
satisfies the desired tolerance. In other words, the user never chooses the oversampling parame-
ter. Theoretical results that bound the amount of oversampling are valuable primarily as aids for
designing algorithms. We develop an adaptive approach in §§2.4.3–2.4.4.

The computational bottleneck in Algorithm 4.1 is usually the formation of the product AΩ.
As a result, it often pays to draw a larger number ` of samples than necessary because the user can
minimize the cost of the matrix multiplication with tools such as blocking of operations, high-level
linear algebra subroutines, parallel processors, etc. This approach may lead to an ill-conditioned
sample matrix Y, but the orthogonalization in Step 3 of Algorithm 4.1 can easily identify the
numerical rank of the sample matrix and ignore the excess samples. Furthermore, Stage B of the
matrix approximation process succeeds even when the basis matrix Q has a larger dimension than
necessary.

2.4.3 A posteriori error estimation

Algorithm 4.1 is designed for solving the fixed-rank problem, where the target rank of the
input matrix is specified in advance. To handle the fixed-precision problem, where the parameter
is the computational tolerance, we need a scheme for estimating how well a putative basis matrix
Q captures the action of the matrix A. To do so, we develop a probabilistic error estimator. These
methods are inspired by work of Dixon [39]; our treatment follows [88, 137].

The exact approximation error is ‖(I− QQ∗)A‖. It is intuitively plausible that we can obtain
some information about this quantity by computing ‖(I− QQ∗)Aω‖, where ω is a standard Gaussian
vector. This notion leads to the following method. Draw a sequence {ω(i) : i = 1, 2, . . . , r}
of standard Gaussian vectors, where r is a small integer that balances computational cost and
reliability. Then

‖(I− QQ∗)A‖ ≤ 10

√
2

π
max
i=1,...,r

∥∥(I− QQ∗)Aω(i)
∥∥ (2.20)

with probability at least 1 − 10−r. This statement follows by setting B = (I − QQ∗)A and α = 10
in the following lemma, whose proof appears in [137, §3.4].

Lemma 2.4.1. Let B be a real m × n matrix. Fix a positive integer r and a real number α > 1.
Draw an independent family {ω(i) : i = 1, 2, . . . , r} of standard Gaussian vectors. Then

‖B‖ ≤ α
√

2

π
max
i=1,...,r

∥∥Bω(i)
∥∥

except with probability α−r.
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The critical point is that the error estimate (2.20) is computationally inexpensive because it
requires only a small number of matrix–vector products. Therefore, we can make a lowball guess
for the numerical rank of A and add more samples if the error estimate is too large. The asymptotic
cost of Algorithm 4.1 is preserved if we double our guess for the rank at each step. For example,
we can start with 32 samples, compute another 32, then another 64, etc.

Remark 6. The estimate (2.20) is actually somewhat crude. We can obtain a better estimate at
a similar computational cost by initializing a power iteration with a random vector and repeating
the process several times [88].

2.4.4 Error estimation (almost) for free

The error estimate described in §2.4.3 can be combined with any method for constructing an
approximate basis for the range of a matrix. In this section, we explain how the error estimator
can be incorporated into Algorithm 4.1 at almost no additional cost.

To be precise, let us suppose that A is an m× n matrix and ε is a computational tolerance.
We seek an integer ` and an m× ` orthonormal matrix Q(`) such that∥∥(I− Q(`)(Q(`))∗

)
A
∥∥ ≤ ε. (2.21)

The size ` of the basis will typically be slightly larger than the size k of the smallest basis that
achieves this error.

The basic observation behind the adaptive scheme is that we can generate the basis in Step
3 of Algorithm 4.1 incrementally. Starting with an empty basis matrix Q(0), the following scheme
generates an orthonormal matrix whose range captures the action of A:

for i = 1, 2, 3, . . .

Draw an n× 1 Gaussian random vector ω(i), and set y(i) = Aω(i).

Compute q̃(i) =
(
I− Q(i−1)(Q(i−1))∗

)
y(i).

Normalize q(i) = q̃(i)/
∥∥q̃(i)

∥∥, and form Q(i) = [Q(i−1) q(i)].

end for

How do we know when we have reached a basis Q(`) that verifies (2.21)? The answer becomes
apparent once we observe that the vectors q̃(i) are precisely the vectors that appear in the error
bound (2.20). The resulting rule is that we break the loop once we observe r consecutive vectors
q̃(i) whose norms are smaller than ε/(10

√
2/π).

A formal description of the resulting algorithm appears as Algorithm 4.2. A potential com-
plication of the method is that the vectors q̃(i) become small as the basis starts to capture most of
the action of A. In finite-precision arithmetic, their direction is extremely unreliable. To address
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this problem, we simply reproject the normalized vector q(i) onto range(Q(i−1))⊥ in steps 7 and 8
of Algorithm 4.2.

The CPU time requirements of Algorithms 4.2 and 4.1 are essentially identical. Although
Algorithm 4.2 computes the last few samples purely to obtain the error estimate, this apparent
extra cost is offset by the fact that Algorithm 4.1 always includes an oversampling factor. The
failure probability stated for Algorithm 4.2 is pessimistic because it is derived from a simple union
bound argument. In practice, the error estimator is reliable in a range of circumstances when we
take r = 10.

Remark 7. The calculations in Algorithm 4.2 can be organized so that each iteration processes a
block of samples simultaneously. This revision can lead to dramatic improvements in speed because
it allows us to exploit higher-level linear algebra subroutines (e.g., BLAS3) or parallel processors.
Although blocking can lead to the generation of unnecessary samples, this outcome is generally
harmless, as noted in §2.4.2.

2.4.5 A modified scheme for matrices whose singular values decay slowly

The techniques described in §2.4.1 and §2.4.4 work well for matrices whose singular values
exhibit some decay, but they may produce a poor basis when the input matrix has a flat singular
spectrum or when the input matrix is very large. In this section, we describe techniques, originally
proposed in [67, 112], for improving the accuracy of randomized algorithms in these situations.
Related earlier work includes [114] and the literature on classical orthogonal iteration methods [61,
p. 332].

The intuition behind these techniques is that the singular vectors associated with small
singular values interfere with the calculation, so we reduce their weight relative to the dominant
singular vectors by taking powers of the matrix to be analyzed. More precisely, we wish to apply
the randomized sampling scheme to the matrix B = (AA∗)qA, where q is a small integer. The
matrix B has the same singular vectors as the input matrix A, but its singular values decay much
more quickly:

σj(B) = σj(A)2q+1, j = 1, 2, 3, . . . . (2.22)

We modify Algorithm 4.1 by replacing the formula Y = AΩ in Step 2 by the formula Y = BΩ =(
AA∗

)q
AΩ, and we obtain Algorithm 4.3.

Algorithm 4.3 requires 2q + 1 times as many matrix–vector multiplies as Algorithm 4.1, but
is far more accurate in situations where the singular values of A decay slowly. A good heuristic is
that when the original scheme produces a basis whose approximation error is within a factor C of
the optimum, the power scheme produces an approximation error within C1/(2q+1) of the optimum.
In other words, the power iteration drives the approximation gap to one exponentially fast. See
Theorem 2.9.2 and §2.10.4 for the details.

Algorithm 4.3 targets the fixed-rank problem. To address the fixed-precision problem, we
can incorporate the error estimators described in §2.4.3 to obtain an adaptive scheme analogous
with Algorithm 4.2. In situations where it is critical to achieve near-optimal approximation errors,
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one can increase the oversampling beyond our standard recommendation ` = k + 5 all the way to
` = 2k without changing the scaling of the asymptotic computational cost. A supporting analysis
appears in Corollary 2.10.10.

Remark 8. Unfortunately, when Algorithm 4.3 is executed in floating point arithmetic, rounding
errors will extinguish all information pertaining to singular modes associated with singular values
that are small compared with ‖A‖. (Roughly, if machine precision is µ, then all information associ-
ated with singular values smaller than µ1/(2q+1) ‖A‖ is lost.) This problem can easily be remedied
by orthonormalizing the columns of the sample matrix between each application of A and A∗.
The resulting scheme, summarized as Algorithm 4.4, is algebraically equivalent to Algorithm 4.3
when executed in exact arithmetic [124, 92]. We recommend Algorithm 4.4 because its computa-
tional costs are similar to Algorithm 4.3, even though the former is substantially more accurate in
floating-point arithmetic.

2.4.6 An accelerated technique for general dense matrices

This section describes a set of techniques that allow us to compute an approximate rank-`
factorization of a general dense m × n matrix in roughly O(mn log(`)) flops, in contrast to the
asymptotic cost O(mn`) required by earlier methods. We can tailor this scheme for the real or
complex case, but we focus on the conceptually simpler complex case. These algorithms were
introduced in [137]; similar techniques were proposed in [118].

The first step toward this accelerated technique is to observe that the bottleneck in Algo-
rithm 4.1 is the computation of the matrix product AΩ. When the test matrix Ω is standard Gaus-
sian, the cost of this multiplication is O(mn`), the same as a rank-revealing QR algorithm [68].
The key idea is to use a structured random matrix that allows us to compute the product in
O(mn log(`)) flops.

The subsampled random Fourier transform, or SRFT, is perhaps the simplest example of a
structured random matrix that meets our goals. An SRFT is an n× ` matrix of the form

Ω =

√
n

`
DFR, (2.23)

where

• D is an n × n diagonal matrix whose entries are independent random variables uniformly
distributed on the complex unit circle,

• F is the n × n unitary discrete Fourier transform (DFT), whose entries take the values
fpq = n−1/2 e−2πi(p−1)(q−1)/n for p, q = 1, 2, . . . , n, and

• R is an n × ` matrix that samples ` coordinates from n uniformly at random, i.e., its `
columns are drawn randomly without replacement from the columns of the n× n identity
matrix.
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When Ω is defined by (2.23), we can compute the sample matrix Y = AΩ using O(mn log(`))
flops via a subsampled FFT [137]. Then we form the basis Q by orthonormalizing the columns of
Y, as described in §2.4.1. This scheme appears as Algorithm 4.5. The total number Tstruct of flops
required by this procedure is

Tstruct ∼ mn log(`) + `2n (2.24)

Note that if ` is substantially larger than the numerical rank k of the input matrix, we can perform
the orthogonalization with O(k`n) flops because the columns of the sample matrix are almost
linearly dependent.

The test matrix (2.23) is just one choice among many possibilities. Other suggestions that
appear in the literature include subsampled Hadamard transforms, chains of Givens rotations acting
on randomly chosen coordinates, and many more. See [86] and its bibliography. Empirically, we
have found that the transform summarized in Remark 11 below performs very well in a variety of
environments [113].

At this point, it is not well understood how to quantify and compare the behavior of structured
random transforms. One reason for this uncertainty is that it has been difficult to analyze the
amount of oversampling that various transforms require. Section 2.11 establishes that the random
matrix (2.23) can be used to identify a near-optimal basis for a rank-k matrix using ` ∼ (k +
log(n)) log(k) samples. In practice, the transforms (2.23) and (2.25) typically require no more
oversampling than a Gaussian test matrix requires. (For a numerical example, see §2.7.4.) As a
consequence, setting ` = k+ 10 or ` = k+ 20 is typically more than adequate. Further research on
these questions would be valuable.

Remark 9. The structured random matrices discussed in this section do not adapt readily to the
fixed-precision problem, where the computational tolerance is specified, because the samples from
the range are usually computed in bulk. Fortunately, these schemes are sufficiently inexpensive
that we can progressively increase the number of samples computed starting with ` = 32, say, and
then proceeding to ` = 64, 128, 256, . . . until we achieve the desired tolerance.

Remark 10. When using the SRFT (2.23) for matrix approximation, we have a choice whether
to use a subsampled FFT or a full FFT. The complete FFT is so inexpensive that it often pays
to construct an extended sample matrix Ylarge = ADF and then generate the actual samples by
drawing columns at random from Ylarge and rescaling as needed. The asymptotic cost increases
to O(mn log(n)) flops, but the full FFT is actually faster for moderate problem sizes because the
constant suppressed by the big-O notation is so small. Adaptive rank determination is easy because
we just examine extra samples as needed.

Remark 11. Among the structured random matrices that we have tried, one of the strongest
candidates involves sequences of random Givens rotations [113]. This matrix takes the form

Ω = D′′Θ′D′Θ D F R, (2.25)

where the prime symbol ′ indicates an independent realization of a random matrix. The matrices
R, F, and D are defined after (2.23). The matrix Θ is a chain of random Givens rotations:

Θ = Π G(1, 2; θ1) G(2, 3; θ2) · · · G(n− 1, n; θn−1)
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where Π is a random n×n permutation matrix; where θ1, . . . , θn−1 are independent random variables
uniformly distributed on the interval [0, 2π]; and where G(i, j; θ) denotes a rotation on Cn by the
angle θ in the (i, j) coordinate plane [61, §5.1.8].

Remark 12. When the singular values of the input matrix A decay slowly, Algorithm 4.5 may
perform poorly in terms of accuracy. When randomized sampling is used with a Gaussian random
matrix, the recourse is to take a couple of steps of a power iteration; see Algorithm 4.4. However,
it is not currently known whether such an iterative scheme can be accelerated to O(mn log(k))
complexity using “fast” random transforms such as the SRFT.

2.5 Stage B: Construction of standard factorizations

The algorithms for Stage A described in §2.4 produce an orthonormal matrix Q whose range
captures the action of an input matrix A:

‖A− QQ∗A‖ ≤ ε, (2.26)

where ε is a computational tolerance. This section describes methods for approximating standard
factorizations of A using the information in the basis Q.

To accomplish this task, we pursue the idea from §2.3.3.3 that any low-rank factorization
A ≈ CB can be manipulated to produce a standard decomposition. When the bound (2.26) holds,
the low-rank factors are simply C = Q and B = Q∗A. The simplest scheme (§2.5.1) computes the
factor B directly with a matrix–matrix product to ensure a minimal error in the final approximation.
An alternative approach (§2.5.2) constructs factors B and C without forming any matrix–matrix
product. The approach of §2.5.2 is often faster than the approach of §2.5.1 but typically results
in larger errors. Both schemes can be streamlined for an Hermitian input matrix (§2.5.3) and a
positive semidefinite input matrix (§2.5.4). Finally, we develop single-pass algorithms that exploit
other information generated in Stage A to avoid revisiting the input matrix (§2.5.5).

Throughout this section, A denotes an m×n matrix, and Q is an m× k orthonormal matrix
that verifies (2.26). For purposes of exposition, we concentrate on methods for constructing the
partial SVD.

2.5.1 Factorizations based on forming Q∗A directly

The relation (2.26) implies that ‖A− QB‖ ≤ ε, where B = Q∗A. Once we have computed B,
we can produce any standard factorization using the methods of §2.3.3.3. Algorithm 5.1 illustrates
how to build an approximate SVD.

The factors produced by Algorithm 5.1 satisfy

‖A− UΣV∗‖ ≤ ε. (2.27)
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In other words, the approximation error does not degrade.

The cost of Algorithm 5.1 is generally dominated by the cost of the product Q∗A in Step
1, which takes O(kmn) flops for a general dense matrix. Note that this scheme is particularly
well suited to environments where we have a fast method for computing the matrix–vector product
x 7→ A∗x, for example when A is sparse or structured. This approach retains a strong advantage over
Krylov-subspace methods and rank-revealing QR because Step 1 can be accelerated using BLAS3,
parallel processors, and so forth. Steps 2 and 3 require O(k2n) and O(k2m) flops respectively.

Remark 13. Algorithm 5.1 produces an approximate SVD with the same rank as the basis matrix
Q. When the size of the basis exceeds the desired rank k of the SVD, it may be preferable to retain
only the dominant k singular values and singular vectors. Equivalently, we replace the diagonal
matrix Σ of computed singular values with the matrix Σ(k) formed by zeroing out all but the largest
k entries of Σ. In the worst case, this truncation step can increase the approximation error by σk+1;
see §2.9.4 for an analysis. Our numerical experience suggests that this error analysis is pessimistic,
and the term σk+1 often does not appear in practice.

2.5.2 Postprocessing via row extraction

Given a matrix Q such that (2.26) holds, we can obtain a rank-k factorization

A ≈ XB, (2.28)

where B is a k × n matrix consisting of k rows extracted from A. The approximation (2.28)
can be produced without computing any matrix–matrix products, which makes this approach to
postprocessing very fast. The drawback comes because the error ‖A− XB‖ is usually larger than
the initial error ‖A− QQ∗A‖, especially when the dimensions of A are large. See Remark 15 for
more discussion.

To obtain the factorization (2.28), we simply construct the interpolative decomposition (§2.3.2.3)
of the matrix Q:

Q = XQ(J, : ). (2.29)

The index set J marks k rows of Q that span the row space of Q, and X is an m× k matrix whose
entries are bounded in magnitude by two and contains the k×k identity as a submatrix: X(J, : ) = Ik.
Combining (2.29) and (2.26), we reach

A ≈ QQ∗A = XQ(J, : )Q
∗A. (2.30)

Since X(J, : ) = Ik, equation (2.30) implies that A(J, : ) ≈ Q(J, : )Q
∗A. Therefore, (2.28) follows when

we put B = A(J, : ).

Provided with the factorization (2.28), we can obtain any standard factorization using the
techniques of §2.3.3.3. Algorithm 5.2 illustrates an SVD calculation. This procedure requires
O(k2(m+ n)) flops. The following lemma guarantees the accuracy of the computed factors.



60

Lemma 2.5.1. Let A be an m×n matrix and let Q be an m×k matrix that satisfy (2.26). Suppose
that U, Σ, and V are the matrices constructed by Algorithm 5.2. Then

‖A− UΣV∗‖ ≤
[
1 +

√
1 + 4k(n− k)

]
ε. (2.31)

Proof. The factors U, Σ, V constructed by the algorithm satisfy

UΣV∗ = UΣṼ∗W∗ = ZW∗ = XR∗W∗ = XA(J, : ).

Define the approximation
Â = QQ∗A. (2.32)

Since Â = XQ(J, : )Q
∗A and since X(J, : ) = Ik, it must be that Â(J, : ) = Q(J, : )Q

∗A. Consequently,

Â = XÂ(J, : ).

We have the chain of relations

‖A− UΣV∗‖ =
∥∥A− XA(J, : )

∥∥
=
∥∥(A− XÂ(J, : )

)
+
(
XÂ(J, : ) − XA(J, : )

)∥∥
≤
∥∥A− Â

∥∥ +
∥∥XÂ(J, : ) − XA(J, : )

∥∥
≤
∥∥A− Â

∥∥ + ‖X‖
∥∥A(J, : ) − Â(J, : )

∥∥. (2.33)

Inequality (2.26) ensures that
∥∥A− Â

∥∥ ≤ ε. Since A(J, : ) − Â(J, : ) is a submatrix of A− Â, we must

also have
∥∥A(J, : ) − Â(J, : )

∥∥ ≤ ε. Thus, (2.33) reduces to

‖A− UΣV∗‖ ≤ (1 + ‖X‖) ε. (2.34)

The bound (2.31) follows from (2.34) after we observe that X contains a k× k identity matrix and
that the entries of the remaining (n− k)× k submatrix are bounded in magnitude by two.

Remark 14. To maintain a unified presentation, we have formulated all the postprocessing tech-
niques so they take an orthonormal matrix Q as input. Recall that, in Stage A of our framework,
we construct the matrix Q by orthonormalizing the columns of the sample matrix Y. With finite-
precision arithmetic, it is preferable to adapt Algorithm 5.2 to start directly from the sample
matrix Y. To be precise, we modify Step 1 to compute X and J so that Y = XY(J,:). This revision
is recommended even when Q is available from the adaptive rank determination of Algorithm 4.2.

Remark 15. As the inequality (2.31) suggests, the factorization produced by Algorithm 5.2 is
potentially less accurate than the basis that it uses as input. This loss of accuracy is problematic
when ε is not so small or when kn is large. In such cases, we recommend Algorithm 5.1 over
Algorithm 5.2; the former is more costly, but it does not amplify the error, as shown in (2.27).
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2.5.3 Postprocessing an Hermitian matrix

When A is Hermitian, the postprocessing becomes particularly elegant. In this case, the
columns of Q form a good basis for both the column space and the row space of A so that we have
A ≈ QQ∗AQQ∗. More precisely, when (2.26) is in force, we have

‖A− QQ∗AQQ∗‖ = ‖A− QQ∗A + QQ∗A− QQ∗AQQ∗‖
≤ ‖A− QQ∗A‖+

∥∥QQ∗
(
A− AQQ∗

)∥∥ ≤ 2ε. (2.35)

The last inequality relies on the facts that ‖QQ∗‖ = 1 and that

‖A− AQQ∗‖ =
∥∥(A− AQQ∗)∗

∥∥ = ‖A− QQ∗A‖ .

Since A ≈ Q
(
Q∗AQ

)
Q∗ is a low-rank approximation of A, we can form any standard factorization

using the techniques from §2.3.3.3.

For Hermitian A, it is more common to compute an eigenvalue decomposition than an SVD.
We can accomplish this goal using Algorithm 5.3, which adapts the scheme from §2.5.1. This
procedure delivers a factorization that satisfies the error bound ‖A− UΛU∗‖ ≤ 2ε. The calculation
requires O(kn2) flops.

We can also pursue the row extraction approach from §2.5.2, which is faster but less accurate.
See Algorithm 5.4 for the details. The total cost is O(k2n) flops.

2.5.4 Postprocessing a positive semidefinite matrix

When the input matrix A is positive semidefinite, the Nyström method can be used to improve
the quality of standard factorizations at almost no additional cost; see [48] and its bibliography.
To describe the main idea, we first recall that the direct method presented in §2.5.3 manipulates
the approximate rank-k factorization

A ≈ Q
(
Q∗AQ

)
Q∗. (2.36)

In contrast, the Nyström scheme builds a more sophisticated rank-k approximation, namely

A ≈ (AQ)
(
Q∗AQ

)−1
(AQ)∗

=
[
(AQ)

(
Q∗AQ

)−1/2
] [

(AQ)
(
Q∗AQ

)−1/2
]∗

= FF∗, (2.37)

where F is an approximate Cholesky factor of A with dimension n × k. To compute the factor F
numerically, first form the matrices B1 = AQ and B2 = Q∗B1. Then decompose the psd matrix
B2 = C∗C into its Cholesky factors. Finally compute the factor F = B1C−1 by performing a
triangular solve. The low-rank factorization (2.37) can be converted to a standard decomposition
using the techniques from §2.3.3.3.

The literature contains an explicit expression [48, Lem. 4] for the approximation error in (2.37).
This result implies that, in the spectral norm, the Nyström approximation error never exceeds
‖A− QQ∗A‖, and it is often substantially smaller. We omit a detailed discussion.
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For an example of the Nyström technique, consider Algorithm 5.5, which computes an approx-
imate eigenvalue decomposition of a positive semidefinite matrix. This method should be compared
with the scheme for Hermitian matrices, Algorithm 5.3. In both cases, the dominant cost occurs
when we form AQ, so the two procedures have roughly the same running time. On the other hand,
Algorithm 5.5 is typically much more accurate than Algorithm 5.3. In a sense, we are exploiting
the fact that A is positive semidefinite to take one step of subspace iteration (Algorithm 4.4) for
free.

2.5.5 Single-pass algorithms

The techniques described in §§2.5.1–2.5.4 all require us to revisit the input matrix. This may
not be feasible in environments where the matrix is too large to be stored. In this section, we
develop a method that requires just one pass over the matrix to construct not only an approximate
basis but also a complete factorization. Similar techniques appear in [137] and [29].

For motivation, we begin with the case where A is Hermitian. Let us recall the proto-algorithm
from §2.1.3.3: Draw a random test matrix Ω; form the sample matrix Y = AΩ; then construct a
basis Q for the range of Y. It turns out that the matrices Ω, Y, and Q contain all the information
we need to approximate A.

To see why, define the (currently unknown) matrix B via B = Q∗AQ. Postmultiplying the
definition by Q∗Ω, we obtain the identity BQ∗Ω = Q∗AQQ∗Ω. The relationships AQQ∗ ≈ A and
AΩ = Y show that B must satisfy

BQ∗Ω ≈ Q∗Y. (2.38)

All three matrices Ω, Y, and Q are available, so we can solve (2.38) to obtain the matrix B. Then
the low-rank factorization A ≈ QBQ∗ can be converted to an eigenvalue decomposition via familiar
techniques. The entire procedure requires O(k2n) flops, and it is summarized as Algorithm 5.6.

When A is not Hermitian, it is still possible to devise single-pass algorithms, but we must
modify the initial Stage A of the approximation framework to simultaneously construct bases for
the ranges of A and A∗:

(1) Generate random matrices Ω and Ω̃.

(2) Compute Y = AΩ and Ỹ = A∗Ω̃ in a single pass over A.

(3) Compute QR factorizations Y = QR and Ỹ = Q̃R̃.

This procedure results in matrices Q and Q̃ such that A ≈ QQ∗AQ̃Q̃∗. The reduced matrix we must
approximate is B = Q∗AQ̃. In analogy with (2.38), we find that

Q∗Y = Q∗AΩ ≈ Q∗AQ̃Q̃∗Ω = BQ̃∗Ω. (2.39)
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An analogous calculation shows that B should also satisfy

Q̃∗Ỹ ≈ B∗Q∗Ω̃. (2.40)

Now, the reduced matrix Bapprox can be determined by finding a minimum-residual solution to the
system of relations (2.39) and (2.40).

Remark 16. The single-pass approaches described in this section can degrade the approximation
error in the final decomposition significantly. To explain the issue, we focus on the Hermitian case.
It turns out that the coefficient matrix Q∗Ω in the linear system (2.38) is usually ill-conditioned. In
a worst-case scenario, the error ‖A− UΛU∗‖ in the factorization produced by Algorithm 5.6 could
be larger than the error resulting from the two-pass method of Section 2.5.3 by a factor of 1/τmin,
where τmin is the minimal singular value of the matrix Q∗Ω.

The situation can be improved by oversampling. Suppose that we seek a rank-k approximate
eigenvalue decomposition. Pick a small oversampling parameter p. Draw an n × (k + p) random
matrix Ω, and form the sample matrix Y = AΩ. Let Q denote the n × k matrix formed by the k
leading left singular vectors of Y. Now, the linear system (2.38) has a coefficient matrix Q∗Ω of size
k × (k + p), so it is overdetermined. An approximate solution of this system yields a k × k matrix
B.

2.6 Computational costs

So far, we have postponed a detailed discussion of the computational cost of randomized
matrix approximation algorithms because it is necessary to account for both the first stage, where
we compute an approximate basis for the range (§2.4), and the second stage, where we postprocess
the basis to complete the factorization (§2.5). We are now prepared to compare the cost of the
two-stage scheme with the cost of traditional techniques.

Choosing an appropriate algorithm, whether classical or randomized, requires us to consider
the properties of the input matrix. To draw a nuanced picture, we discuss three representative com-
putational environments in §2.6.1–2.6.3. We close with some comments on parallel implementations
in §2.6.4.

For concreteness, we focus on the problem of computing an approximate SVD of an m × n
matrix A with numerical rank k. The costs for other factorizations are similar.

2.6.1 General matrices that fit in core memory

Suppose that A is a general matrix presented as an array of numbers that fits in core memory.
In this case, the appropriate method for Stage A is to use a structured random matrix (§2.4.6),
which allows us to find a basis that captures the action of the matrix using O(mn log(k) + k2m)
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flops. For Stage B, we apply the row-extraction technique (§2.5.2), which costs an additional
O(k2(m+ n)) flops. The total number of operations Trandom for this approach satisfies

Trandom ∼ mn log(k) + k2(m+ n).

As a rule of thumb, the approximation error of this procedure satisfies

‖A− UΣV∗‖ . n · σk+1, (2.41)

where σk+1 is the (k + 1)th singular value of A. The estimate (2.41), which follows from Theo-
rem 2.11.2 and Lemma 2.5.1, reflects the worst-case scenario; actual errors are usually smaller.

This algorithm should be compared with modern deterministic techniques, such as rank-
revealing QR followed by postprocessing (§2.3.3.2) which typically require

TRRQR ∼ kmn

operations to achieve a comparable error.

In this setting, the randomized algorithm can be several times faster than classical techniques
even for problems of moderate size, say m,n ∼ 103 and k ∼ 102. See §2.7.4 for numerical evidence.

Remark 17. In case row extraction is impractical, there is an alternative O(mn log(k)) technique
described in [137, §5.2]. When the error (2.41) is unacceptably large, we can use the direct method
(§2.5.1) for Stage B, which brings the total cost to O(kmn) flops.

2.6.2 Matrices for which matrix–vector products can be rapidly evaluated

In many problems in data mining and scientific computing, the cost Tmult of performing the
matrix–vector multiplication x 7→ Ax is substantially smaller than the nominal cost O(mn) for
the dense case. It is not uncommon that O(m + n) flops suffice. Standard examples include (i)
very sparse matrices; (ii) structured matrices, such as Töplitz operators, that can be applied using
the FFT or other means; and (iii) matrices that arise from physical problems, such as discretized
integral operators, that can be applied via, e.g., the fast multipole method [66].

Suppose that both A and A∗ admit fast multiplies. The appropriate randomized approach for
this scenario completes Stage A using Algorithm 4.1 with p constant (for the fixed-rank problem)
or Algorithm 4.2 (for the fixed-precision problem) at a cost of (k + p)Tmult + O(k2m) flops. For
Stage B, we invoke Algorithm 5.1, which requires (k+p)Tmult + O(k2(m+n)) flops. The total cost
Tsparse satisfies

Tsparse = 2 (k + p)Tmult + O(k2(m+ n)). (2.42)

As a rule of thumb, the approximation error of this procedure satisfies

‖A− UΣV∗‖ .
√
kn · σk+1. (2.43)

The estimate (2.43) follows from Corollary 2.10.9 and the discussion in §2.5.1. Actual errors are
usually smaller.
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When the singular spectrum of A decays slowly, we can incorporate q iterations of the power
method (Algorithm 4.3) to obtain superior solutions to the fixed-rank problem. The computational
cost increases to, cf. (2.42),

Tsparse = (2q + 2) (k + p)Tmult + O(k2(m+ n)), (2.44)

while the error (2.43) improves to

‖A− UΣV∗‖ . (kn)1/2(2q+1) · σk+1. (2.45)

The estimate (2.45) takes into account the discussion in §2.10.4. The power scheme can also be
adapted for the fixed-precision problem (§2.4.5).

In this setting, the classical prescription for obtaining a partial SVD is some variation of
a Krylov-subspace method; see §2.3.3.4. These methods exhibit great diversity, so it is hard to
specify a “typical” computational cost. To a first approximation, it is fair to say that in order to
obtain an approximate SVD of rank k, the cost of a numerically stable implementation of a Krylov
method is no less than the cost (2.42) with p set to zero. At this price, the Krylov method often
obtains better accuracy than the basic randomized method obtained by combining Algorithms
4.1 and 5.1, especially for matrices whose singular values decay slowly. On the other hand, the
randomized schemes are inherently more robust and allow much more freedom in organizing the
computation to suit a particular application or a particular hardware architecture. The latter
point is in practice of crucial importance because it is usually much faster to apply a matrix to
k vectors simultaneously than it is to execute k matrix–vector multiplications consecutively. In
practice, blocking and parallelism can lead to enough gain that a few steps of the power method
(Algorithm 4.3) can be performed more quickly than k steps of a Krylov method.

Remark 18. Any comparison between randomized sampling schemes and Krylov variants be-
comes complicated because of the fact that “basic” Krylov schemes such as Lanczos [61, p. 473] or
Arnoldi [61, p. 499] are inherently unstable. To obtain numerical robustness, we must incorporate
sophisticated modifications such as restarts, reorthogonalization procedures, etc. Constructing a
high-quality implementation is sufficiently hard that the authors of a popular book on “numerical
recipes” qualify their treatment of spectral computations as follows [109, p. 567]:

You have probably gathered by now that the solution of eigensystems is a fairly
complicated business. It is. It is one of the few subjects covered in this book for
which we do not recommend that you avoid canned routines. On the contrary, the
purpose of this chapter is precisely to give you some appreciation of what is going
on inside such canned routines, so that you can make intelligent choices about using
them, and intelligent diagnoses when something goes wrong.

Randomized sampling does not eliminate the difficulties referred to in this quotation; however
it reduces the task of computing a partial spectral decomposition of a very large matrix to the
task of computing a full decomposition of a small dense matrix. (For example, in Algorithm 5.1,
the input matrix A is large and B is small.) The latter task is much better understood and is
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eminently suitable for using canned routines. Random sampling schemes interact with the large
matrix only through matrix–matrix products, which can easily be implemented by a user in a
manner appropriate to the application and to the available hardware.

The comparison is further complicated by the fact that there is significant overlap between
the two sets of ideas. Algorithm 4.3 is conceptually similar to a “block Lanczos method” [61,
p. 485] with a random starting matrix. Indeed, we believe that there are significant opportunities
for cross-fertilization in this area. Hybrid schemes that combine the best ideas from both fields
may perform very well.

2.6.3 General matrices stored in slow memory or streamed

The traditional metric for numerical algorithms is the number of floating-point operations
they require. When the data does not fit in fast memory, however, the computational time is often
dominated by the cost of memory access. In this setting, a more appropriate measure of algorithmic
performance is pass-efficiency, which counts how many times the data needs to be cycled through
fast memory. Flop counts become largely irrelevant.

All the classical matrix factorization techniques that we discuss in §2.3.2—including dense
SVD, rank-revealing QR, Krylov methods, and so forth—require at least k passes over the the
matrix, which is prohibitively expensive for huge data matrices. A desire to reduce the pass
count of matrix approximation algorithms served as one of the early motivations for developing
randomized schemes [105, 58, 46]. Detailed recent work appears in [29].

For many matrices, randomized techniques can produce an accurate approximation using just
one pass over the data. For Hermitian matrices, we obtain a single-pass algorithm by combining
Algorithm 4.1, which constructs an approximate basis, with Algorithm 5.6, which produces an
eigenvalue decomposition without any additional access to the matrix. Section 2.5.5 describes the
analogous technique for general matrices.

For the huge matrices that arise in applications such as data mining, it is common that
the singular spectrum decays slowly. Relevant applications include image processing (see §§2.7.2–
2.7.3 for numerical examples), statistical data analysis, and network monitoring. To compute
approximate factorizations in these environments, it is crucial to enhance the accuracy of the
randomized approach using the power scheme, Algorithm 4.3, or some other device. This approach
increases the pass count somewhat, but in our experience it is very rare that more than five passes
are required.

2.6.4 Gains from parallelization

As mentioned in §§2.6.2–2.6.3, randomized methods often outperform classical techniques not
because they involve fewer floating-point operations but rather because they allow us to reorganize
the calculations to exploit the matrix properties and the computer architecture more fully. In
addition, these methods are well suited for parallel implementation. For example, in Algorithm 4.1,
the computational bottleneck is the evaluation of the matrix product AΩ, which is embarrassingly
parallelizable.
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2.7 Numerical examples

By this time, the reader has surely formulated a pointed question: Do these randomized
matrix approximation algorithms actually work in practice? In this section, we attempt to address
this concern by illustrating how the algorithms perform on a diverse collection of test cases.

Section 2.7.1 starts with two examples from the physical sciences involving discrete approx-
imations to operators with exponentially decaying spectra. Sections 2.7.2 and 2.7.3 continue with
two examples of matrices arising in “data mining.” These are large matrices whose singular spectra
decay slowly; one is sparse and fits in RAM, one is dense and is stored out-of-core. Finally, §2.7.4
investigates the performance of randomized methods based on structured random matrices.

Sections 2.7.1–2.7.3 focus on the algorithms for Stage A that we presented in §2.4 because
we wish to isolate the performance of the randomized step.

Computational examples illustrating truly large data matrices have been reported elsewhere,
for instance in [69].

2.7.1 Two matrices with rapidly decaying singular values

We first illustrate the behavior of the adaptive range approximation method, Algorithm 4.2.
We apply it to two matrices associated with the numerical analysis of differential and integral
operators. The matrices in question have rapidly decaying singular values and our intent is to
demonstrate that in this environment, the approximation error of a bare-bones randomized method
such as Algorithm 4.2 is very close to the minimal error achievable by any method. We observe
that the approximation error of a randomized method is itself a random variable (it is a function
of the random matrix Ω) so what we need to demonstrate is not only that the error is small in a
typical realization, but also that it clusters tightly around the mean value.

We first consider a 200×200 matrix A that results from discretizing the following single-layer
operator associated with the Laplace equation:

[Sσ](x) = const ·
∫

Γ1

log |x− y| σ(y) dA(y), x ∈ Γ2, (2.46)

where Γ1 and Γ2 are the two contours in R2 illustrated in Figure 2.1(a). We approximate the
integral with the trapezoidal rule, which converges superalgebraically because the kernel is smooth.
In the absence of floating-point errors, we estimate that the discretization error would be less than
10−20 for a smooth source σ. The leading constant is selected so the matrix A has unit operator
norm.

We implement Algorithm 4.2 in Matlab v6.5. Gaussian test matrices are generated using the
randn command. For each number ` of samples, we compare the following three quantities:

(1) The minimum rank-` approximation error σ`+1 is determined using svd.
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(2) The actual error e` =
∥∥(I− Q(`)(Q(`))∗

)
A
∥∥ is computed with norm.

(3) A random estimator f` for the actual error e` is obtained from (2.20), with the parameter
r set to 5.

Note that any values less than 10−15 should be considered numerical artifacts.

Figure 2.2 tracks a characteristic execution of Algorithm 4.2. We make three observations:
(i) The error e` incurred by the algorithm is remarkably close to the theoretical minimum σ`+1. (ii)
The error estimate always produces an upper bound for the actual error. Without the built-in 10×
safety margin, the estimate would track the actual error almost exactly. (iii) The basis constructed
by the algorithm essentially reaches full double-precision accuracy.

How typical is the trial documented in Figure 2.2? To answer this question, we examine the
empirical performance of the algorithm over 2000 independent trials. Figure 2.3 charts the error
estimate versus the actual error at four points during the course of execution: ` = 25, 50, 75, 100.
We offer four observations: (i) The initial run detailed in Figure 2.2 is entirely typical. (ii) Both
the actual and estimated error concentrate about their mean value. (iii) The actual error drifts
slowly away from the optimal error as the number ` of samples increases. (iv) The error estimator
is always pessimistic by a factor of about ten, which means that the algorithm never produces a
basis with lower accuracy than requested. The only effect of selecting an unlucky sample matrix Ω
is that the algorithm proceeds for a few additional steps.

We next consider a matrix B which is defined implicitly in the sense that we cannot access
its elements directly; we can only evaluate the map x 7→ Bx for a given vector x. To be precise,
B represents a transfer matrix for a network of resistors like the one shown in Figure 2.1(b). The
vector x represents a set of electric potentials specified on the red nodes in the figure. These
potentials induce a unique equilibrium field on the network in which the potential of each black
and blue node is the average of the potentials of its three or four neighbors. The vector Bx is then
the restriction of the potential to the blue exterior nodes. Given a vector x, the vector Bx can be
obtained by solving a large sparse linear system whose coefficient matrix is the classical five-point
stencil approximating the 2D Laplace operator.

We applied Algorithm 4.2 to the 1596×532 matrix B associated with a lattice in which there
were 532 nodes (red) on the “inner ring” and 1596 nodes on the (blue) “outer ring.” Each application
of B to a vector requires the solution of a sparse linear system of size roughly 140 000 × 140 000.
We implemented the scheme in Matlab using the “backslash” operator for the linear solve. The
results of a typical trial appear in Figure 2.4. Qualitatively, the performance matches the results
in Figure 2.3.

2.7.2 A large, sparse, noisy matrix arising in image processing

Our next example involves a matrix that arises in image processing. A recent line of work uses
information about the local geometry of an image to develop promising new algorithms for standard
tasks, such as denoising, inpainting, and so forth. These methods are based on approximating a
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graph Laplacian associated with the image. The dominant eigenvectors of this matrix provide
“coordinates” that help us smooth out noisy image patches [131, 120].

We begin with a 95× 95 pixel grayscale image. The intensity of each pixel is represented as
an integer in the range 0 to 4095. We form for each pixel i a vector x(i) ∈ R25 by gathering the 25
intensities of the pixels in a 5× 5 neighborhood centered at pixel i (with appropriate modifications
near the edges). Next, we form the 9025 × 9025 weight matrix W̃ that reflects the similarities
between patches:

w̃ij = exp
{
−
∥∥x(i) − x(j)

∥∥2
/σ2
}
,

where the parameter σ = 50 controls the level of sensitivity. We obtain a sparse weight matrix W
by zeroing out all entries in W̃ except the seven largest ones in each row. The object is then to
construct the low frequency eigenvectors of the graph Laplacian matrix

L = I− D−1/2WD−1/2,

where D is the diagonal matrix with entries dii =
∑

j wij . These are the eigenvectors associated

with the dominant eigenvalues of the auxiliary matrix A = D−1/2WD−1/2.

The matrix A is large, and its eigenvalues decay slowly, so we use the power scheme sum-
marized in Algorithm 4.3 to approximate it. Figure 2.5[left] illustrates how the approximation
error e` declines as the number ` of samples increases. When we set the exponent q = 0, which
corresponds with the basic Algorithm 4.1, the approximation is rather poor. The graph illustrates
that increasing the exponent q slightly results in a tremendous improvement in the accuracy of the
power scheme.

Next, we illustrate the results of using the two-stage approach to approximate the eigenvalues
of A. In Stage A, we construct a basis for A using Algorithm 4.3 with ` = 100 samples for different
values of q. In Stage B, we apply the Hermitian variant of Algorithm 5.1 described in §2.5.3
to compute an approximate eigenvalue decomposition. Figure 2.5[right] shows the approximate
eigenvalues and the actual eigenvalues of A. Once again, we see that the minimal exponent q = 0
produces miserable results, but the largest eigenvalues are quite accurate even for q = 1.

2.7.3 Eigenfaces

Our next example involves a large, dense matrix derived from the FERET databank of face
images [107, 108]. A simple method for performing face recognition is to identify the principal
directions of the image data, which are called eigenfaces. Each of the original photographs can
be summarized by its components along these principal directions. To identify the subject in a
new picture, we compute its decomposition in this basis and use a classification technique, such as
nearest neighbors, to select the closest image in the database [122].

We construct a data matrix A as follows: The FERET database contains 7254 images, and
each 384×256 image contains 98 304 pixels. First, we build a 98 304×7254 matrix Ã whose columns
are the images. We form A by centering each column of Ã and scaling it to unit norm, so that
the images are roughly comparable. The eigenfaces are the dominant left singular vectors of this
matrix.
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Our goal then is to compute an approximate SVD of the matrix A. Represented as an array
of double-precision real numbers, A would require 5.4 GB of storage, which does not fit within the
fast memory of many machines. It is possible to compress the database down to at 57 MB or less
(in JPEG format), but then the data would have to be uncompressed with each sweep over the
matrix. Furthermore, the matrix A has slowly decaying singular values, so we need to use the power
scheme, Algorithm 4.3, to capture the range of the matrix accurately.

To address these concerns, we implemented the power scheme to run in a pass-efficient man-
ner. An additional difficulty arises because the size of the data makes it expensive to calculate the
actual error e` incurred by the approximation or to determine the minimal error σ`+1. To estimate
the errors, we use the technique described in Remark 6.

Figure 2.6 describes the behavior of the power scheme, which is similar to its performance
for the graph Laplacian in §2.7.2. When the exponent q = 0, the approximation of the data matrix
is very poor, but it improves quickly as q increases. Likewise, the estimate for the spectrum of A
appears to converge rapidly; the largest singular values are already quite accurate when q = 1. We
see essentially no improvement in the estimates after the first 3–5 passes over the matrix.

2.7.4 Performance of structured random matrices

Our final set of experiments illustrates that the structured random matrices described in §2.4.6
lead to matrix approximation algorithms that are both fast and accurate.

First, we compare the computational speeds of four methods for computing an approximation
to the ` dominant terms in the SVD of an n× n matrix A. For now, we are interested in execution
time only (not accuracy), so the choice of matrix is irrelevant and we have selected A to be a
Gaussian matrix. The four methods are summarized in the following table; Remark 19 provides
more details on the implementation.

Method Stage A Stage B

direct Rank-revealing QR executed using column Algorithm 5.1

pivoting and Householder reflectors

gauss Algorithm 4.1 with a Gaussian random matrix Algorithm 5.1

srft Algorithm 4.1 with the modified SRFT (2.25) Algorithm 5.2

svd Full SVD with LAPACK routine dgesdd Truncate to ` terms

Table 2.1 lists the measured runtime of a single execution of each algorithm for various choices
of the dimension n of the input matrix and the rank ` of the approximation. Of course, the cost
of the full SVD does not depend on the number ` of components required. A more informative
way to look at the runtime data is to compare the relative cost of the algorithms. The direct

method is the best deterministic approach for dense matrices, so we calculate the factor by which
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the randomized methods improve on this benchmark. Figure 2.7 displays the results. We make two
observations: (i) Using an SRFT often leads to a dramatic speed-up over classical techniques, even
for moderate problem sizes. (ii) Using a standard Gaussian test matrix typically leads to a moderate
speed-up over classical methods, primarily because performing a matrix–matrix multiplication is
faster than a QR factorization.

Second, we investigate how the choice of random test matrix influences the error in approx-
imating an input matrix. For these experiments, we return to the 200 × 200 matrix A defined in
Section 2.7.1. Consider variations of Algorithm 4.1 obtained when the random test matrix Ω is
drawn from the following four distributions:

Gauss: The standard Gaussian distribution.

Ortho: The uniform distribution on n× ` orthonormal matrices.

SRFT: The SRFT distribution defined in (2.23).

GSRFT: The modified SRFT distribution defined in (2.25).

Intuitively, we expect that Ortho should provide the best performance.

For each distribution, we perform 100 000 trials of the following experiment. Apply the
corresponding version of Algorithm 4.1 to the matrix A, and calculate the approximation error
e` = ‖A− Q`Q

∗
`A‖. Figure 2.8 displays the empirical probability density function for the error e`

obtained with each algorithm. We offer three observations: (i) The SRFT actually performs slightly
better than a Gaussian random matrix for this example. (ii) The standard SRFT and the modified
SRFT have essentially identical errors. (iii) There is almost no difference between the Gaussian
random matrix and the random orthonormal matrix in the first three plots, while the fourth plot
shows that the random orthonormal matrix performs better. This behavior occurs because, with
high probability, a tall Gaussian matrix is well conditioned and a (nearly) square Gaussian matrix
is not.

Remark 19. The running times reported in Table 2.1 and in Figure 2.7 depend strongly on both
the computer hardware and the coding of the algorithms. The experiments reported here were
performed on a standard office desktop with a 3.2 GHz Pentium IV processor and 2 GB of RAM.
The algorithms were implemented in Fortran 90 and compiled with the Lahey compiler. The Lahey
versions of BLAS and LAPACK were used to accelerate all matrix–matrix multiplications, as well
as the SVD computations in Algorithms 5.1 and 5.2. We used the code for the modified SRFT
(2.25) provided in the publicly available software package id dist [90].
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Table 2.1: Computational times for a partial SVD. The time, in seconds,
required to compute the ` leading components in the SVD of an n × n
matrix using each of the methods from §2.7.4. The last row indicates the
time needed to obtain a full SVD.

n = 1024 n = 2048 n = 4096

` direct gauss srft direct gauss srft direct gauss srft

10 1.08e-1 5.63e-2 9.06e-2 4.22e-1 2.16e-1 3.56e-1 1.70e 0 8.94e-1 1.45e 0

20 1.97e-1 9.69e-2 1.03e-1 7.67e-1 3.69e-1 3.89e-1 3.07e 0 1.44e 0 1.53e 0

40 3.91e-1 1.84e-1 1.27e-1 1.50e 0 6.69e-1 4.33e-1 6.03e 0 2.64e 0 1.63e 0

80 7.84e-1 4.00e-1 2.19e-1 3.04e 0 1.43e 0 6.64e-1 1.20e 1 5.43e 0 2.08e 0

160 1.70e 0 9.92e-1 6.92e-1 6.36e 0 3.36e 0 1.61e 0 2.46e 1 1.16e 1 3.94e 0

320 3.89e 0 2.65e 0 2.98e 0 1.34e 1 7.45e 0 5.87e 0 5.00e 1 2.41e 1 1.21e 1

640 1.03e 1 8.75e 0 1.81e 1 3.14e 1 2.13e 1 2.99e 1 1.06e 2 5.80e 1 5.35e 1

1280 — — — 7.97e 1 6.69e 1 3.13e 2 2.40e 2 1.68e 2 4.03e 2

svd 1.19e 1 8.77e 1 6.90e 2
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Algorithm 4.2: Adaptive Randomized Range Finder

Given an m × n matrix A, a tolerance ε, and an integer r (e.g. r = 10), the following
scheme computes an orthonormal matrix Q such that (2.19) holds with probability at least
1−min{m,n}10−r.

1 Draw standard Gaussian vectors ω(1), . . . ,ω(r) of length n.

2 For i = 1, 2, . . . , r, compute y(i) = Aω(i).
3 j = 0.

4 Q(0) = [ ], the m× 0 empty matrix.

5 while max
{∥∥y(j+1)

∥∥, ∥∥y(j+2)
∥∥, . . . ,∥∥y(j+r)

∥∥} > ε/(10
√

2/π),

6 j = j + 1.

7 Overwrite y(j) by
(
I− Q(j−1)(Q(j−1))∗

)
y(j).

8 q(j) = y(j)/
∥∥y(j)

∥∥.

9 Q(j) = [Q(j−1) q(j)].

10 Draw a standard Gaussian vector ω(j+r) of length n.

11 y(j+r) =
(
I− Q(j)(Q(j))∗

)
Aω(j+r).

12 for i = (j + 1), (j + 2), . . . , (j + r − 1),

13 Overwrite y(i) by y(i) − q(j)
〈
q(j), y(i)

〉
.

14 end for
15 end while

16 Q = Q(j).

Algorithm 4.3: Randomized Power Iteration

Given an m × n matrix A and integers ` and q, this algorithm computes an m × ` or-
thonormal matrix Q whose range approximates the range of A.

1 Draw an n× ` Gaussian random matrix Ω.
2 Form the m× ` matrix Y = (AA∗)qAΩ via alternating application

of A and A∗.
3 Construct an m× ` matrix Q whose columns form an orthonormal

basis for the range of Y, e.g., via the QR factorization Y = QR.

Note: This procedure is vulnerable to round-off errors; see Remark 8. The recommended
implementation appears as Algorithm 4.4.
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Algorithm 4.4: Randomized Subspace Iteration

Given an m × n matrix A and integers ` and q, this algorithm computes an m × ` or-
thonormal matrix Q whose range approximates the range of A.

1 Draw an n× ` standard Gaussian matrix Ω.
2 Form Y0 = AΩ and compute its QR factorization Y0 = Q0R0.
3 for j = 1, 2, . . . , q

4 Form Ỹj = A∗Qj−1 and compute its QR factorization Ỹj = Q̃jR̃j .

5 Form Yj = AQ̃j and compute its QR factorization Yj = QjRj .
6 end
7 Q = Qq.

Algorithm 4.5: Fast Randomized Range Finder

Given an m×n matrix A, and an integer `, this scheme computes an m× ` orthonormal
matrix Q whose range approximates the range of A.

1 Draw an n× ` SRFT test matrix Ω, as defined by (2.23).
2 Form the m× ` matrix Y = AΩ using a (subsampled) FFT.
3 Construct an m× ` matrix Q whose columns form an orthonormal

basis for the range of Y, e.g., using the QR factorization Y = QR.

Algorithm 5.1: Direct SVD

Given matrices A and Q such that (2.26) holds, this procedure computes an approximate
factorization A ≈ UΣV∗, where U and V are orthonormal, and Σ is a nonnegative diagonal
matrix.

1 Form the matrix B = Q∗A.
2 Compute an SVD of the small matrix: B = ŨΣV∗.
3 Form the orthonormal matrix U = QŨ.
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Algorithm 5.2: SVD via Row Extraction

Given matrices A and Q such that (2.26) holds, this procedure computes an approximate
factorization A ≈ UΣV∗, where U and V are orthonormal, and Σ is a nonnegative diagonal
matrix.

1 Compute an ID Q = XQ(J, : ). (The ID is defined in §2.3.2.3.)
2 Extract A(J, : ), and compute a QR factorization A(J, : ) = R∗W∗.
3 Form the product Z = XR∗.
4 Compute an SVD Z = UΣṼ∗.
5 Form the orthonormal matrix V = WṼ.

Note: Algorithm 5.2 is faster than Algorithm 5.1 but less accurate.
Note: It is advantageous to replace the basis Q by the sample matrix Y produced in
Stage A, cf. Remark 14.

Algorithm 5.3: Direct Eigenvalue Decomposition

Given an Hermitian matrix A and a basis Q such that (2.26) holds, this procedure com-
putes an approximate eigenvalue decomposition A ≈ UΛU∗, where U is orthonormal, and
Λ is a real diagonal matrix.

1 Form the small matrix B = Q∗AQ.
2 Compute an eigenvalue decomposition B = VΛV∗.
3 Form the orthonormal matrix U = QV.

Algorithm 5.4: Eigenvalue Decomposition via Row Extraction

Given an Hermitian matrix A and a basis Q such that (2.26) holds, this procedure com-
putes an approximate eigenvalue decomposition A ≈ UΛU∗, where U is orthonormal, and
Λ is a real diagonal matrix.

1 Compute an ID Q = XQ(J, : ).
2 Perform a QR factorization X = VR.
3 Form the product Z = RA(J,J)R

∗.
4 Compute an eigenvalue decomposition Z = WΛW∗.
5 Form the orthonormal matrix U = VW.

Note: Algorithm 5.4 is faster than Algorithm 5.3 but less accurate.
Note: It is advantageous to replace the basis Q by the sample matrix Y produced in
Stage A, cf. Remark 14.
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Algorithm 5.5: Eigenvalue Decomposition via Nyström Method

Given a positive semidefinite matrix A and a basis Q such that (2.26) holds, this procedure
computes an approximate eigenvalue decomposition A ≈ UΛU∗, where U is orthonormal,
and Λ is nonnegative and diagonal.

1 Form the matrices B1 = AQ and B2 = Q∗B1.
2 Perform a Cholesky factorization B2 = C∗C.
3 Form F = B1C−1 using a triangular solve.
4 Compute an SVD F = UΣV∗ and set Λ = Σ2.

Algorithm 5.6: Eigenvalue Decomposition in One Pass

Given an Hermitian matrix A, a random test matrix Ω, a sample matrix Y = AΩ, and
an orthonormal matrix Q that verifies (2.26) and Y = QQ∗Y, this algorithm computes an
approximate eigenvalue decomposition A ≈ UΛU∗.

1 Use a standard least-squares solver to find an Hermitian matrix Bapprox

that approximately satisfies the equation Bapprox(Q∗Ω) ≈ Q∗Y.
2 Compute the eigenvalue decomposition Bapprox = VΛV∗.
3 Form the product U = QV.
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Figure 2.1: Configurations for physical problems. (a) The contours Γ1 (red) and Γ2 (blue) for the
integral operator (2.46). (b) Geometry of the lattice problem associated with matrix B in §2.7.1.
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Figure 2.2: Approximating a Laplace integral operator. One execution of Algorithm 4.2 for the
200 × 200 input matrix A described in §2.7.1. The number ` of random samples varies along the
horizontal axis; the vertical axis measures the base-10 logarithm of error magnitudes. The dashed
vertical lines mark the points during execution at which Figure 2.3 provides additional statistics.
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Figure 2.3: Error statistics for approximating a Laplace integral operator. 2,000 trials of Algo-
rithm 4.2 applied to a 200 × 200 matrix approximating the integral operator (2.46). The panels
isolate the moments at which ` = 25, 50, 75, 100 random samples have been drawn. Each solid point
compares the estimated error f` versus the actual error e` in one trial; the open circle indicates the
trial detailed in Figure 2.2. The dashed line identifies the minimal error σ`+1, and the solid line
marks the contour where the error estimator would equal the actual error.
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Figure 2.4: Approximating the inverse of a discrete Laplacian. One execution of Algorithm 4.2 for
the 1596× 532 input matrix B described in §2.7.1. See Figure 2.2 for notations.
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Figure 2.5: Approximating a graph Laplacian. For varying exponent q, one trial of the power
scheme, Algorithm 4.3, applied to the 9025× 9025 matrix A described in §2.7.2. [Left] Approxima-
tion errors as a function of the number ` of random samples. [Right] Estimates for the 100 largest
eigenvalues given ` = 100 random samples compared with the 100 largest eigenvalues of A.
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competitors described in §2.7.4. The solid red curve shows the speedup using an SRFT test matrix,
and the dotted blue curve shows the speedup with a Gaussian test matrix. The dashed green curve
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Part III: Theory

This part of the paper, §§2.8–2.11, provides a detailed analysis of randomized sampling
schemes for constructing an approximate basis for the range of a matrix, the task we refer to as
Stage A in the framework of §2.1.2. More precisely, we assess the quality of the basis Q that the
proto-algorithm of §2.1.3 produces by establishing rigorous bounds for the approximation error

|||A− QQ∗A||| , (2.47)

where |||·||| denotes either the spectral norm or the Frobenius norm. The difficulty in developing these
bounds is that the matrix Q is random, and its distribution is a complicated nonlinear function of
the input matrix A and the random test matrix Ω. Naturally, any estimate for the approximation
error must depend on the properties of the input matrix and the distribution of the test matrix.

To address these challenges, we split the argument into two pieces. The first part exploits
techniques from linear algebra to deliver a generic error bound that depends on the interaction
between the test matrix Ω and the right singular vectors of the input matrix A, as well as the tail
singular values of A. In the second part of the argument, we take into account the distribution of
the random matrix to estimate the error for specific instantiations of the proto-algorithm. This
bipartite proof is common in the literature on randomized linear algebra, but our argument is most
similar in spirit to [17].

Section 2.8 surveys the basic linear algebraic tools we need. Section 2.9 uses these methods
to derive a generic error bound. Afterward, we specialize these results to the case where the test
matrix is Gaussian (§2.10) and the case where the test matrix is a subsampled random Fourier
transform (§2.11).

2.8 Theoretical preliminaries

We proceed with some additional background from linear algebra. Section 2.8.1 sets out
properties of positive-semidefinite matrices, and §2.8.2 offers some results for orthogonal projectors.
Standard references for this material include [11, 72].

2.8.1 Positive semidefinite matrices

An Hermitian matrix M is positive semidefinite (briefly, psd) when u∗Mu ≥ 0 for all u 6= 0.
If the inequalities are strict, M is positive definite (briefly, pd). The psd matrices form a convex
cone, which induces a partial ordering on the linear space of Hermitian matrices: M 4 N if and
only if N−M is psd. This ordering allows us to write M < 0 to indicate that the matrix M is psd.

Alternatively, we can define a psd (resp., pd) matrix as an Hermitian matrix with nonnegative
(resp., positive) eigenvalues. In particular, each psd matrix is diagonalizable, and the inverse of a
pd matrix is also pd. The spectral norm of a psd matrix M has the variational characterization

‖M‖ = max
u6=0

u∗Mu

u∗u
, (2.48)
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according to the Rayleigh–Ritz theorem [72, Thm. 4.2.2]. It follows that

M 4 N =⇒ ‖M‖ ≤ ‖N‖ . (2.49)

A fundamental fact is that conjugation preserves the psd property.

Proposition 2.8.1 (Conjugation Rule). Suppose that M < 0. For every A, the matrix A∗MA < 0.
In particular,

M 4 N =⇒ A∗MA 4 A∗NA.

Our argument invokes the conjugation rule repeatedly. As a first application, we establish a
perturbation bound for the matrix inverse near the identity matrix.

Proposition 2.8.2 (Perturbation of Inverses). Suppose that M < 0. Then

I− (I + M)−1 4 M

Proof. Define R = M1/2, the psd square root of M promised by [72, Thm. 7.2.6]. We have the chain
of relations

I− (I + R2)−1 = (I + R2)−1R2 = R(I + R2)−1R 4 R2.

The first equality can be verified algebraically. The second holds because rational functions of a
diagonalizable matrix, such as R, commute. The last relation follows from the conjugation rule
because (I + R2)−1 4 I.

Next, we present a generalization of the fact that the spectral norm of a psd matrix is
controlled by its trace.

Proposition 2.8.3. We have ‖M‖ ≤ ‖A‖+ ‖C‖ for each partitioned psd matrix

M =

[
A B
B∗ C

]
.

Proof. The variational characterization (2.48) of the spectral norm implies that

‖M‖ = sup
‖x‖2+‖y‖2=1

[
x
y

]∗ [
A B
B∗ C

] [
x
y

]
≤ sup
‖x‖2+‖y‖2=1

(
‖A‖ ‖x‖2 + 2 ‖B‖ ‖x‖ ‖y‖+ ‖C‖ ‖y‖2

)
.

The block generalization of Hadamard’s psd criterion [72, Thm. 7.7.7] states that ‖B‖2 ≤ ‖A‖ ‖C‖.
Thus,

‖M‖ ≤ sup
‖x‖2+‖y‖2=1

(
‖A‖1/2 ‖x‖+ ‖C‖1/2 ‖y‖

)2
= ‖A‖+ ‖C‖ .

This point completes the argument.
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2.8.2 Orthogonal projectors

An orthogonal projector is an Hermitian matrix P that satisfies the polynomial P2 = P. This
identity implies 0 4 P 4 I. An orthogonal projector is completely determined by its range. For
a given matrix M, we write PM for the unique orthogonal projector with range(PM) = range(M).
When M has full column rank, we can express this projector explicitly:

PM = M(M∗M)−1M∗. (2.50)

The orthogonal projector onto the complementary subspace, range(P)⊥, is the matrix I − P. Our
argument hinges on several other facts about orthogonal projectors.

Proposition 2.8.4. Suppose U is unitary. Then U∗PMU = PU∗M.

Proof. Abbreviate P = U∗PMU. It is clear that P is an orthogonal projector since it is Hermitian
and P2 = P. Evidently,

range(P) = U∗ range(M) = range(U∗M).

Since the range determines the orthogonal projector, we conclude P = PU∗M.

Proposition 2.8.5. Suppose range(N) ⊂ range(M). Then, for each matrix A, it holds that
‖PNA‖ ≤ ‖PMA‖ and that ‖(I− PM)A‖ ≤ ‖(I− PN)A‖.

Proof. The projector PN 4 I, so the conjugation rule yields PMPNPM 4 PM. The hypothesis
range(N) ⊂ range(M) implies that PMPN = PN, which results in

PMPNPM = PNPM = (PMPN)∗ = PN.

In summary, PN 4 PM. The conjugation rule shows that A∗PNA 4 A∗PMA. We conclude from (2.49)
that

‖PNA‖2 = ‖A∗PNA‖ ≤ ‖A∗PMA‖ = ‖PMA‖2 .

The second statement follows from the first by taking orthogonal complements.

Finally, we need a generalization of the scalar inequality |px|q ≤ |p| |x|q, which holds when
|p| ≤ 1 and q ≥ 1.

Proposition 2.8.6. Let P be an orthogonal projector, and let M be a matrix. For each positive
number q,

‖PM‖ ≤ ‖P(MM∗)qM‖1/(2q+1) . (2.51)



86

Proof. Suppose that R is an orthogonal projector, D is a nonnegative diagonal matrix, and t ≥ 1.
We claim that

‖RDR‖t ≤
∥∥RDtR

∥∥ . (2.52)

Granted this inequality, we quickly complete the proof. Using an SVD M = UΣV∗, we compute

‖PM‖2(2q+1) = ‖PMM∗P‖2q+1 =
∥∥(U∗PU) · Σ2 · (U∗PU)

∥∥2q+1

≤
∥∥(U∗PU) · Σ2(2q+1) · (U∗PU)

∥∥ =
∥∥P(MM∗)2(2q+1)P

∥∥
=
∥∥P(MM∗)qM ·M∗(MM∗)qP

∥∥ = ‖P(MM∗)qM‖2 .

We have used the unitary invariance of the spectral norm in the second and fourth relations. The
inequality (2.52) applies because U∗PU is an orthogonal projector. Take a square root to finish the
argument.

Now, we turn to the claim (2.52). This relation follows immediately from [11, Thm. IX.2.10],
but we offer a direct argument based on more elementary considerations. Let x be a unit vector at
which

x∗(RDR)x = ‖RDR‖ .

We must have Rx = x. Otherwise, ‖Rx‖ < 1 because R is an orthogonal projector, which implies
that the unit vector y = Rx/ ‖Rx‖ verifies

y∗(RDR)y =
(Rx)∗(RDR)(Rx)

‖Rx‖2
=

x∗(RDR)x

‖Rx‖2
> x∗(RDR)x.

Writing xj for the entries of x and dj for the diagonal entries of D, we find that

‖RDR‖t = [x∗(RDR)x]t = [x∗Dx]t =
[∑

j
djx

2
j

]t
≤
[∑

j
dtjx

2
j

]
= x∗Dtx = (Rx)∗Dt(Rx) ≤

∥∥RDtR
∥∥ .

The inequality is Jensen’s, which applies because
∑
x2
j = 1 and the function z 7→ |z|t is convex for

t ≥ 1.

2.9 Error bounds via linear algebra

We are now prepared to develop a deterministic error analysis for the proto-algorithm de-
scribed in §2.1.3. To begin, we must introduce some notation. Afterward, we establish the key
error bound, which strengthens a result from the literature [17, Lem. 4.2]. Finally, we explain why
the power method can be used to improve the performance of the proto-algorithm.
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2.9.1 Setup

Let A be an m×n matrix that has a singular value decomposition A = UΣV∗, as described in
Section 2.3.2.2. Roughly speaking, the proto-algorithm tries to approximate the subspace spanned
by the first k left singular vectors, where k is now a fixed number. To perform the analysis, it is
appropriate to partition the singular value decomposition as follows.

k n− k n

A = U

[
Σ1

Σ2

] [
V∗1
V∗2

]
k

n− k
(2.53)

The matrices Σ1 and Σ2 are square. We will see that the left unitary factor U does not play a
significant role in the analysis.

Let Ω be an n× ` test matrix, where ` denotes the number of samples. We assume only that
` ≥ k. Decompose the test matrix in the coordinate system determined by the right unitary factor
of A:

Ω1 = V∗1 Ω and Ω2 = V∗2 Ω. (2.54)

The error bound for the proto-algorithm depends critically on the properties of the matrices Ω1

and Ω2. With this notation, the sample matrix Y can be expressed as

`

Y = AΩ = U

[
Σ1Ω1

Σ2Ω2

]
k

n− k

It is a useful intuition that the block Σ1Ω1 in (2.9.1) reflects the gross behavior of A, while the
block Σ2Ω2 represents a perturbation.

2.9.2 A deterministic error bound for the proto-algorithm

The proto-algorithm constructs an orthonormal basis Q for the range of the sample matrix Y,
and our goal is to quantify how well this basis captures the action of the input A. Since QQ∗ = PY,
the challenge is to obtain bounds on the approximation error

|||A− QQ∗A||| = |||(I− PY)A||| .

The following theorem shows that the behavior of the proto-algorithm depends on the interaction
between the test matrix and the right singular vectors of the input matrix, as well as the singular
spectrum of the input matrix.

Theorem 2.9.1 (Deterministic error bound). Let A be an m × n matrix with singular value de-
composition A = UΣV∗, and fix k ≥ 0. Choose a test matrix Ω, and construct the sample matrix
Y = AΩ. Partition Σ as specified in (2.53), and define Ω1 and Ω2 via (2.54). Assuming that Ω1

has full row rank, the approximation error satisfies

|||(I− PY)A|||2 ≤ |||Σ2|||2 +
∣∣∣∣∣∣Σ2Ω2Ω†1

∣∣∣∣∣∣2, (2.55)

where |||·||| denotes either the spectral norm or the Frobenius norm.
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Theorem 2.9.1 sharpens the result [17, Lem. 2], which lacks the squares present in (2.55). This
refinement yields slightly better error estimates than the earlier bound, and it has consequences
for the probabilistic behavior of the error when the test matrix Ω is random. The proof here is
different in spirit from the earlier analysis; our argument is inspired by the perturbation theory of
orthogonal projectors [125].

Proof. We establish the bound for the spectral-norm error. The bound for the Frobenius-norm
error follows from an analogous argument that is slightly easier.

Let us begin with some preliminary simplifications. First, we argue that the left unitary
factor U plays no essential role in the argument. In effect, we execute the proof for an auxiliary
input matrix Ã and an associated sample matrix Ỹ defined by

Ã = U∗A =

[
Σ1V∗1
Σ2V∗2

]
and Ỹ = ÃΩ =

[
Σ1Ω1

Σ2Ω2

]
. (2.56)

Owing to the unitary invariance of the spectral norm and to Proposition 2.8.4, we have the identity

‖(I− PY)A‖ =
∥∥U∗(I− PY)UÃ

∥∥ =
∥∥(I− PU∗Y)Ã

∥∥ =
∥∥(I− P

Ỹ
)Ã
∥∥. (2.57)

In view of (2.57), it suffices to prove that∥∥(I− P
Ỹ

)Ã
∥∥ ≤ ∥∥Σ2

∥∥2
+
∥∥Σ2Ω2Ω†1

∥∥2
. (2.58)

Second, we assume that the number k is chosen so the diagonal entries of Σ1 are strictly
positive. Suppose not. Then Σ2 is zero because of the ordering of the singular values. As a
consequence,

range(Ã) = range

[
Σ1V∗1

0

]
= range

[
Σ1Ω1

0

]
= range(Ỹ).

This calculation uses the decompositions presented in (2.56), as well as the fact that both V∗1 and
Ω1 have full row rank. We conclude that∥∥(I− P

Ỹ
)Ã
∥∥ = 0,

so the error bound (2.58) holds trivially. (In fact, both sides are zero.)

The main argument is based on ideas from perturbation theory. To illustrate the concept,
we start with a matrix related to Ỹ:

`

W =

[
Σ1Ω1

0

]
k

n− k

The matrix W has the same range as a related matrix formed by “flattening out” the spectrum of
the top block. Indeed, since Σ1Ω1 has full row rank,

k

range(W) = range

[
I
0

]
k

n− k
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The matrix on the right-hand side has full column rank, so it is legal to apply the formula (2.50)
for an orthogonal projector, which immediately yields

PW =

[
I 0
0 0

]
and I− PW =

[
0 0
0 I

]
. (2.59)

In words, the range of W aligns with the first k coordinates, which span the same subspace as
the first k left singular vectors of the auxiliary input matrix Ã. Therefore, range(W) captures the
action of Ã, which is what we wanted from range(Ỹ).

We treat the auxiliary sample matrix Ỹ as a perturbation of W, and we hope that their ranges
are close to each other. To make the comparison rigorous, let us emulate the arguments outlined
in the last paragraph. Referring to the display (2.56), we flatten out the top block of Ỹ to obtain
the matrix

Z = Ỹ · Ω†1Σ−1
1 =

[
I
F

]
where F = Σ2Ω2Ω†1Σ−1

1 . (2.60)

Let us return to the error bound (2.58). The construction (2.60) ensures that range(Z) ⊂
range(Ỹ), so Proposition 2.8.5 implies that the error satisfies∥∥(I− P

Ỹ
)Ã
∥∥ ≤ ∥∥(I− PZ)Ã

∥∥.
Squaring this relation, we obtain∥∥(I− P

Ỹ
)Ã
∥∥2
≤
∥∥(I− PZ)Ã

∥∥2
=
∥∥Ã∗(I− PZ)Ã

∥∥ = ‖Σ∗(I− PZ)Σ‖ . (2.61)

The last identity follows from the definition Ã = ΣV∗ and the unitary invariance of the spectral
norm. Therefore, we can complete the proof of (2.58) by producing a suitable bound for the
right-hand side of (2.61).

To continue, we need a detailed representation of the projector I−PZ. The construction (2.60)
ensures that Z has full column rank, so we can apply the formula (2.50) for an orthogonal projector
to see that

PZ = Z(Z∗Z)−1Z∗ =

[
I
F

]
(I + F∗F)−1

[
I
F

]∗
.

Expanding this expression, we determine that the complementary projector satisfies

I− PZ =

[
I− (I + F∗F)−1 −(I + F∗F)−1F∗

−F(I + F∗F)−1 I− F(I + F∗F)−1F∗

]
. (2.62)

The partitioning here conforms with the partitioning of Σ. When we conjugate the matrix by Σ,
copies of Σ−1

1 , presently hidden in the top-left block, will cancel to happy effect.

The latter point may not seem obvious, owing to the complicated form of (2.62). In reality,
the block matrix is less fearsome than it looks. Proposition 2.8.2, on the perturbation of inverses,
shows that the top-left block verifies

I− (I + F∗F)−1 4 F∗F.
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The bottom-right block satisfies
I− F(I + F∗F)−1F∗ 4 I

because the conjugation rule guarantees that F(I + F∗F)−1F∗ < 0. We abbreviate the off-diagonal
blocks with the symbol B = −(I + F∗F)−1F∗. In summary,

I− PZ 4

[
F∗F B
B∗ I

]
.

This relation exposes the key structural properties of the projector. Compare this relation with
the expression (2.59) for the “ideal” projector I− PW.

Moving toward the estimate required by (2.61), we conjugate the last relation by Σ to obtain

Σ∗(I− PZ)Σ 4

[
Σ∗1F∗FΣ1 Σ∗1BΣ2

Σ∗2B∗Σ1 Σ∗2Σ2

]
.

The conjugation rule demonstrates that the matrix on the left-hand side is psd, so the matrix on
the right-hand side is too. Proposition 2.8.3 results in the norm bound

‖Σ∗(I− PZ)Σ‖ ≤ ‖Σ∗1F∗FΣ1‖+ ‖Σ∗2Σ2‖ = ‖FΣ1‖2 + ‖Σ2‖2 .

Recall that F = Σ2Ω2Ω†1Σ−1
1 , so the factor Σ1 cancels neatly. Therefore,

‖Σ∗(I− PZ)Σ‖ ≤
∥∥Σ2Ω2Ω†1

∥∥2
+ ‖Σ2‖2 .

Finally, introduce the latter inequality into (2.61) to complete the proof.

2.9.3 Analysis of the power scheme

Theorem 2.9.1 suggests that the performance of the proto-algorithm depends strongly on the
relationship between the large singular values of A listed in Σ1 and the small singular values listed
in Σ2. When a substantial proportion of the mass of A appears in the small singular values, the
constructed basis Q may have low accuracy. Conversely, when the large singular values dominate,
it is much easier to identify a good low-rank basis.

To improve the performance of the proto-algorithm, we can run it with a closely related input
matrix whose singular values decay more rapidly [67, 112]. Fix a positive integer q, and set

B = (AA∗)qA = UΣ2q+1V∗.

We apply the proto-algorithm to B, which generates a sample matrix Z = BΩ and constructs a
basis Q for the range of Z. Section 2.4.5 elaborates on the implementation details, and describes a
reformulation that sometimes improves the accuracy when the scheme is executed in finite-precision
arithmetic. The following result describes how well we can approximate the original matrix A
within the range of Z.
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Theorem 2.9.2 (Power scheme). Let A be an m× n matrix, and let Ω be an n× ` matrix. Fix a
nonnegative integer q, form B = (A∗A)qA, and compute the sample matrix Z = BΩ. Then

‖(I− PZ)A‖ ≤ ‖(I− PZ)B‖1/(2q+1) .

Proof. We determine that

‖(I− PZ)A‖ ≤ ‖(I− PZ)(AA∗)qA‖1/(2q+1) = ‖(I− PZ)B‖1/(2q+1)

as a direct consequence of Proposition 2.8.6.

Let us illustrate how the power scheme interacts with the main error bound (2.55). Let σk+1

denote the (k + 1)th singular value of A. First, suppose we approximate A in the range of the
sample matrix Y = AΩ. Since ‖Σ2‖ = σk+1, Theorem 2.9.1 implies that

‖(I− PY)A‖ ≤
(

1 +
∥∥Ω2Ω†1

∥∥2
)1/2

σk+1. (2.63)

Now, define B = (AA∗)qA, and suppose we approximate A within the range of the sample matrix
Z = BΩ. Together, Theorem 2.9.2 and Theorem 2.9.1 imply that

‖(I− PZ)A‖ ≤ ‖(I− PZ)B‖1/(2q+1) ≤
(

1 +
∥∥Ω2Ω†1

∥∥2
)1/(4q+2)

σk+1

because σ2q+1
k+1 is the (k + 1)th singular value of B. In effect, the power scheme drives down the

suboptimality of the bound (2.63) exponentially fast as the power q increases. In principle, we can
make the extra factor as close to one as we like, although this increases the cost of the algorithm.

2.9.4 Analysis of truncated SVD

Finally, let us study the truncated SVD described in Remark 13. Suppose that we approx-
imate the input matrix A inside the range of the sample matrix Z. In essence, the truncation
step computes a best rank-k approximation Â(k) of the compressed matrix PZA. The next result
provides a simple error bound for this method; this argument was proposed by Ming Gu.

Theorem 2.9.3 (Analysis of Truncated SVD). Let A be an m × n matrix with singular values
σ1 ≥ σ2 ≥ σ3 ≥ . . . , and let Z be an m× ` matrix, where ` ≥ k. Suppose that Â(k) is a best rank-k
approximation of PZA with respect to the spectral norm. Then∥∥A− Â(k)

∥∥ ≤ σk+1 + ‖(I− PZ)A‖ .

Proof. Apply the triangle inequality to split the error into two components.∥∥A− Âk
∥∥ ≤ ∥∥A− PZA

∥∥ +
∥∥PZA− Â(k)

∥∥. (2.64)
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We have already developed a detailed theory for estimating the first term. To analyze the second
term, we introduce a best rank-k approximation A(k) of the matrix A. Note that∥∥PZA− Â(k)

∥∥ ≤ ∥∥PZA− PZA(k)

∥∥
because Â(k) is a best rank-k approximation to the matrix PZA, whereas PZA(k) is an undistinguished
rank-k matrix. It follows that∥∥PZA− Â(k)

∥∥ ≤ ∥∥PZ(A− A(k))
∥∥ ≤ ∥∥A− A(k)

∥∥ = σk+1. (2.65)

The second inequality holds because the orthogonal projector is a contraction; the last identity
follows from Mirsky’s theorem [97]. Combine (2.64) and (2.65) to reach the main result.

Remark 20. In the randomized setting, the truncation step appears to be less damaging than the
error bound of Theorem 2.9.3 suggests, but we currently lack a complete theoretical understanding
of its behavior.

2.10 Gaussian test matrices

The error bound in Theorem 2.9.1 shows that the performance of the proto-algorithm depends
on the interaction between the test matrix Ω and the right singular vectors of the input matrix A.
Algorithm 4.1 is a particularly simple version of the proto-algorithm that draws the test matrix
according to the standard Gaussian distribution. The literature contains a wealth of information
about these matrices, which allows us to perform a very precise error analysis.

We focus on the real case in this section. Analogous results hold in the complex case, where
the algorithm even exhibits superior performance.

2.10.1 Technical background

A standard Gaussian matrix is a random matrix whose entries are independent standard
normal variables. The distribution of a standard Gaussian matrix is rotationally invariant: If U
and V are orthonormal matrices, then U∗GV also has the standard Gaussian distribution.

Our analysis requires detailed information about the properties of Gaussian matrices. In
particular, we must understand how the norm of a Gaussian matrix and its pseudoinverse vary. We
summarize the relevant results and citations here, reserving the details for Appendix 2.12.

Proposition 2.10.1 (Expected norm of a scaled Gaussian matrix). Fix matrices S,T, and draw a
standard Gaussian matrix G. Then(

E ‖SGT‖2F
)1/2

= ‖S‖F ‖T‖F and (2.66)

E ‖SGT‖ ≤ ‖S‖ ‖T‖F + ‖S‖F ‖T‖ . (2.67)
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The identity (2.66) follows from a direct calculation. The second bound (2.67) relies on
methods developed by Gordon [62, 63]. See Propositions 2.12.1 and 2.12.2.

Proposition 2.10.2 (Expected norm of a pseudo-inverted Gaussian matrix). Draw a k × (k + p)
standard Gaussian matrix G with k ≥ 2 and p ≥ 2. Then(

E
∥∥∥G†

∥∥∥2

F

)1/2

=

√
k

p− 1
and (2.68)

E
∥∥∥G†

∥∥∥ ≤ e
√
k + p

p
. (2.69)

The first identity is a standard result from multivariate statistics [99, p. 96]. The second
follows from work of Chen and Dongarra [25]. See Proposition 2.12.4 and 2.12.5.

To study the probability that Algorithm 4.1 produces a large error, we rely on tail bounds
for functions of Gaussian matrices. The next proposition rephrases a well-known result on concen-
tration of measure [14, Thm. 4.5.7]. See also [83, §1.1] and [82, §5.1].

Proposition 2.10.3 (Concentration for functions of a Gaussian matrix). Suppose that h is a
Lipschitz function on matrices:

|h(X)− h(Y)| ≤ L ‖X− Y‖F for all X,Y.

Draw a standard Gaussian matrix G. Then

P {h(G) ≥ Eh(G) + Lt} ≤ e−t
2/2.

Finally, we state some large deviation bounds for the norm of a pseudo-inverted Gaussian
matrix.

Proposition 2.10.4 (Norm bounds for a pseudo-inverted Gaussian matrix). Let G be a k× (k+p)
Gaussian matrix where p ≥ 4. For all t ≥ 1,

P

{∥∥G†
∥∥

F
≥

√
12k

p
· t

}
≤ 4t−p and (2.70)

P
{∥∥G†

∥∥ ≥ e
√
k + p

p+ 1
· t
}
≤ t−(p+1). (2.71)

Compare these estimates with Proposition 2.10.2. It seems that (2.70) is new; we were unable
to find a comparable analysis in the random matrix literature. Although the form of (2.70) is not
optimal, it allows us to produce more transparent results than a fully detailed estimate. The
bound (2.71) essentially appears in the work of Chen and Dongarra [25]. See Propositions 2.12.3
and Theorem 2.12.6 for more information.
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2.10.2 Average-case analysis of Algorithm 4.1

We separate our analysis into two pieces. First, we present information about expected
values. In the next subsection, we describe bounds on the probability of a large deviation.

We begin with the simplest result, which provides an estimate for the expected approximation
error in the Frobenius norm. All proofs are postponed to the end of the section.

Theorem 2.10.5 (Average Frobenius error). Suppose that A is a real m× n matrix with singular
values σ1 ≥ σ2 ≥ σ3 ≥ . . . . Choose a target rank k ≥ 2 and an oversampling parameter p ≥ 2,
where k + p ≤ min{m,n}. Draw an n × (k + p) standard Gaussian matrix Ω, and construct the
sample matrix Y = AΩ. Then the expected approximation error

E ‖(I− PY)A‖F ≤
(

1 +
k

p− 1

)1/2 (∑
j>k

σ2
j

)1/2
.

This theorem predicts several intriguing behaviors of Algorithm 4.1. The Eckart–Young theo-
rem [54] shows that (

∑
j>k σ

2
j )

1/2 is the minimal Frobenius-norm error when approximating A with
a rank-k matrix. This quantity is the appropriate benchmark for the performance of the algorithm.
If the small singular values of A are very flat, the series may be as large as σk+1

√
min{m,n} − k.

On the other hand, when the singular values exhibit some decay, the error may be on the same
order as σk+1.

The error bound always exceeds this baseline error, but it may be polynomially larger, de-
pending on the ratio between the target rank k and the oversampling parameter p. For p small
(say, less than five), the error is somewhat variable because the small singular values of a nearly
square Gaussian matrix are very unstable. As the oversampling increases, the performance improves
quickly. When p ∼ k, the error is already within a constant factor of the baseline.

The error bound for the spectral norm is somewhat more complicated, but it reveals some
interesting new features.

Theorem 2.10.6 (Average spectral error). Under the hypotheses of Theorem 2.10.5,

E ‖(I− PY)A‖ ≤

(
1 +

√
k

p− 1

)
σk+1 +

e
√
k + p

p

(∑
j>k

σ2
j

)1/2
.

Mirsky [97] has shown that the quantity σk+1 is the minimum spectral-norm error when
approximating A with a rank-k matrix, so the first term in Theorem 2.10.6 is analogous with the
error bound in Theorem 2.10.5. The second term represents a new phenomenon: we also pay for the
Frobenius-norm error in approximating A. Note that, as the amount p of oversampling increases,
the polynomial factor in the second term declines much more quickly than the factor in the first
term. When p ∼ k, the factor on the σk+1 term is constant, while the factor on the series has order
k−1/2
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We also note that the bound in Theorem 2.10.6 implies

E ‖(I− PY)A‖ ≤

[
1 +

√
k

p− 1
+

e
√
k + p

p
·
√

min{m,n} − k

]
σk+1,

so the average spectral-norm error always lies within a small polynomial factor of the baseline σk+1.

Let us continue with the proofs of these results.

Theorem 2.10.5. Let V be the right unitary factor of A. Partition V = [V1 | V2] into blocks
containing, respectively, k and n− k columns. Recall that

Ω1 = V∗1Ω and Ω2 = V∗2Ω.

The Gaussian distribution is rotationally invariant, so V∗Ω is also a standard Gaussian matrix.
Observe that Ω1 and Ω2 are nonoverlapping submatrices of V∗Ω, so these two matrices are not
only standard Gaussian but also stochastically independent. Furthermore, the rows of a (fat)
Gaussian matrix are almost surely in general position, so the k × (k + p) matrix Ω1 has full row
rank with probability one.

Hölder’s inequality and Theorem 2.9.1 together imply that

E ‖(I− PY)A‖F ≤
(
E ‖(I− PY)A‖2F

)1/2
≤
(∥∥Σ2

∥∥2

F
+ E

∥∥Σ2Ω2Ω†1
∥∥2

F

)1/2
.

We compute this expectation by conditioning on the value of Ω1 and applying Proposition 2.10.1
to the scaled Gaussian matrix Ω2. Thus,

E
∥∥Σ2Ω2Ω†1

∥∥2

F
= E

(
E
[∥∥Σ2Ω2Ω†1

∥∥2

F

∣∣ Ω1

])
= E

(
‖Σ2‖2F

∥∥Ω†1
∥∥2

F

)
= ‖Σ2‖2F · E

∥∥Ω†1
∥∥2

F
=

k

p− 1
· ‖Σ2‖2F ,

where the last expectation follows from relation (2.68) of Proposition 2.10.2. In summary,

E ‖(I− PY)A‖F ≤
(

1 +
k

p− 1

)1/2

‖Σ2‖F .

Observe that ‖Σ2‖2F =
∑

j>k σ
2
j to complete the proof.

Theorem 2.10.6. The argument is similar to the proof of Theorem 2.10.5. First, Theorem 2.9.1
implies that

E ‖(I− PY)A‖ ≤ E
(
‖Σ2‖2 +

∥∥Σ2Ω2Ω†1
∥∥2
)1/2

≤ ‖Σ2‖+ E
∥∥Σ2Ω2Ω†1

∥∥.
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We condition on Ω1 and apply Proposition 2.10.1 to bound the expectation with respect to Ω2.
Thus,

E
∥∥Σ2Ω2Ω†1

∥∥ ≤ E
(
‖Σ2‖

∥∥Ω†1
∥∥

F
+ ‖Σ2‖F

∥∥Ω†1
∥∥)

≤ ‖Σ2‖
(
E
∥∥Ω†1

∥∥2

F

)1/2
+ ‖Σ2‖F · E

∥∥Ω†1
∥∥.

where the second relation requires Hölder’s inequality. Applying both parts of Proposition 2.10.2,
we obtain

E
∥∥Σ2Ω2Ω†1

∥∥ ≤√ k

p− 1
‖Σ2‖+

e
√
k + p

p
‖Σ2‖F .

Note that ‖Σ2‖ = σk+1 to wrap up.

2.10.3 Probabilistic error bounds for Algorithm 4.1

We can develop tail bounds for the approximation error, which demonstrate that the average
performance of the algorithm is representative of the actual performance. We begin with the
Frobenius norm because the result is somewhat simpler.

Theorem 2.10.7 (Deviation bounds for the Frobenius error). Frame the hypotheses of Theo-
rem 2.10.5. Assume further that p ≥ 4. For all u, t ≥ 1,

‖(I− PY)A‖F ≤
(

1 + t ·
√

12k/p
)(∑

j>k
σ2
j

)1/2
+ ut · e

√
k + p

p+ 1
· σk+1,

with failure probability at most 5t−p + 2e−u
2/2.

To parse this theorem, observe that the first term in the error bound corresponds with the
expected approximation error in Theorem 2.10.5. The second term represents a deviation above
the mean.

An analogous result holds for the spectral norm.

Theorem 2.10.8 (Deviation bounds for the spectral error). Frame the hypotheses of Theorem 2.10.5.
Assume further that p ≥ 4. For all u, t ≥ 1,

‖(I− PY)A‖

≤
[(

1 + t ·
√

12k/p
)
σk+1 + t · e

√
k + p

p+ 1

(∑
j>k

σ2
j

)1/2
]

+ ut · e
√
k + p

p+ 1
σk+1,

with failure probability at most 5t−p + e−u
2/2.
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The bracket corresponds with the expected spectral-norm error while the remaining term
represents a deviation above the mean. Neither the numerical constants nor the precise form of the
bound are optimal because of the slackness in Proposition 2.10.4. Nevertheless, the theorem gives
a fairly good picture of what is actually happening.

We acknowledge that the current form of Theorem 2.10.8 is complicated. To produce more
transparent results, we make appropriate selections for the parameters u, t and bound the numerical
constants.

Corollary 2.10.9 (Simplified deviation bounds for the spectral error). Frame the hypotheses of
Theorem 2.10.5, and assume further that p ≥ 4. Then

‖(I− PY)A‖ ≤
(

1 + 17
√

1 + k/p
)
σk+1 +

8
√
k + p

p+ 1

(∑
j>k

σ2
j

)1/2
,

with failure probability at most 6e−p. Moreover,

‖(I− PY)A‖ ≤
(

1 + 8
√

(k + p) · p log p
)
σk+1 + 3

√
k + p

(∑
j>k

σ2
j

)1/2
,

with failure probability at most 6p−p.

Proof. The first part of the result follows from the choices t = e and u =
√

2p, and the second
emerges when t = p and u =

√
2p log p. Another interesting parameter selection is t = pc/p and

u =
√

2c log p, which yields a failure probability 6p−c.

Corollary 2.10.9 should be compared with [91, Obs. 4.4–4.5]. Although our result contains
sharper error estimates, the failure probabilities are usually worse. The error bound (2.9) presented
in §2.1.5 follows after further simplification of the second bound from Corollary 2.10.9.

We continue with a proof of Theorem 2.10.8. The same argument can be used to obtain a
bound for the Frobenius-norm error, but we omit a detailed account.

Theorem 2.10.8. Since Ω1 and Ω2 are independent from each other, we can study how the error
depends on the matrix Ω2 by conditioning on the event that Ω1 is not too irregular. To that end,
we define a (parameterized) event on which the spectral and Frobenius norms of the matrix Ω†1 are
both controlled. For t ≥ 1, let

Et =

{
Ω1 :

∥∥Ω†1
∥∥ ≤ e

√
k + p

p+ 1
· t and

∥∥Ω†1
∥∥

F
≤

√
12k

p
· t

}
.

Invoking both parts of Proposition 2.10.4, we find that

P (Ect ) ≤ t−(p+1) + 4t−p ≤ 5t−p.
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Consider the function h(X) =
∥∥Σ2XΩ†1

∥∥. We quickly compute its Lipschitz constant L with
the lower triangle inequality and some standard norm estimates:

|h(X)− h(Y)| ≤
∥∥Σ2(X− Y)Ω†1

∥∥
≤ ‖Σ2‖ ‖X− Y‖

∥∥Ω†1
∥∥ ≤ ‖Σ2‖

∥∥Ω†1
∥∥ ‖X− Y‖F .

Therefore, L ≤ ‖Σ2‖
∥∥Ω†1

∥∥. Relation (2.67) of Proposition 2.10.1 implies that

E[h(Ω2) | Ω1] ≤ ‖Σ2‖
∥∥Ω†1

∥∥
F

+ ‖Σ2‖F
∥∥Ω†1

∥∥.
Applying the concentration of measure inequality, Proposition 2.10.3, conditionally to the random
variable h(Ω2) =

∥∥Σ2Ω2Ω†1
∥∥ results in

P
{∥∥Σ2Ω2Ω†1

∥∥ > ‖Σ2‖
∥∥Ω†1

∥∥
F

+ ‖Σ2‖F
∥∥Ω†1

∥∥ + ‖Σ2‖
∥∥Ω†1

∥∥ · u ∣∣ Et} ≤ e−u
2/2.

Under the event Et, we have explicit bounds on the norms of Ω†1, so

P

{∥∥Σ2Ω2Ω†1
∥∥ > ‖Σ2‖

√
12k

p
· t+ ‖Σ2‖F

e
√
k + p

p+ 1
· t+ ‖Σ2‖

e
√
k + p

p+ 1
· ut

∣∣∣∣ Et
}

≤ e−u
2/2.

Use the fact P (Ect ) ≤ 5t−p to remove the conditioning. Therefore,

P

{∥∥Σ2Ω2Ω†1
∥∥ > ‖Σ2‖

√
12k

p
· t+ ‖Σ2‖F

e
√
k + p

p+ 1
· t+ ‖Σ2‖

e
√
k + p

p+ 1
· ut

}
≤ 5t−p + e−u

2/2.

Insert the expressions for the norms of Σ2 into this result to complete the probability bound.
Finally, introduce this estimate into the error bound from Theorem 2.9.1.

2.10.4 Analysis of the power scheme

Theorem 2.10.6 makes it clear that the performance of the randomized approximation scheme,
Algorithm 4.1, depends heavily on the singular spectrum of the input matrix. The power scheme
outlined in Algorithm 4.3 addresses this problem by enhancing the decay of spectrum. We can
combine our analysis of Algorithm 4.1 with Theorem 2.9.2 to obtain a detailed report on the
behavior of the performance of the power scheme using a Gaussian matrix.

Corollary 2.10.10 (Average spectral error for the power scheme). Frame the hypotheses of The-
orem 2.10.5. Define B = (AA∗)qA for a nonnegative integer q, and construct the sample matrix
Z = BΩ. Then

E ‖(I− PZ)A‖ ≤

[(
1 +

√
k

p− 1

)
σ2q+1
k+1 +

e
√
k + p

p

(∑
j>k

σ
2(2q+1)
j

)1/2
]1/(2q+1)

.
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Proof. By Hölder’s inequality and Theorem 2.9.2,

E ‖(I− PZ)A‖ ≤
(
E ‖(I− PZ)A‖2q+1

)1/(2q+1)
≤ (E ‖(I− PZ)B‖)1/(2q+1) .

Invoke Theorem 2.10.6 to bound the right-hand side, noting that σj(B) = σ2q+1
j .

The true message of Corollary 2.10.10 emerges if we bound the series using its largest term
σ4q+2
k+1 and draw the factor σk+1 out of the bracket:

E ‖(I− PZ)A‖ ≤

[
1 +

√
k

p− 1
+

e
√
k + p

p
·
√

min{m,n} − k

]1/(2q+1)

σk+1.

In words, as we increase the exponent q, the power scheme drives the extra factor in the error to
one exponentially fast. By the time q ∼ log (min{m,n}),

E ‖(I− PZ)A‖ ∼ σk+1,

which is the baseline for the spectral norm.

In most situations, the error bound given by Corollary 2.10.10 is substantially better than
the estimates discussed in the last paragraph. For example, suppose that the tail singular values
exhibit the decay profile

σj . j(1+ε)/(4q+2) for j > k and ε > 0.

Then the series in Corollary 2.10.10 is comparable with its largest term, which allows us to remove
the dimensional factor min{m,n} from the error bound.

To obtain large deviation bounds for the performance of the power scheme, simply combine
Theorem 2.9.2 with Theorem 2.10.8. We omit a detailed statement.

Remark 21. We lack an analogous theory for the Frobenius norm because Theorem 2.9.2 depends
on Proposition 2.8.6, which is not true for the Frobenius norm. It is possible to obtain some results
by estimating the Frobenius norm in terms of the spectral norm.

2.11 SRFT test matrices

Another way to implement the proto-algorithm from §2.1.3 is to use a structured random
matrix so that the matrix product in Step 2 can be performed quickly. One type of structured ran-
dom matrix that has been proposed in the literature is the subsampled random Fourier transform,
or SRFT, which we discussed in §2.4.6. In this section, we present bounds on the performance
of the proto-algorithm when it is implemented with an SRFT test matrix. In contrast with the
results for Gaussian test matrices, the results in this section hold for both real and complex input
matrices.
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2.11.1 Construction and Properties

Recall from §2.4.6 that an SRFT is a tall n× ` matrix of the form Ω =
√
n/` · DFR∗ where

• D is a random n × n diagonal matrix whose entries are independent and uniformly dis-
tributed on the complex unit circle;

• F is the n× n unitary discrete Fourier transform; and

• R is a random `× n matrix that restricts an n-dimensional vector to ` coordinates, chosen
uniformly at random.

Up to scaling, an SRFT is just a section of a unitary matrix, so it satisfies the norm identity
‖Ω‖ =

√
n/`. The critical fact is that an appropriately designed SRFT approximately preserves

the geometry of an entire subspace of vectors.

Theorem 2.11.1 (The SRFT preserves geometry). Fix an n× k orthonormal matrix V, and draw
an n× ` SRFT matrix Ω where the parameter ` satisfies

4
[√

k +
√

8 log(kn)
]2

log(k) ≤ ` ≤ n.

Then
0.40 ≤ σk(V∗Ω) and σ1(V∗Ω) ≤ 1.48

with failure probability at most O(k−1).

In words, the kernel of an SRFT of dimension ` ∼ k log(k) is unlikely to intersect a fixed
k-dimensional subspace. In contrast with the Gaussian case, the logarithmic factor log(k) in the
lower bound on ` cannot generally be removed (Remark 23).

Theorem 2.11.1 follows from a straightforward variation of the argument in [134], which
establishes equivalent bounds for a real analog of the SRFT, called the subsampled randomized
Hadamard transform (SRHT). We omit further details.

Remark 22. For large problems, we can obtain better numerical constants [134, Thm. 3.2]. Fix a
small, positive number ι. If k � log(n), then sampling

` ≥ (1 + ι) · k log(k)

coordinates is sufficient to ensure that σk(V∗Ω) ≥ ι with failure probability at most O(k−cι). This
sampling bound is essentially optimal because (1 − ι) · k log(k) samples are not adequate in the
worst case; see Remark 23.
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Remark 23. The logarithmic factor in Theorem 2.11.1 is necessary when the orthonormal matrix
V is particularly evil. Let us describe an infinite family of worst-case examples. Fix an integer k,
and let n = k2. Form an n× k orthonormal matrix V by regular decimation of the n× n identity
matrix. More precisely, V is the matrix whose jth row has a unit entry in column (j − 1)/k when
j ≡ 1 (mod k) and is zero otherwise. To see why this type of matrix is nasty, it is helpful to
consider the auxiliary matrix W = V∗DF. Observe that, up to scaling and modulation of columns,
W consists of k copies of a k × k DFT concatenated horizontally.

Suppose that we apply the SRFT Ω = DFR∗ to the matrix V∗. We obtain a matrix of the
form X = V∗Ω = WR∗, which consists of ` random columns sampled from W. Theorem 2.11.1
certainly cannot hold unless σk(X) > 0. To ensure the latter event occurs, we must pick at least
one copy each of the k distinct columns of W. This is the coupon collector’s problem [98, Sec. 3.6]
in disguise. To obtain a complete set of k coupons (i.e., columns) with nonnegligible probability,
we must draw at least k log(k) columns. The fact that we are sampling without replacement does
not improve the analysis appreciably because the matrix has too many columns.

2.11.2 Performance guarantees

We are now prepared to present detailed information on the performance of the proto-
algorithm when the test matrix Ω is an SRFT.

Theorem 2.11.2 (Error bounds for SRFT). Fix an m × n matrix A with singular values σ1 ≥
σ2 ≥ σ3 ≥ . . . . Draw an n× ` SRFT matrix Ω, where

4
[√

k +
√

8 log(kn)
]2

log(k) ≤ ` ≤ n.

Construct the sample matrix Y = AΩ. Then

‖(I− PY)A‖ ≤
√

1 + 7n/` · σk+1 and

‖(I− PY)A‖F ≤
√

1 + 7n/` ·
(∑

j>k
σ2
j

)1/2

with failure probability at most O(k−1).

As we saw in §2.10.2, the quantity σk+1 is the minimal spectral-norm error possible when
approximating A with a rank-k matrix. Similarly, the series in the second bound is the minimal
Frobenius-norm error when approximating A with a rank-k matrix. We see that both error bounds
lie within a polynomial factor of the baseline, and this factor decreases with the number ` of samples
we retain.

The likelihood of error with an SRFT test matrix is substantially worse than in the Gaussian
case. The failure probability here is roughly k−1, while in the Gaussian case, the failure probability
is roughly e−(`−k). This qualitative difference is not an artifact of the analysis; discrete sampling
techniques inherently fail with higher probability.
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Matrix approximation schemes based on SRFTs often perform much better in practice than
the error analysis here would indicate. While it is not generally possible to guarantee accuracy with
a sampling parameter less than ` ∼ k log(k), we have found empirically that the choice ` = k+20 is
adequate in almost all applications. Indeed, SRFTs sometimes perform even better than Gaussian
matrices (see, e.g., Figure 2.8).

We complete the section with the proof of Theorem 2.11.2.

Theorem 2.11.2. Let V be the right unitary factor of matrix A, and partition V = [V1 | V2] into
blocks containing, respectively, k and n− k columns. Recall that

Ω1 = V∗1Ω and Ω2 = V∗2Ω.

where Ω is the conjugate transpose of an SRFT. Theorem 2.11.1 ensures that the submatrix Ω1

has full row rank, with failure probability at most O(k−1). Therefore, Theorem 2.9.1 implies that

|||(I− PY)A||| ≤ |||Σ2|||
[
1 +

∥∥Ω†1
∥∥2
· ‖Ω2‖2

]1/2
,

where |||·||| denotes either the spectral norm or the Frobenius norm. Our application of Theo-

rem 2.11.1 also ensures that the spectral norm of Ω†1 is under control.∥∥Ω†1
∥∥2
≤ 1

0.402
< 7.

We may bound the spectral norm of Ω2 deterministically.

‖Ω2‖ = ‖V∗2Ω‖ ≤ ‖V∗2‖ ‖Ω‖ =
√
n/`

since V2 and
√
`/n · Ω are both orthonormal matrices. Combine these estimates to complete the

proof.
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Appendix

2.12 On Gaussian matrices

This appendix collects some of the properties of Gaussian matrices that we use in our analysis.
Most of the results follow quickly from material that is already available in the literature. One
fact, however, requires a surprisingly difficult new argument. We focus on the real case here; the
complex case is similar but actually yields better results.

2.12.1 Expectation of norms

We begin with the expected Frobenius norm of a scaled Gaussian matrix, which follows from
an easy calculation.

Proposition 2.12.1. Fix real matrices S,T, and draw a standard Gaussian matrix G. Then(
E ‖SGT‖2F

)1/2
= ‖S‖F ‖T‖F .

Proof. The distribution of a Gaussian matrix is invariant under orthogonal transformations, and
the Frobenius norm is also unitarily invariant. As a result, it represents no loss of generality to
assume that S and T are diagonal. Therefore,

E ‖SGT‖2F = E
[∑

jk
|sjjgjktkk|2

]
=
∑

jk
|sjj |2|tkk|2 = ‖S‖2F ‖T‖

2
F .

Since the right-hand side is unitarily invariant, we have also identified the value of the expectation
for general matrices S and T.

The literature contains an excellent bound for the expected spectral norm of a scaled Gaussian
matrix. The result is due to Gordon [62, 63], who established the bound using a sharp version of
Slepian’s lemma. See [83, §3.3] and [34, §2.3] for additional discussion.

Proposition 2.12.2. Fix real matrices S,T, and draw a standard Gaussian matrix G. Then

E ‖SGT‖ ≤ ‖S‖ ‖T‖F + ‖S‖F ‖T‖ .
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2.12.2 Spectral norm of pseudoinverse

Now, we turn to the pseudoinverse of a Gaussian matrix. Recently, Chen and Dongarra
developed a good bound on the probability that its spectral norm is large. The statement here
follows from [25, Lem. 4.1] after an application of Stirling’s approximation. See also [91, Lem. 2.14]

Proposition 2.12.3. Let G be an m × n standard Gaussian matrix with n ≥ m ≥ 2. For each
t > 0,

P
{∥∥G†

∥∥ > t
}
≤ 1√

2π(n−m+ 1)

[
e
√
n

n−m+ 1

]n−m+1

t−(n−m+1).

We can use Proposition 2.12.3 to bound the expected spectral norm of a pseudo-inverted
Gaussian matrix.

Proposition 2.12.4. Let G be a m × n standard Gaussian matrix with n − m ≥ 1 and m ≥ 2.
Then

E
∥∥G†

∥∥ < e
√
n

n−m

Proof. Let us make the abbreviations p = n−m and

C =
1√

2π(p+ 1)

[
e
√
n

p+ 1

]p+1

.

We compute the expectation by way of a standard argument. The integral formula for the mean
of a nonnegative random variable implies that, for all E > 0,

E
∥∥G†

∥∥ =

∫ ∞
0

P
{∥∥G†

∥∥ > t
}

dt ≤ E +

∫ ∞
E

P
{∥∥G†

∥∥ > t
}

dt

≤ E + C

∫ ∞
E

t−(p+1) dt = E +
1

p
CE−p,

where the second inequality follows from Proposition 2.12.3. The right-hand side is minimized
when E = C1/(p+1). Substitute and simplify.

2.12.3 Frobenius norm of pseudoinverse

The squared Frobenius norm of a pseudo-inverted Gaussian matrix is closely connected with
the trace of an inverted Wishart matrix. This observation leads to an exact expression for the
expectation.

Proposition 2.12.5. Let G be an m× n standard Gaussian matrix with n−m ≥ 2. Then

E
∥∥∥G†

∥∥∥2

F
=

m

n−m− 1
.
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Proof. Observe that ∥∥G†
∥∥2

F
= trace

[
(G†)∗G†

]
= trace

[
(GG∗)−1

]
.

The second identity holds almost surely because the Wishart matrix GG∗ is invertible with probabil-
ity one. The random matrix (GG∗)−1 follows the inverted Wishart distribution, so we can compute
its expected trace explicitly using a formula from [99, p. 97].

On the other hand, very little seems to be known about the tail behavior of the Frobenius
norm of a pseudo-inverted Gaussian matrix. The following theorem, which is new, provides an
adequate bound on the probability of a large deviation.

Theorem 2.12.6. Let G be an m× n standard Gaussian matrix with n−m ≥ 4. For each t ≥ 1,

P
{∥∥∥G†

∥∥∥2

F
>

12m

n−m
· t
}
≤ 4t−(n−m)/2.

Neither the precise form of Theorem 2.12.6 nor the constants are ideal; we have focused
instead on establishing a useful bound with minimal fuss. The rest of the section is devoted to the
rather lengthy proof. Unfortunately, most of the standard methods for producing tail bounds fail
for random variables that do not exhibit normal or exponential concentration. Our argument relies
on special properties of Gaussian matrices and a dose of brute force.

2.12.3.1 Technical background

We begin with a piece of notation. For any number q ≥ 1, we define the Lq norm of a random
variable Z by

Eq(Z) = (E |Z|q)1/q .

In particular, the Lq norm satisfies the triangle inequality.

We continue with a collection of technical results. First, we present a striking fact about the
structure of Gaussian matrices [55, §3.5].

Proposition 2.12.7. For n ≥ m, an m × n standard Gaussian matrix is orthogonally equivalent
with a random bidiagonal matrix

L =


Xn

Ym−1 Xn−1

Ym−2 Xn−2

. . .
. . .

Y1 Xn−(m−1)


m×n

, (2.72)

where, for each j, the random variables X2
j and Y 2

j follow the χ2 distribution with j degrees of
freedom. Furthermore, these variates are mutually independent.
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We also require the moments of a chi-square variate, which are expressed in terms of special
functions.

Proposition 2.12.8. Let Ξ be a χ2 variate with k degrees of freedom. When 0 ≤ q < k/2,

E (Ξq) =
2qΓ(k/2 + q)

Γ(k/2)
and E

(
Ξ−q

)
=

Γ(k/2− q)
2qΓ(k/2)

.

Proof. Recall that a χ2 variate with k degrees of freedom has the probability density function

f(t) =
1

2k/2Γ(k/2)
tk/2−1e−t/2, for t ≥ 0.

By the integral formula for expectation,

E(Ξq) =

∫ ∞
0

tqf(t) dt =
2qΓ(k/2 + q)

Γ(k/2)
,

where the second equality follows from Euler’s integral expression for the gamma function. The
other calculation is similar.

To streamline the proof, we eliminate the gamma functions from Proposition 2.12.8. The
next result bounds the positive moments of a chi-square variate.

Lemma 2.12.9. Let Ξ be a χ2 variate with k degrees of freedom. For q ≥ 1,

Eq(Ξ) ≤ k + q.

Proof. Write q = r + θ, where r = bqc. Repeated application of the functional equation zΓ(z) =
Γ(z + 1) yields

Eq(Ξ) =

2θΓ(k/2 + θ)

Γ(k/2)
·
r∏
j=1

(k + 2(q − j))

1/q

.

The gamma function is logarithmically convex, so

2θΓ(k/2 + θ)

Γ(k/2)
≤ 2θ · Γ(k/2)1−θ · Γ(k/2 + 1)θ

Γ(k/2)
= kθ ≤

 r∏
j=1

(k + 2(q − j))

θ/r .
The second inequality holds because k is smaller than each term in the product, hence is smaller
than their geometric mean. As a consequence,

Eq(Ξ) ≤

 r∏
j=1

(k + 2(q − j))

1/r

≤ 1

r

r∑
j=1

(k + 2(q − j)) ≤ k + q.

The second relation is the inequality between the geometric and arithmetic mean.
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Finally, we develop a bound for the negative moments of a chi-square variate.

Lemma 2.12.10. Let Ξ be a χ2 variate with k degrees of freedom, where k ≥ 5. When 2 ≤ q ≤
(k − 1)/2,

Eq
(
Ξ−1

)
<

3

k
.

Proof. We establish the bound for q = (k − 1)/2. For smaller values of q, the result follows from
Hölder’s inequality. Proposition 2.12.8 shows that

Eq
(
Ξ−1

)
=

[
Γ(k/2− q)
2qΓ(k/2)

]1/q

=

[
Γ(1/2)

2qΓ(k/2)

]1/q

.

Stirling’s approximation ensures that Γ(k/2) ≥
√

2π · (k/2)(k−1)/2 · e−k/2. Since the value Γ(1/2) =√
π,

Eq
(
Ξ−1

)
≤
[ √

π

2q
√

2π · (k/2)q · e−q−1/2

]1/q

=
e

k

[ e

2

]1/2q
<

3

k
,

where we used the assumption q ≥ 2 to complete the numerical estimate.

2.12.3.2 Proof of Theorem 2.12.6

Let G be an m × n Gaussian matrix, where we assume that n −m ≥ 4. Define the random
variable

Z =
∥∥∥G†

∥∥∥2

F
.

Our goal is to develop a tail bound for Z. The argument is inspired by work of Szarek [130, §6] for
square Gaussian matrices.

The first step is to find an explicit, tractable representation for the random variable. Accord-
ing to Proposition 2.12.7, a Gaussian matrix G is orthogonally equivalent with a bidiagonal matrix
L of the form (2.72). Making an analogy with the inversion formula for a triangular matrix, we
realize that the pseudoinverse of L is given by

L† =



X−1
n

−Ym−1

XnXn−1
X−1
n−1

−Ym−2

Xn−1Xn−2
X−1
n−2

. . .
. . .
−Y1

Xn−(m−2)Xn−(m−1)
X−1
n−(m−1)


n×m

.

Because L† is orthogonally equivalent with G† and the Frobenius norm is unitarily invariant, we
have the relations

Z =
∥∥G†

∥∥2

F
=
∥∥L†
∥∥2

F
≤

m−1∑
j=0

1

X2
n−j

(
1 +

Y 2
m−j

X2
n−j+1

)
,
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where we have added an extra subdiagonal term (corresponding with j = 0) so that we can avoid
exceptional cases later. We abbreviate the summands as

Wj =
1

X2
n−j

(
1 +

Y 2
m−j

X2
n−j+1

)
, j = 0, 1, 2, . . . ,m− 1.

Next, we develop a large deviation bound for each summand by computing a moment and
invoking Markov’s inequality. For the exponent q = (n−m)/2, Lemmas 2.12.9 and 2.12.10 yield

Eq(Wj) = Eq(X−2
n−j) · E

q

[
1 +

Y 2
m−j

X2
n−j+1

]
≤ Eq(X−2

n−j)
[
1 + Eq(Y 2

m−j) · Eq(X−2
n−j+1)

]
≤ 3

n− j

[
1 +

3(m− j + q)

n− j + 1

]
=

3

n− j

[
1 + 3− 3(n−m+ 1− q)

n− j + 1

]
Note that the first two relations require the independence of the variates and the triangle inequality
for the Lq norm. The maximum value of the bracket evidently occurs when j = 0, so

Eq(Wj) <
12

n− j
, j = 0, 1, 2, . . . ,m− 1.

Markov’s inequality results in

P
{
Wj ≥

12

n− j
· u
}
≤ u−q.

Select u = t · (n− j)/(n−m) to reach

P
{
Wj ≥

12

n−m
· t
}
≤
[
n−m
n− j

]q
t−q.

To complete the argument, we combine these estimates by means of the union bound and
clean up the resulting mess. Since Z ≤

∑m−1
j=0 Wj ,

P
{
Z ≥ 12m

n−m
· t
}
≤ t−q

m−1∑
j=0

[
n−m
n− j

]q
.

To control the sum on the right-hand side, observe that

m−1∑
j=0

[
n−m
n− j

]q
< (n−m)q

∫ m

0
(n− x)−q dx

<
(n−m)q

q − 1
(n−m)−q+1 =

2(n−m)

n−m− 2
≤ 4,

where the last inequality follows from the hypothesis n −m ≥ 4. Together, the estimates in this
paragraph produce the advertised bound.

Remark 24. It would be very interesting to find more conceptual and extensible argument that
yields accurate concentration results for inverse spectral functions of a Gaussian matrix.
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An algorithm for the principal component analysis of large data sets
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Abstract: Recently popularized randomized methods for principal component analysis (PCA) efficiently and
reliably produce nearly optimal accuracy — even on parallel processors — unlike the classical (deterministic)
alternatives. We adapt one of these randomized methods for use with data sets that are too large to be stored
in random-access memory (RAM). (The traditional terminology is that our procedure works efficiently out-
of-core.) We illustrate the performance of the algorithm via several numerical examples. For example, we
report on the PCA of a data set stored on disk that is so large that less than a hundredth of it can fit in our
computer’s RAM.

Keywords: algorithm, principal component analysis, PCA, SVD, singular value decomposition,
low rank
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3.1 Introduction

Principal component analysis (PCA) is among the most popular tools in machine learning,
statistics, and data analysis more generally. PCA is the basis of many techniques in data mining
and information retrieval, including the latent semantic analysis of large databases of text and
HTML documents described in [1]. In this paper, we compute PCAs of very large data sets via
a randomized version of the block Lanczos method, summarized in Section 3.3 below. The proofs
in [5] and [13] show that this method requires only a couple of iterations to produce nearly optimal
accuracy, with overwhelmingly high probability (the probability is independent of the data being



119

analyzed, and is typically 1− 10−15 or greater). The randomized algorithm has many advantages,
as shown in [5] and [13]; the present article adapts the algorithm for use with data sets that are
too large to be stored in the random-access memory (RAM) of a typical computer system.

Computing a PCA of a data set amounts to constructing a singular value decomposition
(SVD) that accurately approximates the matrix A containing the data being analyzed (possibly
after suitably “normalizing” A, say by subtracting from each column its mean). That is, if A is
m × n, then we must find a positive integer k < min(m,n) and construct matrices U , Σ, and V
such that

A ≈ U ΣV >, (3.1)

with U being an m × k matrix whose columns are orthonormal, V being an n × k matrix whose
columns are orthonormal, and Σ being a diagonal k × k matrix whose entries are all nonnegative.
The algorithm summarized in Section 3.3 below is most efficient when k is substantially less than
min(m,n); in typical real-world applications, k � min(m,n). Most often, the relevant measure
of the quality of the approximation in (3.1) is the spectral norm of the discrepancy A − U ΣV >;
see, for example, Section 3.3 below. The present article focuses on the spectral norm, though our
methods produce similar accuracy in the Frobenius/Hilbert-Schmidt norm (see, for example, [5]).

The procedure of the present article works to minimize the total number of times that the
algorithm has to access each entry of the matrix A being approximated. A related strategy is to
minimize the total number of disk seeks and to maximize the dimensions of the approximation that
can be constructed with a given amount of RAM; the algorithm in [8] takes this latter approach.

In the present paper, the entries of all matrices are real valued; our techniques extend trivially
to matrices whose entries are complex valued. The remainder of the article has the following
structure: Section 3.2 explains the motivation behind the algorithm. Section 3.3 outlines the
algorithm. Section 3.4 details the implementation for very large matrices. Section 3.5 quantifies the
main factors influencing the running-time of the algorithm. Section 3.6 illustrates the performance
of the algorithm via several numerical examples. Section 3.7 applies the algorithm to a data set
of interest in biochemical imaging. Section 3.8 draws some conclusions and proposes directions for
further research.

3.2 Informal description of the algorithm

In this section, we provide a brief, heuristic description. Section 3.3 below provides more
details on the algorithm described intuitively in the present section.

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a real m× n
matrix. We will construct an approximation to A such that

‖A− U ΣV >‖2 ≈ σk+1, (3.2)

where U is a real m × k matrix whose columns are orthonormal, V is a real n × k matrix whose
columns are orthonormal, Σ is a diagonal real k × k matrix whose entries are all nonnegative,
‖A−U ΣV >‖2 is the spectral (l2-operator) norm of A−U ΣV >, and σk+1 is the (k+ 1)st greatest
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singular value of A. To do so, we select nonnegative integers i and l such that l ≥ k and (i+2)k ≤ n
(for most applications, l = k + 2 and i ≤ 2 is sufficient; ‖A − U ΣV >‖2 will decrease as i and l
increase), and then identify an orthonormal basis for “most” of the range of A via the following
two steps:

1. Using a random number generator, form a real n×l matrix G whose entries are independent
and identically distributed Gaussian random variables of zero mean and unit variance, and
compute the m× ((i+ 1)l) matrix

H =
(
AG AA>AG . . . (AA>)i−1AG (AA>)iAG

)
. (3.3)

2. Using a pivoted QR-decomposition, form a real m× ((i+ 1)l) matrix Q whose columns are
orthonormal, such that there exists a real ((i+ 1)l)× ((i+ 1)l) matrix R for which

H = QR. (3.4)

(See, for example, Chapter 5 in [4] for details concerning the construction of such a matrix
Q.)

Intuitively, the columns of Q in (3.4) constitute an orthonormal basis for most of the range of
A. Moreover, the somewhat simplified algorithm with i = 0 is sufficient except when the singular
values of A decay slowly; see, for example, [5].

Notice that Q may have many fewer columns than A, that is, k may be substantially less
than n (this is the case for most applications of principal component analysis). This is the key to
the efficiency of the algorithm.

Having identified a good approximation to the range of A, we perform some simple linear
algebraic manipulations in order to obtain a good approximation to A, via the following four steps:

3. Compute the n× ((i+ 1)l) product matrix

T = A>Q. (3.5)

4. Form an SVD of T ,
T = Ṽ Σ̃W>, (3.6)

where Ṽ is a real n×((i+1)l) matrix whose columns are orthonormal, W is a real ((i+1)l)×
((i+1)l) matrix whose columns are orthonormal, and Σ̃ is a real diagonal ((i+1)l)×((i+1)l)
matrix such that Σ̃1,1 ≥ Σ̃2,2 ≥ · · · ≥ Σ̃(i+1)l−1,(i+1)l−1 ≥ Σ̃(i+1)l,(i+1)l ≥ 0. (See, for
example, Chapter 8 in [4] for details concerning the construction of such an SVD.)

5. Compute the m× ((i+ 1)l) product matrix

Ũ = QW. (3.7)

6. Retrieve the leftmost m×k block U of Ũ , the leftmost n×k block V of Ṽ , and the leftmost
uppermost k × k block Σ of Σ̃.

The matrices U , Σ, and V obtained via Steps 1–6 above satisfy (3.2); in fact, they satisfy the more
detailed bound (3.8) described below.
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3.3 Summary of the algorithm

In this section, we will construct a low-rank (say, rank k) approximation U ΣV > to any given
real matrix A, such that

‖A− U ΣV >‖2 ≤
√

(Ckn)1/(2i+1) + min(1, C/n) σk+1 (3.8)

with high probability (independent of A), where m and n are the dimensions of the given m × n
matrix A, U is a real m×k matrix whose columns are orthonormal, V is a real n×k matrix whose
columns are orthonormal, Σ is a real diagonal k× k matrix whose entries are all nonnegative, σk+1

is the (k + 1)st greatest singular value of A, and C is a constant determining the probability of
failure (the probability of failure is small when C = 10, negligible when C = 100). In (3.8), i is
any nonnegative integer such that (i + 2)k ≤ n (for most applications, i = 1 or i = 2 is sufficient;
the algorithm becomes less efficient as i increases), and ‖A−U ΣV >‖2 is the spectral (l2-operator)
norm of A− U ΣV >, that is,

‖A− U ΣV >‖2 = max
x∈Rn:‖x‖2 6=0

‖(A− U ΣV >)x‖2
‖x‖2

, (3.9)

‖x‖2 =

√√√√ n∑
j=1

(xj)2. (3.10)

To simplify the presentation, we will assume that n ≤ m (if n > m, then the user can apply the
algorithm to A>). In this section, we summarize the algorithm; see [5] and [13] for an in-depth
discussion, including proofs of more detailed variants of (3.8).

The minimal value of the spectral norm ‖A−B‖2, minimized over all rank-k matrices B, is
σk+1 (see, for example, Theorem 2.5.3 in [4]). Hence, (3.8) guarantees that the algorithm summa-
rized below produces approximations of nearly optimal accuracy.

To construct a rank-k approximation to A, we could apply A to about k random vectors, in
order to identify the part of its range corresponding to the larger singular values. To help suppress
the smaller singular values, we apply A (A>A)i, too. Once we have identified “most” of the
range of A, we perform some linear-algebraic manipulations in order to recover an approximation
satisfying (3.8).

A numerically stable realization of the scheme outlined in the preceding paragraph is the
following. We choose an integer l ≥ k such that (i+ 1)l ≤ n− k (it is generally sufficient to choose
l = k + 2; increasing l can improve the accuracy marginally, but increases computational costs),
and make the following six steps:

1. Using a random number generator, form a real n×l matrix G whose entries are independent
and identically distributed Gaussian random variables of zero mean and unit variance, and
compute the m× l matrices H(0), H(1), . . . , H(i−1), H(i) defined via the formulae

H(0) = AG, (3.11)
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H(1) = A (A>H(0)), (3.12)

H(2) = A (A>H(1)), (3.13)

...

H(i) = A (A>H(i−1)). (3.14)

Form the m× ((i+ 1)l) matrix

H =
(
H(0) H(1) . . . H(i−1) H(i)

)
. (3.15)

2. Using a pivoted QR-decomposition, form a real m× ((i+ 1)l) matrix Q whose columns are
orthonormal, such that there exists a real ((i+ 1)l)× ((i+ 1)l) matrix R for which

H = QR. (3.16)

(See, for example, Chapter 5 in [4] for details concerning the construction of such a matrix
Q.)

3. Compute the n× ((i+ 1)l) product matrix

T = A>Q. (3.17)

4. Form an SVD of T ,
T = Ṽ Σ̃W>, (3.18)

where Ṽ is a real n×((i+1)l) matrix whose columns are orthonormal, W is a real ((i+1)l)×
((i+1)l) matrix whose columns are orthonormal, and Σ̃ is a real diagonal ((i+1)l)×((i+1)l)
matrix such that Σ̃1,1 ≥ Σ̃2,2 ≥ · · · ≥ Σ̃(i+1)l−1,(i+1)l−1 ≥ Σ̃(i+1)l,(i+1)l ≥ 0. (See, for
example, Chapter 8 in [4] for details concerning the construction of such an SVD.)

5. Compute the m× ((i+ 1)l) product matrix

Ũ = QW. (3.19)

6. Retrieve the leftmost m×k block U of Ũ , the leftmost n×k block V of Ṽ , and the leftmost
uppermost k × k block Σ of Σ̃. The product U ΣV > then approximates A as in (3.8) (we
omit the proof; see [5] for proofs of similar, more general bounds).

Remark 25. In the present paper, we assume that the user specifies the rank k of the approximation
U ΣV > being constructed. See [5] for techniques for determining the rank k adaptively, such that
the accuracy ‖A− U ΣV >‖2 satisfying (3.8) also meets a user-specified threshold.

Remark 26. Variants of the fast Fourier transform (FFT) permit additional accelerations; see [5],
[7], and [14]. However, these accelerations have negligible effect on the algorithm running out-of-
core. For out-of-core computations, the simpler techniques of the present paper are preferable.

Remark 27. The algorithm described in the present section can underflow or overflow when the
range of the floating-point exponent is inadequate for representing simultaneously both the spectral
norm ‖A‖2 and its (2i+ 1)st power (‖A‖2)2i+1. A convenient alternative is the algorithm described
in [8]; another solution is to process A/‖A‖2 rather than A.



123

3.4 Out-of-core computations

With suitably large matrices, some steps in Section 3.3 above require either storage on disk,
or on-the-fly computations obviating the need for storing all the entries of the m×n matrix A being
approximated. Conveniently, Steps 2, 4, 5, and 6 involve only matrices having O((i+ 1) l (m+ n))
entries; we perform these steps using only storage in random-access memory (RAM). However,
Steps 1 and 3 involve A, which has mn entries; we perform Steps 1 and 3 differently depending on
how A is provided, as detailed below in Subsections 3.4.1 and 3.4.2.

3.4.1 Computations with on-the-fly evaluation of matrix entries

If A does not fit in memory, but we have access to a computational routine that can evaluate
each entry (or row or column) of A individually, then obviously we can perform Steps 1 and 3 using
only storage in RAM. Every time we evaluate an entry (or row or column) of A in order to compute
part of a matrix product involving A or A>, we immediately perform all computations associated
with this particular entry (or row or column) that contribute to the matrix product.

3.4.2 Computations with storage on disk

If A does not fit in memory, but is provided as a file on disk, then Steps 1 and 3 require
access to the disk. We assume for definiteness that A is provided in row-major format on disk (if
A is provided in column-major format, then we apply the algorithm to A> instead). To construct
the matrix product in (3.11), we retrieve as many rows of A from disk as will fit in memory, form
their inner products with the appropriate columns of G, store the results in H(0), and then repeat
with the remaining rows of A. To construct the matrix product in (3.17), we initialize all entries of
T to zeros, retrieve as many rows of A from disk as will fit in memory, add to T the transposes of
these rows, weighted by the appropriate entries of Q, and then repeat with the remaining rows of
A. We construct the matrix product in (3.12) similarly, forming F = A>H(0) first, and H(1) = AF
second. Constructing the matrix products in (3.13)–(3.14) is analogous.

3.5 Computational costs

In this section, we tabulate the computational costs of the algorithm described in Section 3.3,
for the particular out-of-core implementations described in Subsections 3.4.1 and 3.4.2. We will be
using the notation from Section 3.3, including the integers i, k, l, m, and n, and the m× n matrix
A.

Remark 28. For most applications, i ≤ 2 suffices. In contrast, the classical Lanczos algorithm gen-
erally requires many iterations in order to yield adequate accuracy, making the computational costs
of the classical algorithm prohibitive for out-of-core (or parallel) computations (see, for example,
Chapter 9 in [4]).
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3.5.1 Costs with on-the-fly evaluation of matrix entries

We denote by CA the number of floating-point operations (flops) required to evaluate all
nonzero entries in A. We denote by NA the number of nonzero entries in A. With on-the-fly
evaluation of the entries of A, the six steps of the algorithm described in Section 3.3 have the
following costs:

(1) Forming H(0) in (3.11) costs CA + O(l NA) flops. Forming any of the matrix products
in (3.12)–(3.14) costs 2CA + O(l NA) flops. Forming H in (3.15) costs O(ilm) flops. All
together, Step 1 costs (2i+ 1)CA +O(il(m+NA)) flops.

(2) Forming Q in (3.16) costs O(i2l2m) flops.

(3) Forming T in (3.17) costs CA +O(il NA) flops.

(4) Forming the SVD of T in (3.18) costs O(i2l2n) flops.

(5) Forming Ũ in (3.19) costs O(i2l2m) flops.

(6) Forming U , Σ, and V in Step 6 costs O(k(m+ n)) flops.

Summing up the costs for the six steps above, and using the fact that k ≤ l ≤ n ≤ m, we see
that the full algorithm requires

Con-the-fly = 2(i+ 1)CA +O(il NA + i2l2m) (3.20)

flops, where CA is the number of flops required to evaluate all nonzero entries in A, and NA is the
number of nonzero entries in A. In practice, we choose l ≈ k (usually a good choice is l = k + 2).

3.5.2 Costs with storage on disk

We denote by j the number of floating-point words of random-access memory (RAM) available
to the algorithm. With A stored on disk, the six steps of the algorithm described in Section 3.3
have the following costs (assuming for convenience that j > 2 (i+ 1) l (m+ n)):

(1) Forming H(0) in (3.11) requires at most O(lmn) floating-point operations (flops), O(mn/j)
disk accesses/seeks, and a total data transfer of O(mn) floating-point words. Forming
any of the matrix products in (3.12)–(3.14) also requires O(lmn) flops, O(mn/j) disk
accesses/seeks, and a total data transfer of O(mn) floating-point words. Forming H
in (3.15) costs O(ilm) flops. All together, Step 1 requires O(ilmn) flops, O(imn/j) disk
accesses/seeks, and a total data transfer of O(imn) floating-point words.

(2) Forming Q in (3.16) costs O(i2l2m) flops.

(3) Forming T in (3.17) requiresO(ilmn) floating-point operations, O(mn/j) disk accesses/seeks,
and a total data transfer of O(mn) floating-point words.
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(4) Forming the SVD of T in (3.18) costs O(i2l2n) flops.

(5) Forming Ũ in (3.19) costs O(i2l2m) flops.

(6) Forming U , Σ, and V in Step 6 costs O(k(m+ n)) flops.

In practice, we choose l ≈ k (usually a good choice is l = k + 2). Summing up the costs for
the six steps above, and using the fact that k ≤ l ≤ n ≤ m, we see that the full algorithm requires

Cflops = O(ilmn+ i2l2m) (3.21)

flops,
Caccesses = O(imn/j) (3.22)

disk accesses/seeks (where j is the number of floating-point words of RAM available to the algo-
rithm), and a total data transfer of

Cwords = O(imn) (3.23)

floating-point words (more specifically, Cwords ≈ 2(i+ 1)mn).

3.6 Numerical examples

In this section, we describe the results of several numerical tests of the algorithm of the
present paper.

We set l = k + 2 for all examples, setting i = 3 for the first two examples, and i = 1 for
the last two, where i, k, and l are the parameters from Section 3.3 above. We ran all examples on
a laptop with 1.5 GB of random-access memory (RAM), connected to an external hard drive via
USB 2.0. The processor was a single-core 32-bit 2-GHz Intel Pentium M, with 2 MB of L2 cache.
We ran all examples in Matlab 7.4.0, storing floating-point numbers in RAM using IEEE standard
double-precision variables (requiring 8 bytes per real number), and on disk using IEEE standard
single-precision variables (requiring 4 bytes per real number).

All our numerical experiments indicate that the quality and distribution of the pseudorandom
numbers have little effect on the accuracy of the algorithm of the present paper. We used Matlab’s
built-in pseudorandom number generator for all results reported below.

3.6.1 Synthetic data

In this subsection, we illustrate the performance of the algorithm with the principal compo-
nent analysis of three examples, including a computational simulation.

For the first example, we apply the algorithm to the m× n matrix

A = E S F, (3.24)
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where E and F are m×m and n×n unitary discrete cosine transforms of the second type (DCT-II),
and S is an m× n matrix whose entries are zero off the main diagonal, with

Sj,j =

{
10−4(j−1)/19, j = 1, 2, . . . , 19, or 20

10−4/(j − 20)1/10, j = 21, 22, . . . , n− 1, or n.
(3.25)

Clearly, S1,1, S2,2, . . . , Sn−1,n−1, Sn,n are the singular values of A.

For the second example, we apply the algorithm to the m× n matrix

A = E S F, (3.26)

where E and F are m×m and n×n unitary discrete cosine transforms of the second type (DCT-II),
and S is an m× n matrix whose entries are zero off the main diagonal, with

Sj,j =


1.00, j = 1, 2, or 3
0.67, j = 4, 5, or 6
0.34, j = 7, 8, or 9
0.01, j = 10, 11, or 12

0.01 · n−jn−13 , j = 13, 14, . . . , n− 1, or n.

(3.27)

Clearly, S1,1, S2,2, . . . , Sn−1,n−1, Sn,n are the singular values of A.

Table 1a summarizes results of applying the algorithm to the first example, storing on disk
the matrix being approximated. Table 1b summarizes results of applying the algorithm to the first
example, generating on-the-fly the columns of the matrix being approximated.

Table 2a summarizes results of applying the algorithm to the second example, storing on
disk the matrix being approximated. Table 2b summarizes results of applying the algorithm to the
second example, generating on-the-fly the columns of the matrix being approximated.

The following list describes the headings of the tables:

• m is the number of rows in the matrix A being approximated.

• n is the number of columns in the matrix A being approximated.

• k is the parameter from Section 3.3 above; k is the rank of the approximation being con-
structed.

• tgen is the time in seconds required to generate and store on disk the matrix A being
approximated.

• tPCA is the time in seconds required to compute the rank-k approximation (the PCA)
provided by the algorithm of the present paper.

• ε0 is the spectral norm of the difference between the matrix A being approximated and its
best rank-k approximation.
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Table 1a
On-disk storage of the first example.

m n k tgen tPCA ε0 ε

2E5 2E5 16 2.7E4 6.6E4 4.3E-4 4.3E-4
2E5 2E5 20 2.7E4 6.6E4 1.0E-4 1.0E-4
2E5 2E5 24 2.7E4 6.9E4 1.0E-4 1.0E-4

Table 1b
On-the-fly generation of the first example.

m n k tPCA ε0 ε

2E5 2E5 16 7.7E1 4.3E-4 4.3E-4
2E5 2E5 20 1.0E2 1.0E-4 1.0E-4
2E5 2E5 24 1.3E2 1.0E-4 1.0E-4

Table 2a
On-disk storage of the second example.

m n k tgen tPCA ε0 ε

2E5 2E5 12 2.7E4 6.3E4 1.0E-2 1.0E-2
2E5 2E4 12 1.9E3 6.1E3 1.0E-2 1.0E-2
5E5 8E4 12 2.2E4 6.5E4 1.0E-2 1.0E-2

Table 2b
On-the-fly generation of the second example.

m n k tPCA ε0 ε

2E5 2E5 12 5.5E1 1.0E-2 1.0E-2
2E5 2E4 12 2.7E1 1.0E-2 1.0E-2
5E5 8E4 12 7.9E1 1.0E-2 1.0E-2
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• ε is an estimate of the spectral norm of the difference between the matrix A being approxi-
mated and the rank-k approximation produced by the algorithm of the present paper. The
estimate ε of the error is accurate to within a factor of two with extraordinarily high prob-
ability; the expected accuracy of the estimate ε of the error is about 10%, relative to the
best possible error ε0 (see [6]). The appendix below details the construction of the estimate
ε of the spectral norm of D = A−UΣV >, where A is the matrix being approximated, and
UΣV > is the rank-k approximation produced by the algorithm of the present paper.

For the third example, we apply the algorithm with k = 3 to an m×1000 matrix whose rows
are independent and identically distributed (i.i.d.) realizations of the random vector

αw1 + β w2 + γ w3 + δ, (3.28)

where w1, w2, and w3 are orthonormal 1 × 1000 vectors, δ is a 1 × 1000 vector whose entries are
i.i.d. Gaussian random variables of mean zero and standard deviation 0.1, and (α, β, γ) is drawn at
random from inside an ellipsoid with axes of lengths a = 1.5, b = 1, and c = 0.5, specifically,

α = a r (cosϕ) sin θ, (3.29)

β = b r (sinϕ) sin θ, (3.30)

γ = c r cos θ, (3.31)

with r drawn uniformly at random from [0, 1], ϕ drawn uniformly at random from [0, 2π], and
θ drawn uniformly at random from [0, π]. We obtained w1, w2, and w3 by applying the Gram-
Schmidt process to three vectors whose entries were i.i.d. centered Gaussian random variables; w1,
w2, and w3 are exactly the same in every row, whereas the realizations of α, β, γ, and δ in the
various rows are independent. We generated all the random numbers on-the-fly using a high-quality
pseudorandom number generator; whenever we had to regenerate exactly the same matrix (as the
algorithm requires with i > 0), we restarted the pseudorandom number generator with the original
seed.

Figure 1a plots the inner product (i.e., correlation) of w1 in (3.28) and the (normalized)
right singular vector associated with the greatest singular value produced by the algorithm of the
present article. Figure 1a also plots the inner product of w2 in (3.28) and the (normalized) right
singular vector associated with the second greatest singular value, as well as the inner product
of w3 and the (normalized) right singular vector associated with the third greatest singular value.
Needless to say, the inner products (i.e., correlations) all tend to 1, as m increases — as they
should. Figure 1b plots the time required to run the algorithm of the present paper, generating
on-the-fly the entries of the matrix being processed. The running-time is roughly proportional to
m, in accordance with (3.20).

3.6.2 Measured data

In this subsection, we illustrate the performance of the algorithm with the principal compo-
nent analysis of images of faces.
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We apply the algorithm with k = 50 to the 393,216 × 102,042 matrix whose columns consist
of images from the FERET database of faces described in [10] and [11], with each image duplicated
three times. For each duplicate, we set the values of a random choice of 10% of the pixels to numbers
chosen uniformly at random from the integers 0, 1, . . . , 254, 255; all pixel values are integers from
0, 1, . . . , 254, 255. Before processing with the algorithm of the present article, we “normalized”
the matrix by subtracting from each column its mean, then dividing the resulting column by its
Euclidean norm. The algorithm of the present paper required 12.3 hours to process all 150 GB of
this data set stored on disk, using the laptop computer with 1.5 GB of RAM described earlier (at
the beginning of Section 3.6).

Figure 2a plots the computed singular values. Figure 2b displays the computed “eigenfaces”
(that is, the left singular vectors) corresponding to the five greatest singular values.

While this example does not directly provide a reasonable means for performing face recog-
nition or any other task of image processing, it does indicate that the sheer brute force of linear
algebra (that is, computing a low-rank approximation) can be used directly for processing (or pre-
processing) a very large data set. When used alone, this kind of brute force is inadequate for face
recognition and other tasks of image processing; most tasks of image processing can benefit from
more specialized methods (see, for example, [9], [10], and [11]). Nonetheless, the ability to compute
principal component analyses of very large data sets could prove helpful, or at least convenient.

3.7 An application

In this section, we apply the algorithm of the present paper to a data set of interest in a
currently developing imaging modality known as single-particle cryo-electron microscopy. For an
overview of the field, see [3], [12], and their compilations of references; in particular, [12] provides
an alternative to the algorithm of the present paper that is generally preferable for the specific
application discussed in the present section.

The data set consists of 10,000 two-dimensional images of the (three-dimensional) charge
density map of the E. coli 50S ribosomal subunit, projected from uniformly random orientations,
then added to white Gaussian noise whose magnitude is 32 times larger than the original images’,
and finally rotated by 0, 1, 2, . . . , 358, 359 degrees. The entire data set thus consists of 3,600,000
images, each 129 pixels wide and 129 pixels high; the matrix being processed is 3,600,000 × 1292.
We set i = 1, k = 250, and l = k + 2, where i, k, and l are the parameters from Section 3.3
above. Processing the data set required 5.5 hours on two 2.8 GHz quad-core Intel Xeon x5560
microprocessors with 48 GB of random-access memory.

Figure 3a displays the 250 computed singular values. Figure 3b displays the computed right
singular vectors corresponding to the 25 greatest computed singular values. Figure 3c displays
several noisy projections, their versions before adding the white Gaussian noise, and their denoised
versions. Each denoised image is the projection of the corresponding noisy image on the computed
right singular vectors associated with the 150 greatest computed singular values. The denoising is
clearly satisfactory.
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Fig. 2b. Dominant singular vectors computed for the fourth example (the database of images).
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Fig. 3a. Singular values computed for the E. coli data set.
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Fig. 3b. Dominant singular vectors computed for the E. coli data set.
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Fig. 3c. Noisy, clean, and denoised images for the E. coli data set.
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3.8 Conclusion

The present article describes techniques for the principal component analysis of data sets
that are too large to be stored in random-access memory (RAM), and illustrates the performance
of the methods on data from various sources, including standard test sets, numerical simulations,
and physical measurements. Several of our data sets stored on disk were so large that less than
a hundredth of any of them could fit in our computer’s RAM; nevertheless, the scheme always
succeeded. Theorems, their rigorous proofs, and their numerical validations all demonstrate that
the algorithm of the present paper produces nearly optimal spectral-norm accuracy. Moreover,
similar results are available for the Frobenius/Hilbert-Schmidt norm. Finally, the core steps of the
procedures parallelize easily; with the advent of widespread multicore and distributed processing,
exciting opportunities for further development and deployment abound.

Appendix

In this appendix, we describe a method for estimating the spectral norm ‖D‖2 of a matrix
D. This procedure is particularly useful for checking whether an algorithm has produced a good
approximation to a matrix (for this purpose, we choose D to be the difference between the matrix
being approximated and its approximation). The procedure is a version of the classic power method,
and so requires the application of D and D> to vectors, but does not use D in any other way.
Though the method is classical, its probabilistic analysis summarized below was introduced fairly
recently in [2] and [6] (see also Section 3.4 of [14]).

Suppose that m and n are positive integers, and D is a real m × n matrix. We define ω(1),
ω(2), ω(3), . . . to be real n× 1 column vectors with independent and identically distributed entries,
each distributed as a Gaussian random variable of zero mean and unit variance. For any positive
integers j and k, we define

pj,k(D) = max
1≤q≤k

√
‖(D>D)j ω(q)‖2
‖(D>D)j−1 ω(q)‖2

, (3.32)

which is the best estimate of the spectral norm of D produced by j steps of the power method,
started with k independent random vectors (see, for example, [6]). Naturally, when computing
pj,k(D), we do not form D>D explicitly, but instead apply D and D> successively to vectors.

Needless to say, pj,k(D) ≤ ‖D‖2 for any positive j and k. A somewhat involved analysis
shows that the probability that

pj,k(D) ≥ ‖D‖2/2 (3.33)

is greater than

1−
(

2n

(2j − 1) · 16j

)k/2
. (3.34)

The probability in (3.34) tends to 1 very quickly as j increases. Thus, even for fairly small j,
the estimate pj,k(D) of the value of ‖D‖2 is accurate to within a factor of two, with very high
probability; we used j = 6 for all numerical examples in this paper. We used the procedure of this
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appendix to estimate the spectral norm in (3.8), choosing D = A − U ΣV >, where A, U , Σ, and
V are the matrices from (3.8). We set k for pj,k(D) to be equal to the rank of the approximation
U ΣV > being constructed.

For more information, see [2], [6], or Section 3.4 of [14].
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Chapter 4

A randomized MapReduce algorithm for computing the singular value
decomposition of large matrices

4.1 Introduction

Randomized algorithms for computing matrix decompositions have shown promise for pro-
cessing massive data sets in distributed computing environments. By reorganizing the computa-
tions, they provide fast and accurate methods that require very few passes through the data and
are therefore well suited for communication constrained environments. Single core, serial versions
of the methods have been tested on large data sets Chapter 2 and out-of-core variants have proved
successful on even larger data sets Chapter 3. We now take one step further by considering a fully
distributed computing environment with multiple processors and distributed storage to continue
the progression of processing ever larger data sets.

This chapter describes modifications of the algorithms in Chapter 2 necessary to adapt them
to a distributed computing environment involving a large number of processors, distributed memory,
and slow communication between nodes. The implementation leverages the Hadoop distributed
computing framework and the MapReduce programming model. We provide a thorough discussion
of this environment in order to understand settings and capabilities of the algorithm. A distributed
orthogonalization scheme is described that uncouples memory requirements from both dimensions
of the input matrix. We compare the randomized algorithm to a Lanczos solver also implemented
in the same environment and show that randomized algorithms out perform classical techniques
in terms of speed, accuracy and scalability. Finally we present a number of experiments with
extremely large sparse matrices using Hadoop clusters on Amazon’s Elastic Compute Cloud.

4.2 Problem Formulation

The problem we wish to solve is to compute approximate rank k singular value decompositions
of extremely large matrices. In particular, matrices that are so large the approximate factors are
even too large to fit into the RAM of a single computer. For matrix A, the problem is solved
by constructing a suitable low dimensional space that approximates the range of A. We find an
orthonormal matrix Q such that

‖A− QQTA‖ ≈ min
rank(X)≤k

‖A− X‖ (4.1)
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In other words, the columns of Q form an orthonormal basis for the approximate range of A.
Matrix Q must be constructed with distributed techniques since we assume it is too large to fit in
memory. By partitioning the input matrix A into blocks of s rows, memory requirements are kept
proportional to sk. To form the approximate rank k singular value decomposition, we project A
onto the low dimensional subspace spanned by the columns of Q. From the projected matrix we
form a small O(k) dimensional matrix that fits comfortably in memory and classical methods are
used to complete the factorization.

Randomized sampling techniques are used to construct the matrix Q. That is, given a target
rank k and an oversampling parameter p, draw an n×k+p random matrix Ω and form the product
Y = AΩ. The range of Y closely approximates the range of A. Orthogonalizing the columns of Y
produces the m× k+ p matrix Q of equation (4.1). The key observation of randomized methods is
that p does not need to be large to produce nearly optimal results.

4.3 Algorithm overview

The Stochastic Singular Value Decomposition is composed of Algorithms 4.4 and 5.1 of
Chapter 2. Additionally, modifications are made to adapt the method to a distributed computing
environment which we describe in §4.6 and §4.7.

Algorithm 4.3: Stochastic Singular Value Decomposition

Given an m× n matrix A, a target rank k, an oversampling parameter p,

and a number of power iterations q, the following algorithm computes an

approximate rank k singular value decomposition A ≈ UΣVT .

Draw an n× k + p random matrix Ω.

Form the product Y = AΩ.

Orthogonalize the columns of Y → Q.

for i = 1..q

Form the product Y = AATQ.

Orthogonalize the columns of Y → Q.

end

Form the projection B = QTA.

Compute the factorization ŨΣ2ŨT = BBT .

Solve ṼT = Σ−1ŨTB.

Set U = QŨ( : , 1: k).

Set V = Ṽ( : , 1: k).
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4.4 Large scale distributed computing environment

MapReduce MR is a functional programming abstraction. Google popularized its use in
large scale distributed computing [8] and it is now widely available in open source as Hadoop. Its
power comes from distilling the complexities of parallel programming down to two operations: a
mapM and a reduce R. We provide some details of Hadoop and MapReduce to understand what
is provided by the framework and the abstraction level we can use to design algorithms. First,
we will cover the MapReduce programming model and how algorithms can be cast into these two
simple operations. Then by confining operations and communication to the MapReduce model, we
discuss how Hadoop is able to automatically take care of the details of the distributed computation.

4.4.1 MapReduce

MapReduce MR is a programming model. Let us separate this from Hadoop which is the
implementation of the MapReduce programming model or Mahout for example which is a software
library. It is a way to organize algorithms which gives control to the user to define the map and
reduce functions while passing many of the details and complications of distributed computation
to the framework to handle. A MapReduce job actually consists of three phases:

(1) map

(2) shuffle and sort

(3) reduce

with the complexities of (2) handled by the framework. This phase is also the only chance for
global communication. Another important point is that the map function is split into potentially
thousands of tasks performing the same function on small separate chunks of the data. The flow
is then to operate locally on the data, communicate, then operate with a different function to
complete the job. At this point the map-reduce terminology is not clear and we can instead think
of the job as:

input 7→ (1) 7→ (2) 7→ (3) 7→ output

data process phase communicate process phase data

The abstraction is of course not limited to just one job. Output of one MapReduce job becomes
the input of another and in this way, MR jobs can be chained together to accommodate complex
algorithms. The main restriction being that in order for the framework to handle communication,
the user needs to define the algorithm in terms of:

local 7→ communi- 7→ local 7→ communi- 7→ etc . . .

computation cation computation cation
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To give meaning to the terms map and reduce we consider the data format required. Data is
always in a < key, value > pair known as a record. For example, a corpus of documents could have
each document keyed by a unique integer id and the value is the body of the document, or a matrix
could be keyed by row number with each row as the value. The job of the map phase is then to
assign intermediate keys to the data so that all the values associated with the same key are mapped
together to the same reducer. The reducer is commonly used to aggregate data thus reducing many
values associated with the same key down to one. Just as it is possible for algorithms to chain
together many MapReduce jobs, we are also free to do simply a map only job to achieve a parallel
batch processing task. For example, with the corpus of documents we could translate each one to
Russian with each map task working a small subset of documents. No reducer or shuffling is needed
here and the mappers would simply write the translated documents back to the filesystem.

A single MapReduce cycle is quite limiting. Not very many problems can be solved if we
only allow one communication phase. Starting from the bottom up we define the organization of
work that is capable of executing more complex algorithms.

Tasks The basic work unit. Computation inside a task is similar to computing on a single com-
puter. In fact, a separate Java Virtual Machine (JVM) is used for each task so that the
outside world (other tasks) are invisible to us inside the task. Here we do local compu-
tation. There are two types of tasks: map and reduce, and they differ in how the input
data is presented to them. Generally, map tasks perform computation that is possible via
a sequential read of the input data, and reduce tasks do computation on intermediate data
or a reordering of the input data.

Jobs Basic operations. A job is composed of all the identical tasks operating on different chunks
of data in parallel. As a programmer, one specifies the functionality of the job and the
framework handles the details of executing and coordinating the tasks. Generally a job
consists of both map and reduce stages, a MapReduce job, but there can be map only jobs
as well.

Program (Algorithm) By putting together the basic operations and combining jobs we can build
complex programs that have the desired functionality at a massive scale. Jobs can be
executed in parallel or sequentially. The output of one job can be the input of another, or
separate data can be processed by each job.

We now, as users, understand the contract to adhere to: we are provided with chunks of input
data in key-value pairs, we provide a map function that operates locally and determines intermediate
key-value pairs, we finally provide a reduce function that operates on all values associated with
the same intermediate key. Following this model allows Hadoop to handle much of the burden of
distributed computations and allows the user to focus on the functionality of their algorithms. Lets
look at how Hadoop accomplishes this.

4.4.2 Hadoop

Hadoop is a framework for large scale distributed computing that handles the complexities
of parallelization, fault tolerance, locality optimization and load balancing [2]. By following the
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MapReduce contract outlined above the user is free to focus on functionality of the program while
the framework handles the complexities of managing many machines working together. The confine-
ment of communication to the shuffle and sort phase allows Hadoop to gracefully manage machine
failures which is a common occurrence while orchestrating potentially thousands of computers.

A typical Hadoop cluster, as of 2010 [20], is composed of commodity computers similar to
these specs:

Processor 2 quad-core 2-2.25 GHz CPUs

Memory 16-24 GB ECC RAM

Storage 4 × 1TB SATA disks

Network Gigabit Ethernet

Commodity does not mean cheap, rather just that the machines are not special purpose and readily
available. These give the best performance for the price. They are arranged in a master slave
relationship with the master coordinating tasks, data flow and scheduling of the slaves which
perform the actual work. Two groups of master slaves are at play here.

The first group provides the locality optimization and load balancing characteristics of
Hadoop. This group manages the location of the data which is stored locally on each machine.
There is no central data store instead the data is spread out across the cluster. Each datanode
(slave) communicates to the namenode (master) what data it is storing on its disk. When execut-
ing a program with input data spread across the cluster, the namenode can be queried to find out
where the data resides and the map task can be executed on the datanode holding its chunk of
the input data. This idea of bringing the computation to the data, and not the other way around,
saves bandwidth which is the scarcest resource in a distributed environment.

The second group provides the parallelization and fault tolerant characteristics of Hadoop
by managing the execution of a program. The jobtracker (master), equipped with the locations of
the data from the namenode, assigns tasks to the tasktrackers (slaves). The jobtracker periodically
pings each tasktracker for information about progress of the tasks it was assigned. If the tasktracker
fails to respond or is slow due to other competing processes on the machine or faulty hardware,
the task can be killed and rescheduled to another tasktracker. The actual computation of a map or
reduce function is done by a child process spawned and managed by the tasktracker. It is important
to note this step since each child process runs in its own separate JVM. Sharing information or
variables between child processes is impossible which supports our earlier conclusion that the only
communication available is during shuffle and sort and not possible in a map or reduce phase.

Both masters, the namenode and the jobtracker are located on the same machine while each
slave node runs a datanode, tasktracker and both map and reduce child processes. The treatment
of Hadoop and MapReduce given here is by no means comprehensive. A full understanding of the
system requires hands on experience to gain intuition about how this complex system behaves,
good starting references are the Hadoop wiki [2] and [20].
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4.4.3 Mahout

Apache Mahout is an open source machine learning library [3]. Mahout utilizes the MapRe-
duce programming model and Hadoop to implement scalable, distributed algorithms. Algorithms 4.4
and 5.1 of Chapter 2 (pages 26,29) were incorporated into Mahout 0.5 as the Stochastic Singular
Value Decomposition, or ssvd. Also available in Mahout is a distributed Lanczos SVD algorithm
described in §4.8. With both methods implemented in Mahout we have a prime environment to
study characteristics of the algorithms on a distributed system.

4.5 A MapReduce matrix multiplication algorithm

As an introduction to MapReduce algorithms and for later use in ssvd and Lanczos algo-
rithms, we present two matrix multiplication schemes. We make an effort in the formal descrip-
tions of MapReduce algorithms to avoid task indexing as much as possible to keep an uncluttered
presentation. The verbal descriptions accompanying the algorithms should clarify in more detail
how they operate.

An important operation when dealing with Krylov methods and the ssvd is clearly the matrix
vector product.

y = Ax (4.2)

Equally important when decomposing non-symmetric matrices of irregular dimension is

y = ATAx (4.3)

Luckily both of these operations can be performed in MapReduce in a distributed manner with
just a single pass over the input matrix A. A variety of ways to do these products is explained in
[17], but we outline the one convenient to the way the data is stored. Matrices are stored in row
major order where each row is a record keyed by row index and valued with the row vector

< 1, [a11 a12 . . . a1n] >
< 2, [a21 a22 . . . a2n] >

...
< m, [am1 am2 . . . amn] >

(4.4)

Records are stored in a binary sequence file. Mahout has further specialized matrix formats to
optimize for sequential access to the elements and have a low memory footprint [18], much smaller
than a native Java array structure. Hadoop then partitions the records (rows) into groups of a size
determined by the input split, say 128MB, and computation for a particular group is brought to the
data rather than the data being sent around the cluster on the network. Therefore, if we can restrict
our matrix vector product to only use rows from a particular block at a time, then the computation
will use local I/O and not burden the network, the scarcest resource. For equation (4.2) this is
simple and requires only a map phase to complete. Assuming we have M input splits so that blocks
of rows A1,A2, . . . ,AM are distributed around the cluster

Ax =


A1x

...
Aix

...
AMx

 =


y1
...
yi
...

yM

 (4.5)
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Each map task operates only on one block of rows Ai and outputs the corresponding section of y,
yi. The full vector x needs to be provided to each of the M tasks. This will incur O(Mn) network.

Algorithm 4.5: Matrix Multiplication Ax

This algorithm forms the product y = Ax assuming A is stored in row

major format.

Map

Iterate Arow

yrow = 〈Arow, x〉
output y

Equation (4.3) can also be done with one pass through A with the help of a reduce phase.
Conveniently and by no accident, the row major format of A begs an outer product

C =
M∑
i=1

ATi Ai (4.6)

which requires access to only one row (or block) of A at a time. The product Cx is then a sum of
column vectors

Cx =
∑M

i=1 ATi (Aix)

=
∑M

i=1 v
(i)

= y

(4.7)

Each map task then computes a v(i) using only its particular block of A, and outputs a key value
pair

< j, v
(i)
j > (4.8)

which is the jth entry of the partial sum vector v(i). If R reducers are used, each reducer will
receive all the partial sum entries for about 1

R rows so it can complete the sums and output the

entries of y. In Algorithm 4.5 we refer to v(i) as ypartial. In addition to the input vector x needing
to be replicated to each node, we have another O(Mn) transfer of data to shuffle and sort for the
reducers. Of course we are not limited to x being a one dimensional vector. If x ∈ Rn×k is a tall
skinny matrix, the procedure is the same except we pay extra data movement costs: O(Mnk) for
equation (4.2) and 2 ·O(Mnk) for equation (4.3). We still key by row number with the rows of the
partial sums as values.



146
Algorithm 4.5: Matrix Multiplication ATAx

This algorithm forms the product y = ATAx assuming A is stored in row

major format.

Map

Iterate Arow

ypartial = 〈Arow, x〉 · ATrow
output ypartial

Reduce

y =
∑

ypartial
output y

The notion of block matrix operations is only theoretical in Hadoop, at least for the operations
at hand. Records (rows) are read into the mapper one by one so the block outer product of
equation (4.7) is computed row by row using a combiner to compute the partial sums. If an entire
block is needed at one time, the user code needs to allocate a buffer to hold the incoming rows.

Remark 29. An optimization to eliminate data transfer in equation (4.2) is to generate x on the
fly, or in our case, generate a random matrix Ω on the fly. To form a row of Y we sum outer
products of row Ai and Ω.

Y(i, :) = A(i, :)Ω
=

∑
j A(i, j)Ω(j, :)

(4.9)

If A is sparse, then the sum can be substantially smaller than n terms. The elements of Ω are
computed individually given a seed term and the (i, j) index of Ω.

4.6 Distributed Orthogonalization

The two major operations of the ssvd are matrix multiplication as described in §4.5 and the
orthogonalization of Y = AΩ. The following section will describe the distributed orthogonalization
scheme found in [14, 16].

4.6.1 Givens Rotations

A Givens rotation G(i, k, θ) is an orthogonal transformation of matrix Y effecting just rows
(or columns) i and k of a matrix

GTY YG
rows columns

(4.10)
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Given rotations are attractive for distributed orthogonalization because of this property since it
allows one to operate on distinct chunks of a matrix in parallel. For any element ykp in row Yk we
can zero it out by choosing θ such that[

cos θ sin θ
− sin θ cos θ

]T [
yip
ykp

]
=

[
ỹip
0

]
(4.11)

In practice, θ is not computed in favor of the values c = cos θ and s = sin θ. The transformation is
applied to both rows, independent of the other rows of Y, giving a linear combination

Ỹi = cYi − sYk
Ỹk = sYi + cYk

where ...

Ỹk = [ỹk1, . . . , 0kp, . . . , ỹkn]

(4.12)

It is easy to see that application of a Givens rotation takes only time linear to the number of
elements in the row. A key observation of equation (4.12) is if both rows share leading zeros,
then they are preserved by the linear combinations in the new vectors. This property admits a
Cantor-esque pattern of obtaining a QR factorization. The rotations are of the form GT (i− 1, i, θ)
so always two adjacent rows are operated on at once.

X X X X X

X X X X X

X X X X X

X X X X X

X	   X	   X X X

Figure 4.1: Cantor pattern

The process of Givens QR orthogonalization produces a sequence of rotations GTj that we

can accumulate on the identity matrix to get QT . Of course for a tall skinny r× ` matrix Y we will
want the thin QR factorization and avoid ever having the large r× r matrix Q in memory. We can
do this by accumulating on a slice of the identity one of two ways

QT
thin = [I`×` 0r−`×`] ·GTN · · ·GT2 GT1 (4.13)

or
QT = GTN · · ·GT2 GT1 · Ir×r
QT
thin = (Q (:, 1 : `))T

(4.14)

Equation (4.13) can form the thin Q directly but requires that the rotations be applied in reverse
order so that they need to be saved and applied at the end. Equation (4.14) can be done on the fly
to avoid storing all the rotations. It is a bit misleading that it looks like we need to intermediately
form the full dense Q. Using the pattern of Figure 4.1, equation (4.14) can be done in O(r`) storage.
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4.6.2 Overview

Before we launch into the details of the orthogonalization scheme, it is instructive to first take
a high level and concise view and point out some key features. The method will be made precise
in the sections that follow. There are two schemes at play: the streaming QR algorithm forms the
initial factorizations of blocks of Y, secondly, a merge phase glues together the individual factor-
izations to provide a thin QR factorization of the entire matrix Y. The granularity is determined
by 3 factors

r the size of the initial factorizations.

s the number of rows in the input split handed to each mapper.

M number of map tasks.

The number of rows s handed to each map task must be at least r so that s > r. Assume
that s = 3r. Within each map task, the streaming algorithm computes thin QR factorizations of
sub blocks of Yi  Y

(1)
i

Y
(2)
i

Y
(3)
i

 =

 Q1R1

Q2R2

Q3R3

 =

 Q1

Q2

Q3

s×3`  R1

R2

R3

3`×`

(4.15)

The merge algorithm then glues together the 3 pieces in the map task to form the thin factorization
for Yi. [

R
]`×` Q1 ← ←

← Q2 ←
← ← Q3

 R1

R2 ↑
R3 ↑

 =⇒

 Q

s×` (4.16)

The output of each map task is a thin QR factorization of a block Yi. The merge is performed
again with these factorizations to glue together the final factorization of Y. To recap

(1) In each mapper, the streaming algorithm produces z = b src factorizations of order r.

(2) The order r factorizations in each mapper are glued together by merge to form a factor-
ization of order s.

(3) The M order s factorizations from each mapper are glued together by another merge to
form the final factorization of order m.

The trick to all of this is that each of the Q’s in equation (4.16) can be migrated to the left
independently of each other so that we only need to have one Q in memory at a time. We now
describe in detail the streaming and merge algorithms.
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4.6.3 Streaming QR

The streaming QR algorithm takes place inside each map task. For simplicity we drop the
subscript that assigns blocks of Y to each mapper and just refer to block Yi as Y. In §4.5 we
pointed out that the product Y = AΩ is actually done row by row so that rows of Y become
available one at a time. The streaming QR capitalizes on this and starts factorizing as soon as rows
become available. One caveat is the order they become available. Following the Cantor pattern of
Figure 4.1 we would start with the last row first. The remedy is to do the factorization ‘upside
down’. The order of rows only effects Q,

Q(j, :)R = Y(j, :) (4.17)

R is independent of row ordering. Taking this into consideration, we simply reverse the row ordering
of Q when we are finished. For simplicity, assume that rows of Y are given in ‘correct’ order from
last to first.

The key to the streaming QR is a sliding buffer of height ` + 1. Assume we have collected
` + 1 rows of Y and have zeroed out all entries below the diagonal leaving a row of zeros in the
bottom of R.


x x x

0 x x

0 0 x

0 0 0

 =

 R`×`

01×`

 (4.18)

As the next row of Y is computed, append it to the top and discard the bottom row of zeros.
Continue the Cantor pattern by zeroing out the sub-diagonal.


y y y

x x x

0 x x

0 0 x

→


x x x

0 x x

0 0 x

0 0 0

 (4.19)

Following equation (4.14), as each Givens rotation is computed and applied to Y, we also
accumulate QT by applying each rotation to the identity matrix of order r. To avoid collecting
a dense r × r matrix, just as we discard the bottom zero row of the buffer, we can also discard
the bottom row of QT . This is justified since the thin factorization will contain only the first `
rows of QT (leading ` columns of Q), and the discarded row would not have been involved in any
more rotations. Additionally, since no rotation has touched rows above the buffer, the upper part
of QT need not be carried around since it is still just the identity. In this way we keep memory
requirements for QT to O(r`).
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The computation continues until r rows have been processed. Q and R are flushed to disk
and a new factorization is started. There are z = b src such factorizations output from streaming
QR

Q R = Y
r × ` `× ` r × ` (4.20)

4.6.4 Merging factorizations

The merging algorithm described here will be applied twice to obtain a final QR factorization
of the full matrix Y. First, it is applied to the results of the streaming QR. Here the z order r
factorizations are merged into one order s factorization per mapper. Then a second pass merges
each of the M order s factorizations into a final order m QR factorization of Y.

4.6.4.1 Merge R

The basic building block is the merging of two R’s by pushing the mass of the lower block up
into the top block, creating a block of zeros that can be discarded.[

R1

R2 ↑

]
7→
[

R
0

]
(4.21)

The merge follows the Cantor pattern on the bottom R2, and traces along the diagonal in the top
R1.

x x x x x x x x x x x x

0 x x 0 x x 0 x x 0 x x

0 0 x 0 0 x 0 0 x 0 0 x

x x x 0 x x 0 0 x 0 0 0

0 x x 0 0 x 0 0 0 0 0 0

0 0 x 0 0 0 0 0 0 0 0 0

Figure 4.2: R merge sequence

4.6.4.2 Merge QT

Conceptually, it is best to consider accumulating QT so we can do it in a row-wise fashion
similar to R. (In practice, rows of Q are accumulated to facilitate the outer product QTA.) We would
like to apply the same sequence of rotations obtained from equation (4.21) to the corresponding Q
matrix [

QT
1

QT
2

]
→
[

Q̂T
1 Q̂T

2

X X

]
(4.22)
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Unfortunately, this quadruples the O(r`) memory requirement. Luckily we can side step the bloated
memory by applying the sequence twice to the two Q’s independently, once to get Q̂T

1 and again to
get Q̂T

2 . Assume the sequence obtained in equation (4.21) is GTseq, then

GTseq

[
QT

1

0

]
=

[
Q̂T

1

X

]
and GTseq

[
0

QT
2

]
=

[
Q̂T

2

X

]
(4.23)

which produce the same Q hat’s as in equation (4.22) using only 2 · O(r`) memory. Consider the
case of merging 3 factorizations which would naively require 9 times the memory. The algorithm
takes pairs so that first we merge R2 into R1 to form R̃, then merge R3 into R̃.[

R1

R2 ↑

]
→
[

R̃
0

]
then

[
R̃
R3 ↑

]
→
[

R
0

]
GTseq1 GTseq2

(4.24)

To compute Q̂’s we apply the sequence GTseq2G
T
seq1 to the corresponding rows. For example, Q̂T

2 is
computed by

GTseq1

[
0

QT
2

]
→
[

Q̃
X

]
then GTseq2

[
Q̃
0

]
→
[

Q̂T
2

X

]
(4.25)

To compute Q̂T
3 , notice that GTseq1 will be applied to a block of zeros

GTseq1

[
0
0

]
→
[

0
0

]
then GTseq2

[
0

QT
3

]
→
[

Q̂T
3

X

]
(4.26)

Here we can skip applying GTseq1 and merge QT
3 directly from the third block to the top. To compute

Q̂T
1 notice again we have a double block of zeros. If our sequence of Givens rotations we formed

from merging the R’s in a different order, we could avoid applying both sequences and apply only
the second one. For clarity, redefine the GTseq’s as[

R2

R3 ↑

]
→
[

R̃
0

]
then

[
R1

R̃ ↑

]
→
[

R
0

]
GTseq1 GTseq2

(4.27)

Now we can compute Q̂T
1 as

GTseq2

[
QT

1

0

]
→
[

Q̂T
1

X

]
(4.28)

Finally, consider merging many factorizations together. We take 7 for a small example but this
process could easily extend to 100’s of blocks. When computing Q̂T

4 we will have blocks of zeros on
the top and bottom. If we merge R2,R3 into R1 and likewise merge R6,R7 into R5, then we only
need apply two sequences of rotations to QT

4 to obtain Q̂T
4 .

There is a further optimization that saves us re-merging the top R’s. Consider computing
Q̂T

5 . Following the pattern in equation (4.3) we would merge R2,R3,R4 into R1 to create R]. But
we already computed the merge of R2,R3 into R1. Therefore, we can take the previous R], call it
R](4) and create R](5) by simply merging in R4.

R](i) = R](i−1) ← Ri−1 (4.29)
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0
0
0

QT
4

0
0
0


,



R1

R2 ↑
R3 ↑
R4

R5

R6 ↑
R7 ↑


→



0
0
0

QT
4

0
0
0


,



R]

0
0

R4

R[

0
0


seq1
→



0
0
0

Q̃T

X
0
0


,



R]

0
0

R\

0
0
0


seq2
→



Q̂T
4

0
0
0
0
0
0


,



R
0
0
0
0
0
0



Figure 4.3: Q merge

A similar optimization can be done with R[ though it is not done in practice. The Ri’s reside in an
iterator that feeds them one by one in order R1,R2, . . .. If we had access to them in reverse order,
we would compute R[ by merging the R’s into R7 in reverse order.

R[(1) = R7 ← R6,R5, . . . ,R2 (4.30)

To compute R[(2) we can just undo the merge of R2. In general,

R[(i) = R[(i−1) undo Ri (4.31)

To undo the merge, if
. . . GT3 G

T
2 G

T
1 (4.32)

is the sequence that merged Ri, then
G1G2G3 . . . (4.33)

will undo the merge. This requires that we save the rotations in factored form, which up until this
point has not been necessary since we can also recompute the rotations each time we need them.

4.6.5 Analysis

As pointed out in §4.6.2, the streaming QR and the first phase merge are done in serial. Since
there is extra work involved in the merge we will want to examine the cost and benefits of doing
this two phase approach in serial as opposed to just using the streaming QR to construct the full
order s factorization. We first discuss a direct factorization of the full s× ` matrix, then we discuss
the non-optimized merge and finally the optimizations available to speed this up.

Application of a Givens rotation involves just two rows and can be done in time linear to
the number of elements in each row. Computing each c and s is done in constant time. For a tall
skinny s× ` matrix, O(`2s+ `s) flops are required to compute R. Accumulating Q we apply ∼ `s
rotations to an s × s identity requiring O(`s2) flops. The same conditions apply to the streaming
QR except on smaller order r matrices. The catch of course is that we do the process z times.

To merge two R’s as in equation (4.21) requires O(`3) flops and to merge QT as in equa-
tion (4.28), or rather migrate a QT upwards, requires O(`2r) flops. The total for one merge step
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method flops memory

direct O(`s2 + `2s) O(`s)

streaming z ·O(`r2 + `2r) O(`r)

naive z ·O(z`2r + z`3) O(`r)

R] z ·O( z2`
2r + z

2`
3) O(`r)

R], R[ z ·O(2`2r + 4`3) O(`s)

distributed O( z2`
2r + z`3) O(`r)

Table 4.1: Flops and memory requirements for QR methods. s is the number of rows per input
spit, r is blocksize (parameter -r), ` = k + p and z = b src is the number of blocks. For the second
phase merge scheme set s← r and M ← z.

then involves O(`2r+`3) flops. A naive merge scheme would not involve pre-merging any R’s before
migrating QT . For each of the z blocks we pay O(z`3) flops for merging R. To migrate QT then
involves on average z/2 migrations for a total of O(z`2r) flops. Again we need to repeat this for
each of the z blocks giving z ·O(z`2r + z`3) flops for the total merge.

The optimizations in equations (4.29) and (4.31) provide some speed-up of the naive merge
scheme. Recursively forming R] as in (4.29) cuts out a factor of 2 but unfortunately does not change
the order of the method. We still need z · z/2 total merges. If we also form R[ via equation (4.31)
we get the scheme in Figure 4.3 (with the exception that R],R[ are computed recursively at step
(1) instead of from scratch as it appears in Figure 4.3). This scheme requires 4 merges to form
R[,R],R\ and R, and 2 merges to form Q̃T and Q̂T for each of the z blocks. Table 4.1 summarizes
the cost of the methods discussed.

The direct method and the streaming QR plus naive merge have the same asymptotic scaling
if done in serial, O(`s2). (To see this take z = r/s and streaming plus naive from Table 4.1. Let
r ↗ s or r ↘ `.) Intuitively, each method needs to zero s`− `2/2 elements in matrix Y and so long
as we do not ‘un-zero’ a number that has already been zeroed, the only difference in methods is
the pattern of zeroing entries. Equality of methods assumes that rotations are computed once to
zero entries in Y and stored costing O(s`) memory, then applied to form Q. To avoid using extra

memory we can recompute the sequence for each merge costing an additional O( s
2`3

r2
). Assuming

r ∼ `
3
2 , recomputing the rotations nearly doubles the work. The R] optimization cuts the entire cost

in half, both the expense of recomputing rotations and the cost of migrating Q’s upward bringing
the methods back on equal footing flops-wise. Note the merge scheme still has the advantage of
much reduced memory. The R],R[ optimization cuts the quadratic dependence on s, the largest
dimension, to give O(s`2). It is not a total panacea though. Assuming a serial computation we can
recursively accumulate R] without extra memory. But for R[ we need access to all the rotations so
they can be undone one by one, thus increasing memory cost. Finally, in a distributed environment
we cannot even recursively compute R]. However we can form R] and R[ from scratch as in Figure 4.3
and thus migrate Q only a constant number of times. Either way, a carefully implemented merge
scheme is linear in the largest dimension s which is much better than a direct QR computation.
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4.6.6 Q-less optimizations

A downside of the above scheme is recomputing and applying the rotations necessary to form
Q explicitly. Although, numerical experiments indicate that the orthogonalization process takes a
very small percentage of total execution time. Ultimately, we need to form the matrix BT which
we can do by simulating the action of Q via

BT = ATQ
= AT

(
YR−1

) (4.34)

The Tall and Skinny QR algorithm of [6] presents a very similar technique to what we have described
in §4.6, with the exception that Q is not formed explicitly.

Another option is to compute the Cholesky factors of the symmetric matrix YTY = RTR.
Partial sums

(
YTi Yi

)
can be formed in a distributed fashion and sent to a sinlge reducer for summing.

The R factor is formed in the reducer and is the same factor of the QR decomposition of Y. Accuracy
issues can arise in truely low-rank situations since σ

(
YTY

)
= σ2 (Y). If Y captures all the action

of a low-rank matrix, then the trailing singular values will be small and become even smaller
when squared. In practical situations this is of little concern. Most large matrices are very noisy
with slowly decaying singular values. Methods that use Q-less optimizations are currently under
development in Mahout.

4.7 SSVD MapReduce Implementation

We now describe the Stochastic Singular Value Decomposition algorithm, ssvd, in term of its
constituent MapReduce jobs. This section closely follows the work of [12, 15, 13].

Algorithm 4.7: Stochastic Singular Value Decomposition

The ssvd algorithm produces rank k matrices U,V,Σ that form an approx-

imate singular value decomposition of matrix A.

Q-job

Bt-job

for i = 1..q

ABt-job

Bt-job

end for

Serial step:

compute ŨΣ2ŨT = BBT

U-job

V-job
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4.7.1 Q-job

Q-job is a map only job that performs the multiplication, AΩ, and does the first two phases
of orthogonalization. Input is a block of s rows Ai and output is a thin QR factorization of the
corresponding block Yi. The number of rows s provided each mapper can vary if the density pattern
is non uniform across the rows. Recall, the input splits are determined by size in megabytes. The
rows are fed in one by one and multiplied by Ω to give a row of Yi as in Remark 29. As rows
of Yi become available they are sent to the streaming QR algorithm of §4.6.3 where an order

r factorization is computed from the sub-block Y
(j)
i for j = 1, . . . , z. Once the z factorizations

have been computed, the merge algorithm of §4.6.4 glues them together to output a thin QR
decomposition for Yi.

Algorithm 4.7.1: Q-job

This algorithm forms the product Y = AΩ, performs the streaming QR

factorization and the first level merge.

Map

Iterate Arow

Yrow = Arow · Ω
Yrow → streamingQR

output Qr×`
i and R`×`i .

merge{Qi,Ri}zi=1

output Qs×`R`×`

Though we described in §4.6.4.2 how to accumulated rows QT , we actually want to accumulate
rows of Q here. The purpose being to set up the projection step in the next job with conveniently
oriented vectors. Matrices are always written row-wise so to obtain columns of a matrix without
incurring a transpose step, write the matrix as rows of the transpose.

4.7.1.1 Cost and memory requirements

Each of the M map tasks performs the following work:

(m1) matrix multiply Arows · Ω O(sn`)
(m2) z streaming QR z ·O(`r2 + `2r)
(m3) z merges with R] optimization z ·O( z2`

2r + z
2`

3)

If A is sparse then the dominant cost will be merging the dense blocks of intermediate Q
matrices in (m3). Also as ` grows, cost of recomputing and applying Givens rotations to the R
matrices becomes a large factor. Memory requirements are merely O(r`) independent of either
dimension of the matrix or the input split size s. Rows of the input matrix are used one by one so
we avoid having the full block of input in memory.
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4.7.2 Bt-job

Bt-job has a map and reduce phase. The front end of the map job finalizes the orthogonal-
ization started in Q-job. Let Q̃i, R̃i be the output of map task i from Q-job. Then for map task
i in Bt-job, we read Q̃i and R̃1, . . . , R̃M from disk in order to form the final block of Q. Now we
begin to read in the rows of matrix A to form ATQ = BT via outer product. Partial sums are sent
in blocks to the reducers to be summed up. If this Bt-job is the final phase, meaning that there are
no power iterations or that this is the last iteration of them, we can output the upper triangular
partial sums of

(
BBT

)
partial

using only the block BTi in memory. These partial sums are collected
and summed during the serial step.

Algorithm 4.7.2: Bt-job

This algorithm completes the second level merge and computes the product

BT = ATQ. Optionally, partial sums of BBT are formed and output to

disk.

Map

Qi ← merge Q̃i, R̃1, . . . , R̃M

output Qi as block of final Q.

Iterate Arow

BTpartial = (Arow)T · Qrow

output BTpartial
Reduce

BT =
∑

BTpartial
Option(

BBT
)
partial

= BiB
T
i

4.7.2.1 Cost and memory requirements

Each of the M map tasks and R reduce tasks perform the following work:

(m1) M merges with partial R] optimization M ·O(1
2`

2s+ `3)

(m2) projection (Arows)
T · Q O(sn`)

(r1) sum outer products M ·O( nR`)

The R] optimization is a bit different than the one done in Q-job. We can save merging Q
blocks only M

2 times by premerging R], but we cannot share R] between tasks so that the full R
merge needs to be done in each task. Memory requirements are O(max{s, -oh} · `). Chunks of BT

are written to disk by each reducer. Use equation (4.50) to determine the size of each chunk for
use in ABt-job.
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4.7.3 ABt-job

ABt-job has much the same functionality as Q-job. We need to do a matrix multiplication
ABT = AATQ and orthogonalize the result. Unfortunately it is more complicated than Q-job since
we cannot produce BT on the fly as we could with Ω, instead, BT is stored on disk. To limit access
to BT the rows of A are preloaded into memory so that we can use the partial columns, that is,
columns of the row blocks Ai, for outer products and read the sequence of BT blocks only once
per mapper. In Q-job, our blocks Yi were available in the mapper. With ABt-job, we need to
accumulate partial sums of Yi in the reducer so we bring the streaming QR and first level merge
computation there as well.

AblockBT =
∑

j Ablock(:, j)BT (j, :) (4.35)

Algorithm 4.7.3: ABt-job

This algorithm computes the product ABT , performs the streaming QR fac-

torization and the first level merge.

Map

Iterate Arow

Ablock(i, :) = Arow

foreach BTrow
Ypartial = Ablock(:, j) · BTrow

output Ypartial

Reduce

Y =
∑

Ypartial

Y → streamingQR

output Qr×`
i and R`×`i

merge{Qi,Ri}zi=1

output Qs×`R`×`

4.7.3.1 Cost and memory requirements

Since Ablock is preloaded into memory, the memory requirement is the size of the input split
plus a block of BT . Use equation (4.50) to determine this size in Bt-job. §4.7.1.1 describes the
costs of the job with the exception that (m2) and (m3) are performed in the reducer.
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4.7.4 U-job

U-job is a simple map only job that computes the final rank k factor U of the singular value
decomposition. The rank ` factorization

ŨΣŨT = BBT (4.36)

was computed in core so that the small ` × ` factor Ũ fits comfortably in memory. Redefine Ũ by
extracting the first k columns

Ũ← Ũ( : , 1: k) (4.37)

Algorithm 4.7.4: U-job

This algorithm computes the rank k factor U of the singular value decom-

position

Map

Iterate Qrow

Urow = QrowŨ

output Urow

4.7.5 V-job

V-job is again a map only job forming the rows of the rank k factor V

V(i, : ) = (B( : , i))T ŨΣ−1 (4.38)

where Ũ is as in (4.37) and Σ is the uppermost leftmost block of k singular values. Recall that B
is stored columnwise as rows of BT .

Algorithm 4.7.5: V-job

This algorithm computes the rank k factor V of the singular value decom-

position

Map

Iterate BTrow
Vrow = BTrowŨΣ−1

output Vrow
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4.8 Lanczos

The Lanczos method [11] is very popular for solving large, sparse, symmetric eigenproblems.
In addition it is also used on non-symmetric matrices to find the singular value decomposition since
the SVD is closely related to the solution of the eigenproblem on the symmetric matrix ATA. The
defining characteristics of the method, and those that make it so popular, are (1) the input matrix A
is only accessed via a matrix vector multiply ATAx. This eliminates random access requirements to
the elements of A and does not produce fill-in during computation. And (2), the method converges
quickly so that a subset of the eigenpairs can be accurately generated without computing the full
decomposition.

Unfortunately, numerical stability issues are also a prevalent feature of the algorithm and care
must be taken to avoid loss of orthogonality among the Krylov basis vectors. Mahout’s solution is
to compute a basis of size k as requested by the user. No restart or re-orthogonalization is used.
Instead, there is a seperate routine to verify the accuracy of the computed eigen pairs and only
keep the ones deemed to have converged. We only study the construction of the k sized basis and
the resulting eigenpairs, foregoing the verification process. Just like the ssvd, we understand that
the tail end of the computed spectrum will loose accuracy and need to be discarded. The method
and implementation we present here describes the svd implementation in Mahout.

4.8.1 Description of method

The Krylov subspace for a symmetric n× n matrix A is

K(A,q, n) =
[
q, Aq, A2q, . . . , An−1q

]
(4.39)

The vector q is usually chosen to be in the range of A so that q = Aω with ω a random vector or a
constant vector of unit norm for example. Remarkably, the QR factorization (non-pivoted) of the
Krylov space gives orthonormal matrix Q such that Q(:, 1) = q/‖q‖ and

AQ = QT (4.40)

where T is an order n symmetric, tridiagonal matrix. Directly equating the elements in equa-
tion (4.40) we find

Aqj = βj−1qj−1 + αjqj + βjqj+1 (4.41)

where α’s are diagonal elements of T and β’s are both sub and super diagonals. The Lanczos
procedure follows from repeatedly solving this three term recursion to obtain the elements α, β in
T and the columns of the orthonormal matrix Q. For practical purposes we needn’t solve all the
way to n to obtain information of interest. Stopping computation at a k < n gives a k dimensional
symmetric, tridiagonal matrix Tk that is similar to A projected into the truncated Krylov space.
The eigenvalues of Tk closely approximate the extremal eigenvalues of A and can be very efficiently
extracted. The eigen-decomposition Tk = XΛXT also yields approximate eigenvectors of A via

V = Q X
n× k n× k k × k (4.42)
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4.8.2 Implementation

The three term recursion in equation (4.41) is quite elegant, requiring only 3 dense vectors
to be held in memory at one time. Unfortunately, we loose orthogonality among the q’s in finite
precision arithmetic. A simple solution is forego the recursion and orthogonalize qj+1 against all
previous basis vectors qi for i = 1, . . . , j. Letting Qj =

[
q1 . . . qj

]
be the basis computed by the

jth step , we induct qj+1 into the basis as follows

q =
(
I − QjQ

T
j

)
Aqj

η = ‖q‖
qj+1 = q/η

(4.43)

It can easily be the case, especially dealing with sparse matrices, that the O(kn) storage of the
dense basis vectors is large. To avoid holding the entire basis Q in memory consider,

y = Aqj(
I − QjQ

T
j

)
y = y −

∑j
i=1〈qi, y〉qi

(4.44)

Each basis vector qi can be read in one by one from disk to limit memory requirements. Again we
are back to only 3 dense vectors in memory: y, qi and a vector q to accumulate the sum

q = y
q ← q− 〈qi, y〉qi

(4.45)

Full orthogonalization costs O(kn) flops and perhaps more importantly requires access to the disk.
However, Figure 4.15 on page 178 suggests the time required to do this is surprisingly small.

A problem still exists in this method. The vector q in equation (4.44) is orthogonal to within
machine precision ε of the rest of the basis. That is

‖QT
j q‖ < ε (4.46)

Substituting q = η · qj+1 we find that η � 1 can amplify the error

‖QT
j qj+1‖ < ε/η (4.47)

A strategy described in [7] and employed in ARPACK and Matlab [19] is to monitor η. If
η < 1/

√
2 or some given threshold, then set y = qj+1 and repeat the projection in equation (4.44).

These implementations assume that Q is in memory and thus pay only the flop penalty for the extra
reorthogonalization step. Mahout, however, is geared toward larger problems and thus assumes Q
to be stored on disk (actually both disk storage, hdfsBackedLanczosState, and an in-memory,
LanczosState are available). Re-projection is not done, instead the algorithm detects if parameters
get beyond a safe limit and stops computation with a warning message.

The orthogonalization described takes place as a serial process on one node. The part of the
algorithm that is parallelized is the interaction with the matrix A. Since we are computing the
singular value decomposition, the matrix product is

y = ATAqj (4.48)
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Notice this will compute the right singular vectors of A. The matrix product AAT is not as easily
computed as ATA in §4.5.

When the iterative computation has come to a halt we compute the eigen-decomposition
Tk = XΛXT . To obtain the right singular vectors of A from X use equation (4.42). The dense
O(kn) matrix is again avoided in memory by sweeping through the vectors of Q k times

V(:, j) =

k∑
i=1

X(i, j)Q(:, i), for j = 1, . . . , k (4.49)

Algorithm 4.8.2: Lanczos SVD

Given an m × n matrix A and a desired rank k, Lanczos SVD computes

the k dimensional eigen-decomposition, VΣ2VT , of ATA which yields the

right singular vectors V and singular values Σ of A.

q = ATAω

q1 = q/‖q‖
while i ≤ k do

MapReduce step: Algorithm 4.5

q = ATAqi
Serial step:

for j = 1..i

q← q− 〈qj ,q〉qj
qi+1 = q/‖q‖
collect: α, β

end for

end while

compute XΛXT = T

V = QX

σi =
√
λi

4.8.3 Scalability

Lanczos method and its related variations, Arnoldi and unsymmetric Lanczos, are extremely
efficient and well suited for some computing environments. Specifically, the ideal situation would
be
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(1) A subset of k � n eigenpairs are desired as opposed to the full decomposition.

(2) The input matrix is sparse or admits a fast matrix vector product.

(3) The input is of large enough dimension that we cannot afford intermediate full matrices of
O(n).

(4) The input and resulting O(kn) dense basis is small enough to fit in RAM.

Of the 4 conditions, the restriction (4) of how large we can get is the most limiting. We discussed
a way to scale up by storing the basis vectors on disk, although this comes with the penalty of
persistent I/O pressure as can be seen in Figure 4.4a. Furthermore we can lift (4) by distributing
the matrix vector product. With this expansion of the limiting factor, namely scale, we get an
incredibly powerful method capable of solving large problems in a distributed environment. To
compete with Lanczos method, we must show that ssvd can produce comparable accuracy in less
time and scale better and beyond in a distributed environment.

Several factors limit the scalability of the Lanczos method. First, Lanczos is an iterative
method and hence a serial computation. Though parts can be distributed and parallelized such as
the matrix vector product, the algorithm depends on results from previous iterations to proceed
and thus is a serial computation. At each iteration, only a small amount of information is obtained
and so requires at least k passes over the data.

In addition, the algorithm was designed to minimize flops which is no longer the scarcest
resource in a computing environment. With distributed computing, slow data transfer over the
network requires communication avoiding schemes that perhaps do extra computation in order to
limit data transfer.

4.9 SSVD parameters

We list the usage of the important parameters in Table 4.2 in two groups. The first define
the mathematical requirements while the second define the computational parameters and help
us optimize the computation. Rank k, oversampling parameter p and power iteration q are given
thorough treatment in Chapter 2. Figure 4.5 graphically represents the computational parameters.
More information about these are found in §4.12.

4.10 The data

Our dataset is a term-frequency document-frequency (tf-df) matrix of Wikipedia articles, that
is a matrix whose rows represent documents and whose entries are frequencies of word occurrences
within the document. The raw articles, enwiki-latest-pages-articles.xml downloaded here [5], are
a recent dump of millions of Wikipedia articles taking 32GB of space (7.2GB compressed .bz2
download). Mahout has utilities specifically to parse this data set from raw .xml files to a matrix
format required by the algorithm. First we use the seqwiki command that converts the raw xml
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(a) Ganglia screenshot during svd on Wikipedia-million data set. Each spike is an
iteration involving a matrix vector multiply. Map tasks take only 20− 30 seconds to
complete much of which is set up and IO costs. Tasks should take at least 1 minute
to complete to offset these costs. This job failed at the end and thus did not complete
the factorization. Note the persistent pressure on the network.

(b) Ganglia screenshot from ssvd of Wikipedia-million data set. Notice the network
activity near the end of the job is computation of dense matrices U and V.

Figure 4.4: Ganglia screenshots showing network and cpu characteristics of the Lanczos and ssvd
algorithms.

files to sequence files. Sequence files are key value pair binary files keyed with a document id and
valued with the text of the document. Next we use seq2sparse that parses the sequence files into
document vectors again keyed by document id and valued with a sparse row vector whose entries
are the frequency of each word in the document. We create three matrices from the articles,
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parameter default description

–rank (-k) none decomposition rank
–oversampling (-p) 15 oversampling
–powerIter (-q) 0 number of additional

power iterations

–blockHeight (-r) 10,000 Y block height (must be
> (k + p))

–outerProdBlockHeight (-oh) 30,000 block height of outer
products during
multiplication, increase
for sparse input

–abtBlockHeight (-abth) 200,000 block height of Yi in
ABtJob during ABT

multiplication, increase
for extremely sparse
inputs

–reduceTasks (-t) 1 number of reduce tasks
(where applicable)

–minSplitSize (-s) -1 minimum split size

Table 4.2: Important parameters of the Mahout implementation of ssvd. The first group defines the
mathematical parameters for the algorithm, while the second group defines computational settings.

AiΩ =

Yi

r

s ATQ =

B

oh

s
ABT =

Y

abth

s

(1) (2) (3)

Figure 4.5: Computational parameters. s is the number of rows in an input split and this value
can widely vary in sparse matrices. Manually set parameters will not evenly divide the split and
there will be blocks of different sizes as in (3).

(1) a subset of 1,042,976 articles.

(2) the full corpus of 6,404,775 articles.

(3) the full corpus replicated 6 times to produce a large square matrix.
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Notice the storage required for the matrix is about half original size of the corpus.

data set documents m terms n size density

wiki-million 1,042,976 976,239 1.9GB 0.01%

wiki-all 6,404,775 37,293,795 15GB 0.00056%

wiki-MAX! 38,428,650 37,293,795 90GB 0.00056%

Table 4.3: Sparse term-frequency – document-frequency (tf-df) matrices.

Remark 30. For practical purposes, a dictionary of size > 106 is not very useful. Many of the
‘terms’ or tokens represent anomalies in the text such as sequences of special characters or non-
normalized formatting. A treatment is given in [18] to various parameters of the parsing algorithm
seq2sparse that prune away high or low frequency words for example, making the tf-df matrices
much smaller and more useful.

4.11 Machines

4.11.1 Amazon EC2 and EMR

Amazon’s Elastic Compute Cloud (EC2) is a publicly available cluster computing environ-
ment [1] that provides scalable computational resources on a pay as go basis. Elastic MapReduce
(EMR) is Hadoop running on EC2 instances. This type of cloud environment is a good choice for
research purposes for a number of reasons. It is very cheap compared to the option of an onsite ded-
icated cluster. Maintainance and upkeep is done by the provider and thus does not take time away
from research goals. The on-demand, pay-as-you-go pricing structure accommodates the sporadic
usage needs of research. The elasticity accommodates fluctuation in problem size without having
under utilized (wasted) resources. These characteristics can be found with other cloud providers,
but Amazon’s widespread adoption means there is a large community of users that supports it-
self by sharing information and experience. Finally, for benchmarking algorithms, Amazon EC2
provides a standardized environment valuable to providing unbiased metrics.

4.11.2 Instance Types

Amazon EC2 provides different instance types depending on computational needs. There
are six families including a high performance computing type and a cluster GPU type, each with
various configurations within them to further customize as per application. Multiple instances
within a type and multiple instance types can be spun up together to create a cluster. We choose
from the standard instance type which is suited for general purpose computing. Since this study is
intended to benchmark the algorithm on standard computing resources, this is a good choice over
the more specialized instances. Instances are normalized into a measure of compute units. One
EC2 compute unit provides cpu resources equivalent to a 2007, 1.2 GHz Xeon processor. We first
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m1.large m1.xlarge

Compute Units 4 8

Virtualized cores 2 4

RAM 7.5 GB 15 GB

storage 850 GB 1690 GB

JVM heap 1.6 GB 1.6 GB

map slots 4 8

reduce slots 2 4

Table 4.4: Specifications for two types of Amazon EC2 instance types.

examine specs of the two instance types we choose within the standard family. Table 4.4 lists these
machine specifications that will later help us choose optimal parameters for the algorithm.

Essentially, the m1.xlarge instance is twice the machine of the m1.large. Both have high I/O
performance and are 64-bit Linux platforms. The JVM heap is allotted per task so this parameter
is the same between these two instances, the distinction being that the m1.xlarge can accommodate
twice as many concurrent tasks as the m1.large. Based on these specifications we could use two
m1.large’s for every one m1.xlarge to build an equally powerful cluster, however, the advantage to
the m1.xlarge is data locality since there is physically a denser distribution of data on half as many
machines. We explore this idea further in the experiments.

4.11.3 Virtualization and shared resources.

It is important to note that cpu, memory and hard disk storage are dedicated to your instance,
but network is not, it is a shared resource. Each instance on a physical device is guaranteed a
minimum amount of network, but if there is surplus, other instances may use more than their
share. Therefore, a positive characteristic of an algorithm will be minimal network use since this
potentially can be used elsewhere by other processes. If network usage cannot be avoided, it is
better to have spikes of usage rather than a constant load. Spiking network use can use excess
network when needed and free up network when not needed. In contrast, the dedicated resources
like cpu will lie idle if not used and cannot be shared. We would like our algorithm to then maximize
cpu use and minimize or spike network use.

4.11.4 Choosing a cluster

With the input data specified and the instance types narrowed down we can start to decide
how to partition the data and how many resources we will need. The basic unit of parallelism is
the task (map or reduce) and is determined by the input split. The input split, measured in bytes,
partitions the data into chunks (default 128MB) that become the input of each map task. The split
is careful not to cut across records so to each mapper is delivered a subset of rows of the matrix of
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approximately the input split size. Since our data matrix is sparse we will see a large variation in
the number of rows each map task receives and consequently, a variation in the size of the dense
intermediate calculations. This can cause slowdowns since the job is not complete until all the
tasks have finished. If an exceptionally sparse chunk of rows is processed near the end of the job,
the task will take a long time to process meanwhile the rest of the machines are waiting idle.

split maps s memory

data set MB MB

32 491 13,000 14

wiki-all 64 280 26,000 27

128 123 52,000 53

32 60 18,000 18

wiki-million 64 30 35,000 36

128 15 70,000 71

Table 4.5: Calculations based on size of input data to help determine appropriate input split and
cluster sizes.

The numbers in Table 4.5 are approximations to the following:

size of input
number of maps =

size of split

number of rows m
s =

number of maps

memory = size of O(s`) dense subproblems, ` = 125

The number of rows per split s can vary greatly when dealing with sparse matrices. For
example, using a 128MB split on the wiki-million data set produces splits that have as few as 20,000
rows to as many as 165,000 rows. Keeping in mind the variability of s we choose an input split
that keeps the size of the dense subproblems and s at ‘reasonable’ levels, where reasonable is a
fuzzy term. Consider if our wiki-million matrix was dense. To achieve a subproblem of about 70MB

and 15 maps as we have with a 128MB split, the dense matrix would need a split of 500GB! This
is beyond large for an input split in Hadoop and we would favor many more maps to divide the
computation via a much smaller split.

Once we decide a good level of parallelism for our job, we consider the number of maps and
the number of map slots on a chosen machine. For example, a 128MB split on the wiki-million
matrix gives 15 maps and an m1.large instance can process 4 map tasks concurrently. Choosing
a cluster of 4 + 1 m1.large’s gives enough map slots to process all the data at the same time. By
having an equal number of tasks and slots, the faster tasks (s < 50,000) will process quickly and
the machines will be waiting idle while the longest task (s = 165,000 for example) finishes. This
is not the most efficient use of resources, but for a given input split size, it is the fastest. Using
more machines will just increase idle resources and not provide any benefits. Using less slots than
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tasks provides and interesting optimization. We still have a lower bound on runtime of the longest
running task, however, faster tasks can be executed back to back in the same slot. Figure 4.6 shows
an idealized scenerio. Of course it may happen that task 3 is executed in slot 1 while task 2 and
task 4 are in slot 2. They will both finish at the same time leaving task 1 to execute all by itself.
Now the running time is say ttask3 +ttask1, but at least only one slot is sitting idle and less resources
are being used.

task 1slot 1

task 2slot 2 task 3 task 4

task 4slot 4

(b)

task 3slot 3

task 2slot 2

task 1slot 1 (a)

Figure 4.6: (a) represents number of tasks equal to number of slots. (b) shows having less slots
than tasks can better utilize resources and not sacrifice performance. Running time is represented
by the length of the boxes for each task.

4.11.5 Monitoring

It is essential to have some kind of monitoring available when working with MapReduce in
Hadoop environment. We want to be able to monitor the progress of the job, see statistics and
details about data flow, and assess the health and utilization of the cluster. The two presented here
are web user interfaces that provide metrics on the remote cluster via ssh tunneling. The Hadoop
UI’s provide access to the tasktrackers, jobtracker, namenode and datanodes. Here we can view log
files, job statistics and browse the hdfs file system. This UI comes standard as a part of Hadoop.
Ganglia [4] is a scalable distributed monitoring tool for high performance computing systems that
provides machine specific details about the cluster such as cpu and memory use.

The Hadoop jobtracker UI provides details about workflow and general job statistics. Fig-
ure 4.7 is the front page listing jobs that have been run on the cluster. Clicking on the hyperlink
for a particular job brings you to Figure 4.8. Here we see much more detailed information about
the job. Job progress is broken out into map and reduce jobs that are pending, running, complete
and failed or killed. Clicking the links takes you to the tasktracker (not shown) to which the task is
assigned where you can view more detailed information. The task logs contain error messages and
verbose information for debugging. Next, the counters are useful to asses data flow and progress
of the job. They are incremented periodically when a tasktracker sends a heartbeat back to the
jobtracker. The heartbeat contains information about progress and an update to the counters.
Some default counters come standard with every job as part of the Hadoop framework but custom
counters can be implemented as well. Note that this communication is somewhat onesided. The
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jobtracker aggregates statistics from all the tasktrackers so it has a global perspective on the compu-
tation, but each tasktracker has no concept of what work is being done by other tasktrackers. That
is, the tasktracker cannot poll the jobtracker for global information, it can only send information
about its own status through the heartbeat. Finally, completion graphs give a visual representation
of progress of each task in the job. Notice the three phases color coded in the reduce graph: copy,
sort, and reduce. Technically, copy and sort are part of the shuffle phase but are lumped together
in this representation. An interesting observation is that data is copied from the local tasktracker
(where the map task has been computed) to the tasktracker performing the reduce as soon as a
map finishes. If we have more map tasks than available slots, the first wave of map tasks will finish
and the copy will begin. The actual reduce algorithm cannot start until all the maps have finished
so much time is spent in the copy phase, mostly just waiting for maps to finish. This unfortunately
accrues time towards the reduce task and gives a false sense of how long the actual reduce process
is taking. For example, the actual reduce portion in Bt-job takes less than a minute, however, the
time listed for each reducer (including copy and sort) is around 25 minutes. One must be careful
not to go crazy trying to optimize the reducer based on this metric.

While the Hadoop jobtracker UI provides information relevant to the specific jobs, Ganglia
monitoring gives us information on how the machines are operating. Figure 4.4b shows four graphs
that represent aggregate statistics from the entire cluster. The profile shown is a stochastic singular
value decomposition being done on the wikipedia million data set without any power iterations.
Looking at the top left pane Load/Procs notice initially about a 10 minute burst of computation,
followed by a 35 minute job and finishing with short 5 minute computation. It is also very visible
in the second pane measuring cpu utilization. The mounds of activity are Q-job, Bt-job and both
U-job and V-job respectively. (U-job and V-job are actually done at the same time in parallel). We
notice immediately that the algorithm is cpu bound (at least for the super sparse wikipedia data
set). These same graphs are available per node along with many other metrics such as cpu wait io
and memory free that are incredibly useful to monitor while running jobs.

4.12 Computational parameters

As promised this section discusses the computational parameters of Figure 4.5. The trials
are carried out on the wiki-million data set with k = 100, ` = 25. Using the logic of §4.11.4, we
use a cluster of 4 (4 slave + 1 master) m1.large instances. With the default 128MB input split, this
configuration gives 15 map tasks and 16 map slots.

As discussed in §4.6.5, blockHeight (-r) defines the finest level partition of the data. We
compute streaming QR factorizations of r× ` sized blocks of Y. The analysis showed that approxi-
mately the same amount of work is done for either the direct QR method or the merge scheme used.
A clear advantage to the merge scheme is reduced memory. Reducing r then reduces memory use
and by Figure 4.9 drastically reduces the time of Q-job.

Parameter r also comes into play in ABt-job where the streaming QR takes place in the
reducer. We assume the benefits seen in Q-job are also observed there, though every ABt-job we
have observed uses r = 2, 500. ABt-job is dominated by the matrix product ABT which requires
reading BT from disk once per input split.
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Figure 4.7: Frontpage. View of all jobs submitted to the cluster. Clicking on the job id hyperlinks
gives detailed information for that job as in Figure 4.8.

The two other notions of block height, outerProdBlockHeight (-oh) and abtBlockHeight
(-abth), do not effect runtime in any noticeable way. They define the size of the blocks held in
memory when accumulating ATQ and ABT respectively. Their major effect is to reduce the number
of spilled records, roughly doubling the block height cuts number of spilled records in half. Block
height’s of greater than 40,000 put too much pressure on the memory and produce “reduce copier
failed” errors. Therefore, both -oh and -abth are set to 40,000.

The load on reducers for this algorithm is very light and most of the computation is done
in the mappers. Reducers function to produce BT in Bt-job and optionally the partial sums of
BBT , and to compute the streaming QR and first phase merge in ABt-job. The number of reducers
determines the size BT blocks which then effects the product ABT . We want to use all our available
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Figure 4.8: Data flow and system metrics on the job level.

reduce slots but we do not want the blocks of BT to be too large. Unlike the number of map tasks
which is determined by the input split, we manually set the exact number of reducers to fire. A
good rule is

numReducers = max{number of slots,
8`n

10242 · b
} where b ∼ 400 (4.50)

b is the block size in megabytes of BT . During ABt-job, we preload the entire input split into
memory and read in blocks of BT requiring b+ inputSplit megabytes of memory.
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Figure 4.9: Time in minutes for various blockHeight’s. We choose r = 2,500 as optimal.

4.13 Scaling the cluster

The biggest factor in scalability is the input split size. We need to be sure to keep the ratio
of tasks per slot near or above one to allow processing of multiple fast tasks per slow task. However
we also see that the communication step is impacted by increased parallelism. The relationship is
proportional, more parallelism requires more communication. We will explore keeping the input
split at default value 128MB until our cluster grows and the available number of task slots forces us
to decrease the input split in order to keep number of map tasks approximately equal to available
slots. Also when possible, we use a smaller split to see the benefits of better utilized resources when
ratio of maps to slots is greater than one.

With relatively small clusters of 2-16 nodes there is very little load on the master and a typical
scene is Figure 4.10, where the slave nodes are red hot and the master is cold blue. The master runs
the namenode which keeps track of all the files in hdfs and the jobtracker which coordinates all the
running tasks. A single master of this size could handle millions of files and tens of thousands of
tasks which is far above our needs for these experiments. A minimum of two slave nodes are used
for both the m1.large and m1.xlarge clusters. Hadoop run on only one or two machines is mostly
for testing and debugging or see §4.16 for example. Also, having significantly more available slots
than tasks is wasteful. These two constraints bound the size of our clusters and explain the missing
values in Figure 4.11.
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Figure 4.10: There is little strain on the cold blue master with only a handful of nodes and ∼ 100
files to coordinate.
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Figure 4.11: Time listed in minutes for varying amounts of computing power. The first split
category is chosen so that number of maps is approximately equal to the available slots. The
second category better utilizes resources by using a smaller input split and thus more maps than
slots.

4.14 Power Iterations

All the timings listed in Figure 4.11 are for the algorithm with q = 0. To test the power itera-
tions we choose a cluster of 8 m1.large instances. An input split of 32MB gave the best performance
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on that configuration. We ran into the same error when attempting the power iterations as we did
when we were increasing -oh parameter in §4.12: reduce copier failed and cannot allocate memory.
This time it needed to be dealt with since it was blocking normal operation of the algorithm and
not just a possible performance boost.

Table 4.6 lists some parameters of an m1.large instance that are defined upon startup of the
cluster. The total memory footprint of each node is calculated as

Tasktracker heap + Datanode heap + (map slots + reduce slots) × child heap

Surprisingly, the default setting over allocates memory by almost 50%! The point of this
configuration is to allow tasks to spike memory usage, but overall use far less memory then allotted
[1]. If tasks actually use a lot of memory, the trick is to not over allocate memory because you
assume tasks will use all the memory they are given. As suggested in Table 4.6, the memory-
intensive bootstrap action both reduces heap size and reduces number of concurrent tasks. A
bootstrap action is a script that runs at startup to define some parameters or perform an action.
This is how, for example, Ganglia of §4.11.5 is set up. The memory-intensive bootstrap action
solved the problem but seemed to under utilize the amount of available memory. We found that
the ‘config’ column of Table 4.6 both solved the problem and restored our concurrent processing
capabilities.

default mem-intensive config

Tasktracker heap 1536 512 512

Datanode heap 256 512 512

child heap 1600 1024 1024

map slots 4 3 4

reduce slots 2 1 2

total mem MB 11392 5120 7168

total mem GB 11.125 5 7

Table 4.6: Default and Memory-Intensive bootstrap action settings for m1.large instance. Keep in
mind total memory for this instance is 7.5GB. Heap is measured in MB. The third column ‘config’
are the settings we went with.

Table 4.7 gives the time for each phase of the algorithm. A power iteration requires ABt-job
and Bt-job for a total of 28 minutes. This is slightly more than the original time of 26 minutes for
q = 0.

4.15 Varying k

Finally we time the algorithm for various values of k with p = 0 (` = k so we use the variables
interchangeably here). Most notable about this experiment is the effect of an unequal number of
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phase time

Q-job 4

Bt-job 16
ABt-job 12

U-job 2
V-job 2

q time

0 26
1 52
2 80
3 107

powerIters

Table 4.7: (left) Timings in minutes for the various phases of the algorithm on an 8 node m1.large
cluster. The bulk of the processing time is in Bt-job and ABt-job which are recomputed for each
power iteration. (right) Timings in minutes for values of q.

rows in each input split. The dense subproblem scales as O( s
2`2

r ), where the variability in s is
amplified by larger `. For ` ∼ 125 or less, as in the previous experiments, the amplification factor
was small enough not to cause major differences in execution time across unequally sized s blocks.
With increasing `, the differences are exacerbated creating a major straggler problem. A straggler
in our case is a task that receives a disproportionately large amount of rows and takes much longer
to execute than the rest of the tasks. As depicted in Figure 4.6, all other tasks finish and leave
the nodes idle meanwhile the straggler is still running. This is a tremendous waste of resources.
Figure 4.12 shows the sorted timings of tasks when ` = 500. We omit the details of this experiment
but use it simply to illustrate how a straggler can dramatically slow down each job. A remedy to
this problem would be to assign input splits based on number of records rather than number of
bytes.
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Figure 4.12: Sorted task times in minutes. Smaller values of ` reduce the execution time and
adverse impact of a straggler task. For ` = 500 as shown, the straggler task dominates execution
time, leaving idle nodes for ∼ 75% of the computation.

Figure 4.13 plots time in minutes for various values of k on the wiki-million data set. As
noted in §4.16, Lanczos runs most efficiently on just one slave and one master setup. The times
plotted for Lanczos use only this setup of 1+1 m1.large’s. For ssvd, we begin with a 4+1 m1.large
cluster for smaller k. For k = 250 we needed to double the heap allocated to the tasks and thus
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reduce concurrent processing from 4/2 to 2/1 map/reduce slots. Therefore, we justify doubling the
number of nodes so that concurrent processing ability remains constant. We could possibly have
sped up ssvd for smaller values of k by increasing split size and actually decreasing the number of
nodes, but we did not pursue this route.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

 

 

q0

q1

q2

q3

lanczos

Figure 4.13: Time in minutes for various values of k on the wiki-million data set. Lanczos time is
extrapolated for k > 60. The loglog plot on the left is to illustrate the activity for small k.

4.16 Lanczos on the cluster

To fit Lanczos algorithm on the cluster we need to consider the operations involved just as
we did with the ssvd. The only MapReduce job involved is the matrix multiply of Algorithm 4.5.
We perform this job k times so it is important to optimize, seconds per job can easily translate to
minutes added to the final execution time. But we use caution, measuring performance in seconds
is not a good idea in a virtualized shared environment. Many uncontrollable factors can produce
fluctuations in running time. Recall Figure 4.4a which shows how under utilized the cpu is and how
much pressure is put on the network. Contrary to the way we divided the data to share cpu load
in the ssvd, here we need to do the opposite and group data together to shift the work load from
the network to the cpu. To achieve this we need to increase the input split size thus decreasing
the number of maps and limiting the scalability of the algorithm. Table 4.8 shows indeed that
increasing split size gives faster performance. But we reach a limit. A Hadoop MapReduce job
takes ∼ 30 seconds to setup, also increasing split size increases time per task. Then we see a lower
bound on execution time of

setup time + max{task execution time} < overall execution time
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Also we need to consider that increasing split size will require larger heap settings per task. By
increasing task heap we reduce the number of concurrent tasks per node. This is a dead-end street
to travel down when scaling. We present Table 4.8 to show that this approach only improves time
slightly. Look for the lower bound in column 3. Increasing the split beyond 512M will increase task
time and thus increase job time.

split 128 256 512 512∗

job 1:17 1:11 1:06 1:25

task (seconds) 18 32 33 53

Table 4.8: Larger input split sizes reduce overall execution time per job, but the benefit is minimal.
We used here a 2 + 1 cluster of m1.large instances having 8 concurrent map slots. A split of 512MB

only produces 4 map tasks so the nodes have unused resources. The last column 512∗ uses a 1 + 1
setup.

The remainder of the algorithm is performed in serial on the master node. Figure 4.15 shows
the time spent between each MapReduce job in the iteration. Because only one vector gets inducted
into the basis at each iteration, it does not make sense to try and distribute the orthogonalization.
Also, the timings suggest that these operations are only a small percentage of total time. To
help facilitate the extensive I/O of the orthogonalization process we increase a parameter that
determines how much data is buffered during read and write operations from its default of 64
kilobytes to 8 megabytes, which is just larger than the size of a dense 1,000,000 dimensional vector.
Finally, we choose a cluster of only one master and one slave. This configuration dedicates one
machine to the matrix vector product and the other to the serial computation, which is esentially
the orthogonalization.

Though not as fast as using two slave as shown in Table 4.8, the resource use shown in
Figure 4.14 is well optimized. Using a 512MB input split puts enough data into a map task to use
100% cpu, if even only for a short burst. Note that the CPU shown in Figure 4.14 is aggregate
between the slave and master node. The peaks represent the slave working at 100% and the troughs
are the master using < 10%. The network load is greatly minimized. Since there is only one slave
node, there is no network communication needed in the shuffle and sort phase. This eliminates
22MB of data transfer during the shuffle.

4.17 Wikipedia-all

Using what we have learned from the wiki-million data set, scaling up to the wiki-all data
set requires only a few changes. First we increase the heap given to the map and reduce tasks.
Preliminary runs gave GC overhead limit exceeded errors in ABt-job which indicates a possibility
that the heap was too small. Fortunately, increasing heap to 2GB solved the problem. By doubling
the heap we also need to cut in half the number of concurrent map and reduce tasks. We use a
cluster of 16 m1.xlarge instances giving 64 map slots and 32 reduce slots. A 64MB split gives 280
map tasks and we use equation (4.50) to get 85 reduce tasks.

A major bottleneck in ABt-job is the network pressure from reading blocks of BT . We need
to read the entire BT matrix once per input split. Multiplying the size of BT by the number of map
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Figure 4.14: Optimized resource uses for Lanczos svd. One master plus one slave m1.large instances.
Note the CPU appears to be only 50% utilized but the meter measures both cpu’s. In actuality,
the slave node is using 100% during matrix vector product and master is using < 10% in between
to orthogonalize. Also note the scale of the network is from 0 to 1.5 megabytes per second. The
network cost during shuffle has been greatly reduced by using only one node. Contrast this with
Figure 4.4a that has 5− 10 MB/sec network use.
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Figure 4.15: Time in seconds of the non MapReduce (serial) computation in Lanczos svd. As the
basis grows we see a linear increase in computation time. Overall, the percentage of time of each
iteration is very small but we pay an increasing amount every iteration.

tasks gives about 10TB over the network for a 64MB split. Figure 4.18 shows network loads during
ABt-job for identical clusters. In §4.11.3 we mention how shared network resources can provide
surplus bandwidth at times and at other times, bandwidth is limited or throttled. Figure 4.18(a)
shows a throttling of the network with a maximum bandwidth of 1GB/s. Figure 4.18(b) shows the
case where extra resources are available and increases bandwidth to ∼ 1.4GB/s.
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Figure 4.16: Computed spectrum of the Wikipedia million data set with k = 100 and p = 25. Only
60 values were computed for Lanczos before running out of memory (Java Heap). Just one power
iteration gives excellent accuracy. Singular values for q = 2, 3 are indistinguishable in the plot and
appear as a red x inside a blue square.
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Figure 4.17: Accuracy as a percentage and time in minutes. From left to right ssvd with q = 0, 1, 2, 3
and lanczos. Accuracy is computed as the sum of the first 40 singular values obtained from each
method. The sum is scaled by the largest sum and multiplied by 100 to produce a percentage.
Order of accuracy is q = 3, q = 2, q = 1, lanczos, q = 0.
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Setup parameters

m1.xlarge 16

child heap 2048M

map slots 64

reduce slots 32

input split 64M

map tasks 280

reduce tasks 85

Execution times minutes

Q-job 4

Bt-job 49

ABt-job 127

U-job 1.5

V-job 7

q = 0 61

q = 1 235

Table 4.9: Setup and execution times in minutes for the wiki-all data set.

(a) Throttled network (b) Extra network resource

Figure 4.18: Network throttling has a dramatic impact on ABt-job which reads dense matrix BT

from disk once per input split.

4.18 Wikipedia-MAX

Setup for the wiki-max data set is much the same as for wiki-all. A 128MB split gives 726
maps. We only attempted the computation for q = 1 which took a little over 22 hours. This shows
that further power iterations, q = 2, 3, . . . are possible with the additional time incurred by Bt-job
and ABt-job. Figure 4.20 gives a plot of the computed singular values. Table 4.10 gives the timings
of each phase of the computation and gives extrapolated times for a range of q values and larger
clusters. This assumes we can half the computation time by doubling the size of the cluster as long
as the number of available map slots stays below the number of map tasks, 726. A 128 node cluster
provides 512 slots in our configuration.

Figure 4.19 shows the day long Ganglia profile from the wiki-max computation. The three
stages of computation: Bt-job, ABt-job, and Bt-job are clearly visible. Most notable is the sustained
1.3 GB/sec network load during ABt-job which transfers a total of 50TB across the network. Reading
the matrix BT only accounts for half of this. The remaining network is a result of input splits being
larger than the outer product block height -abth. The result is that intermediate data is spilled
to disk causing extra network load. Contrast this with the network load from wiki-all with a 64MB

split. There the -abth parameter was large enough to not allow spills and the network load was
all from the reading of BT .

Remark 31. The computation of the wiki-all and wiki-max data sets may use safer than optimal
parameter choices. We used information gathered on smaller computations and made changes only
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as necessary to handle bigger inputs. When dealing with computations that run many hours or
days, tuning parameters to avoid failure is more important than tuning them to save time.

Figure 4.19: Ganglia profile for the wiki-max computation which clearly shows the 3 stages: Bt-job,
ABt-job, Bt-job. Notice the extreme network load during ABt-job which shows 50TB of data was
passed across the network.

Actual timings

phase time

Q-job 20
Bt-Job 365
ABt-job 571
U-job 8
V-job 14

total 1335

Extrapolated timings

nodes q = 0 q = 1 q = 2 q = 3

16 407 1335 2271 3207
32 204 668 1136 1604
64 102 334 568 802
128 51 167 284 401

Table 4.10: Timings in minutes for the wiki-max data set. The cost of the machines needed to
decompose this data set makes additional runs prohibitively expensive. Extrapolated timings on the
right provide an idea of scaling times assuming doubling the number of nodes halves computation
time as long as number of tasks is larger than number of slots.

4.19 Lanczos comparison with SSVD

This section gathers conclusions from the results of §4.16 and §4.8.3. Overall, the ssvd
outperforms the Lanczos implementation in this environment and for the data sets used.

Execution time The Hadoop environment is ill suited for iterative computations. With each pass
through the data an algorithm should extract as much information as possible thus limiting
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Figure 4.20: Singular values for the wiki-all and wiki-max data sets.

interaction with the data and minimizing set up and data movement costs. The Lanczos
algorithm computes only a vector’s worth of data each pass through the matrix. This not
only requires many passes through the data incurring set up and data movement costs, but
also fails to fully utilize processor capability. The ssvd visits the matrix only twice (and
two additional times per power iteration). It also does computation in bulk which fully
utilizes the processors and minimizes overhead costs of the framework. The ssvd is faster
than the Lanczos method in this environment.

Accuracy The Lanczos method provides excellent accuracy. It was designed to do this at the
expense of many passes through the data. The ssvd provides comparable accuracy. In
particular, for q = 0, the ssvd is not as accurate as Lanczos method, however, with just
one power iteration we obtain a slightly better approximation.

Scalability This is perhaps the most important feature since if a method does not scale, then
it cannot compete on large data sets. The implementation of Lanczos we tested only
distributed the matrix vector multiplication, orthogonalization was done in serial on a
single machine. We ran into memory (java heap) problems on modest sized data sets and
could not use the methods on our larger data sets. The ssvd was able to compute a rank
100 singular value decomposition of a matrix whose dimensions both exceeded 37,000,000.
Theoretically, the ssvd’s memory usage is not dependent on either dimension of the matrix
so we believe the method will scale to much larger data sets.
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4.20 Conclusion

This paper presented a fully distributed randomized algorithm for computing an approximate
rank k singular value decomposition. The method scaled efficiently and ran on up to 64 cores in
Amazon’s Elastic Cloud Compute. We gave a treatment of the distributed computing environment:
Hadoop, MapReduce, Amazon EC2 and the software library Mahout. Through careful tuning of our
Hadoop cluster, we were able to decompose a matrix whose dimensions were orders of magnitude
larger than in previous works. We also showed how the ssvd is well suited to distributed computation
by comparing it with the classic Lanczos method. The ssvd scales far beyond Lanczos method due
to its bulk data processing and non-iterative characteristics and can achieve equivalent accuracy in
less time.
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