
/ An Icmrcmlkmal J0~r~l
Available online at www.sciencedirect.com computers &

• ~ , . . ~ . ~----(-~o,R.oT- m a t h e m a t i c s
with appllcatlona

Computers and Mathematics with Applications 50 (2005) 741-752
www.elsevier .com/]oc at e/camwa

A Fast A lgor i thm for the
Inversion of General Toepl i tz Matr ices

P. G. MARTINSSON, V. ROKHLIN AND M. TYGERT
Department of Mathematics

Yale University, P.O. Box 208283
New Haven, CT 06520-8283, U.S.A.

(Received February 2005; revised and accepted March 2005)

Abstract--we propose a "fast" algorithm for the construction of a data-sparse inver'~ of a general
Toeplitz matrix. The computational cost for inverting an N × N Toeplitz matrix equals the cost of
four length-N FFTs plus an O(N)-term. This cost should be compared to the O(Nlog2N) cost

of previously published methods. Moreover, while those earlier methods are based on algebraic
considerations, the procedure of this paper is analysis-based; as a result, its stability does not depend
on the symmetry and positive-definiteness of the matrix being inverted. The performance of the
scheme is illustrated with numerical examples. (~) 2005 Elsevier Ltd. All rights reserved.

Keywords - -Toep l i t z matrix, Fast algorithm, Direct inversion.

I . I N T R O D U C T I O N

We consider the problem of inverting an N x N Toeplitz matrix,

tN iN--1
tN+l tN

T =

]; 2N - 1 t

(t)

The first author was supported in part by the Office of Naval Research under Contract ~:N00014-01-L0364.
The second author was supported in part by the Defense Advanced Research Projects Agency under Contract
~MDA972-00-1-0033.

0898-1221/05/$ - see front matter (~) 2005 Elsevier Ltd. All rights reserved.
doi: 10.1016/j.camwa.2005.03.011

Typeset by .A.A4,s-r~

with real or complex entries. Methods for computing T -x in O(N 2) operations have been known
since the 1960s, see, for example, [1,2]. For the case where T is positive-definite, it is fairly well
understood how to construct T -x stably in O(Nlog2N) operations, see [3] and the references
therein. These techniques are based on algebraic properties implied by the Toeplitz structure.
When such algebraic techniques are applied to general Toeplitz matrices, stability issues arise;
methods for managing such issues (at the cost of sacrificing the O (N log 2 N) CPU time estimate

for certain matrices) are presented in, e.g., [4,5].
In this paper, we use rank considerations, rather than algebraic properties, to construct a fast

inversion scheme. Our approach depends crucially on the well-known fact t ha t the representa-
t ion of T in Fourier space, T, is semiseparable in the sense tha t its off-diagonal blocks can be

T42 P.G. MARTINSSON, et al.

approximated by low-rank matrices, see, [6-10]. Combining this fact with the observation that
factorizations of these off-diagonal blocks can be obtained very rapidly, we demonstrate that the
O(N) inversion algorithm of [11] can be used to compute a compressed representation of T - l ,
whence T -1 is readily applied via two FFTs. This inversion scheme is in no way dependent on
either the positivity or the symmetry of T. Numerical experiments on general symmetric Toeplitz
matrices indicate that the procedure is very stable. According to [7], similar results should be
obtained if the inversion scheme of [12] were applied to the problem of inverting T.

This paper is structured as follows. Section 2 introduces our notation. Section 3 lists some
basic facts about Toeplitz matrices and their Fourier representations. Section 4 contains the proof
that the Fourier representation of a Toeplitz matrix possesses the properties required for the fast
inversion scheme of [11] to be applicable. Section 5 presents the results of several numerical
examples.

2. P R E L I M I N A R I E S

In this section, we introduce a notational framework.
Let N be a positive integer and let

t = [t (1) , t (2) , . . . , t (2 N - 1)] (2)

be a sequence of (possibly complex) numbers. We call this sequence the Toeplitz-vector that
generates the Toeplitz-matvix T E C g×lv with elements,

T (m, n) = t (N + m - n) . (a)

As an example, for N = 4, we have

[~ (4) t(3) t(2) t 0) l
T = (5) t(4) t(3) ~(2)|

(6) t(5) t(4) ~(3)|" (4)
(r) t (6) t(5) t (4)]

Matrices are always named using upper case letters while lower case letters are used for vectors.
We define a discrete Fourier transform F by

N

which is a unitary operator on C N. The inverse transform is thus given by

1 N
(m) = [F*~] (m) = ~ ~ ~,<~-I/~) . /N~ (~). (0)

(See Remark 2 for some comments on our choice of a discrete Fourier transform.) Then, the
Fourier representation of T is defined by

= FTF*. (7)

We introduce a shift operator S, such that, for u E C N,

f u (n + l) , n = l N - l ,
[su] (~) = - 0) , ~ = N, (s)

A Fast Algorithm 743

and a flip operator P, such that

[Pu] (n) --- u (N + 1 - n) . 0)

As an example, for N = 4, S and P have the matrix representations,

S = 0 0 1 and p__ 0 0 1 (10)
0 0 1 0 "
0 0 0 0

Throughout this paper, norms of vectors are/2-norms, Ilvll -- (5:N=1 Ivjl~) 1/~, and n o r m of
matrices axe the corresponding operator norms. Thus, if A is an m x n matrix,

IIAull (11) IIAII = max .
~,~c-IMI

Finally, we introduce the concept of neutered block columns and rows. Suppose that A is a
matrix composed of p x p blocks. We say that the submatrix formed by all the blocks in say,
the jth column of blocks, except the block on the diagonal, is the jth neutered block column.
Neutered rows are defined analogously. See Figure 1 for an illustration.

Figure 1. Illustration of the concept of a nvuSered block column. The figure shows a
4 x 4 block matrix. The submatr ix formed by the three gray blocks is the "second
neutered block column".

3. P R O P E R T I E S O F T H E F O U R I E R

R E P R E S E N T A T I O N O F A T O E P L I T Z M A T R I X

This section contains two technical results. Lemma 1 gives a formula for the Fourier represen-
tation T of a Toeplitz matrix T, while Lemma 2 fists some its properties.

LEMMA 1. The entries of the matr/x T defined by (7) are given by

(m, n) = { (~3 (m) - ~ (n)) ~o (m - n) , if m # n, (12)
(m), if m = n.

where, for n = 1 , . . . , N,

v (n) = t (N + n) - t (~) ,

(n) = e -~ i~ /N~ (n) ,

x (n) = nt (n) + (N - n) t (N + n),

(n) = e -~ i"/N ~ (n)
v T '

(13)
(14)

(15)

(16)

'1. = %~ '0

(0~) 'U:#tU '(U--U*)OS j~ = (U'U*)X

Xq 1[xT.aa~m N x N u~ ~m3op
sn ~lo I 'pu~ s tq:l o& "maol x!z~,~m u! (gI) ~Inma°J aq~, o~,ta~ o~ inlosn 2ip, uonbaa/s! 3I 'I >IaVnal:I

II "(c2) ptr~ '(9I) '(~'I) mo~ ~mOlIO; mou (u)x = (u'u)$ a~tlJ ,

I=a

(s~) ((~ + ~) ~ (~- ~) + (~) ~) ~(~z~,~- ~ ~ N
y =

9/

I----s I~.*

(~1 (~ + N) ~ (~ - N) ,la/~,.,~> ~ -{ + (~) ~{~/~,,~)-~ ~ ~ -~=
• +I=a l=S l=d l=a

N = (u 'u) £
(9a) (~ + 2v)~,(~,/,.,~,~)-~, ~ :-(~ + (-,)~(~,-~)~u.,,.~)- ~ ~ .-"--< y .

N I-N [~ N

~q~ pn-,_j om '5 - d = s pll~ h -- d + N = "~ m, solq~!a~A uo!~mns Su.t~-eqD

i=b][=g

(~) .(b- a + a) ~c,-~lc~/,,,,~)- ~ ~ ~ T) a; N N
u.'m~qo

o:~ (2,) o~.u! (9) pu~ '(S) '(~) ~osu! o,z, '£ 1o s~u~tuoto l'~Uo~!p oq~ ao; uo!ssoadxo oq~, oA!iop o,. L
• u # ~ uoq~ (lzg) moa:j XlaaOat.p s~oEo~ (~I) uop,~nb~t

(I75) "(u)~vt~"'a (-'~--) - tct~"~'a (u~) ~ (--~) =

'maoj auouodmoo u! (60 o~!a~ o0,

(~g) '~¢ = 4.¢

(~) ,m,,,~,a (--~)=(u)ZCa

(,~) ',¢1.,,._~ (--~)= (u),,

'N "'" 'I = u aol ':~qa pu~

(0~) ',~#,:,,~ -- (~'') s

'maoj oq:~ s~:l (8I) uot~nbo 'op.m aa!ano~I ~q~, u O "(,[0 0 'I] ----- ta '.il.o ~,~q~
os) ao:laaA s!s~q l~O!uo,-mo q,.g oq:~ s.t ~v3 9 ca pu~ '(6) '~q POUt3oP s! or '(gI) ~q pout3oP st. r~ axoq2~

'OSlooxd oq offb "om4 ~[u~a s~q B/~ - d~B :l~tta

. (N/(u - ~) #) u.~N_#~ = (~)
Ca)

pm~

• p Za '~ossmJ~IVlAI "D'd I'I>/,

A Fast Algorithm 745

where ~ is defined by (17). Since ~ is N-periodic, the matrix Y is circulant. Furthermore, let us
define X and V as N x N diagonal matrices with nonzero elements,

x (n, n) = • (~) , (30)
v (n, n) = ~ (n) . (31)

Then, we can write (12) in matrix form as

= v y - v v + x . (32)

In particular, using the index notation of [16], the off-diagonal block T(J2, J1) corresponding to
two disjoint index sets J1 and J2, is given by the formula

(J~, J1) = V (J2, J2) Y (J2,-/1) - Y (J2, Jr) V (Jb J]) . (33)

LEMMA 2. Let T be a ToepIitz matr/x (as defined by (3)) and let T be its Fourier representation
(as d ~ n o a by (7)). Then,

(i) the matr/x i b is always symmetric (but not necessarily Hermitian),

= ~' , (34)

(ii) i£T is real, then T is almost persyrnmetric in the sense that

(iii)

T(m,n) - - T (N - n , N - m) , form, n = l , . . . , N - 1 ,

T (N , n) = T (N , N - n) , for n = 1 N - l ,

T (m , N) = T (N - m , N) , f o r m = l , . . . , N - 1 ,

if T is both real and symmetric, then ~" is real. In fact,

~h = - imag (V) imag (Y) + imag (Y) imag (V) + real (X) .

(35)

(36)

(37)

(3s)

All of these statements are direct consequences of the definition of a Toeplitz matrix, (3), and
the definition of its Fourier representation, (5)-(7).

REMARK 2. While the exact form of the results of Lemma 2 depends on the choice of a Fourier
transform, some incarnation of the lemma holds for any reasonable choice. For instance, if we
had used the common definition,

N 1 IF,,] (n) = ~ ~ e-~"~"~/", (39)
w'l.= 1

then in the case that T is real and symmetric, T would not be real, but its imaginary part would
have had rank two. Our particular choice, given by (5), was motivated simply by the fact that it
resulted in a cleaner formulation of Lemma 2 than the other options we tricd.

4 . T H E F O U R I E R T R A N S F O R M O F A
T O E P L I T Z M A T R I X I S S E M I S E P A R A B L E

In this section, we will demonstrate that when T is nonsingular, it is possible to compute a
compressed representation for the inverse of the N × N matrix T defined by (7) using O(N)
arithmetic operations, once ~ and ~ (see (14),(16)) have been computed. We do this by using
the fast inversion algorithm described in Ill]. This algorithm is applicable to any matrix that
satisfies the following two conditions,

(i) its off-diagonal blocks have low rank and
(ii) these blocks can be factored cheaply.

746 P.G. MARTINSSON, e~ al.

In this section, we will state these conditions in detail and prove that the matrix 2 ~, satisfies both
of them.

The following lemma states that to precision ~, the rank of any neutered block column of if'
(see Figure 1) is at most O(log(1/~) log Y).

LEMMA 3. Let ~" be the Fourier representation of a Toeplitz matrix T (as defined by (7)), let
,/1 = [~, j + 1, j + 2 , . . . , j + n - 1] be an index set and let TNC be ~he corresponding neutered
block column (see Figure I). Then, for sut~eiently small but positive e, the matr/x TNC allows
the factorization,

~¢ = w a + E, (40)

where the matrix R has dimension k x n for some integer k satisfying

k < ClogNlog (1) , (41)

the matrix W has dimension (N - n) x k and satisfies

ilWH < 1, (42)

and the rema/nder matr/x E ha8 d/mension (N - n) x n arid satisfies

IIEII < 9.~ Ilvll. (43)

SKETCH OF PROOF. Let J2 denote the indices not contained in J1, i.e.,

J2 = [1 ,2 , . . . , j - 1 , j + n , . . . , N] .

From Remark 1 we know that

where for i , j E {1,2},

~'NC = V2Y21 - - Y21V1, (44)

v, = v(J~,J~),

Y~s = Y (d,,d~),

with V and Y defined by (31) and (29), respectively.
The entries of the matrix Y are samples of the continuous function z ~-* (sin z)-1, see (17), (29).

Using this fact, calculations similar to those in [13] show that the singular values of Y21 decay
exponentially. Employing a standard rank-revealing QR-factorization, see [14], then, it follows
that Ym admits the factorization,

Y21 = QR +/~, (45)

where Q is an (N - n) x k matrix with orthonormal columns for some k satisfying (41),/~ is a
k x n matrix, and/~ is an (N - n) x n matrix satisfying,

< , . (46)

Combining (44) and (45), we find that

~Nc = ½Q[~ - Qr~v~ + v2~ - ~v~ (47)

= It~(J2)tl Rv~ J

To convert (47) into (40), we set

1 V, ,

R = [~ II~_RVt(Ja)H]j, (50)
E = V2E - 2~VI. (51)

A Fast Algor i thm 7"47

The bound (42) follows from (49) and the fact that Q has orthonormal columns. The bound (43)
follows from (46) and (51). I

The fast inversion algorithm that we use to invert T requires only very limited information
about the off-diagonal blocks of the matrix in the compression stage. In fact, it only needs to
know the linear dependence relations between the columns (rows) in a neutered block column
(row) (see Figure i). According to the factorization (40), these linear dependence relations are
the same for the (small) matrix R as for the (large) matrix Tnc, to within precision ~. In other
words, during the inversion, we can compute R in lieu of IPNC and use it to determine the linear
dependence relations. Now, since the matrix/~ in (45) can be precomputed, formula (50) shows
that once a particular Toeplitz vector t has been specified, it is possible to compute R in 2nk
floating point operations. We summarize these findings as follows.

OBSEB.VATION 1. Given a Toeplitz vector t, it is possible to compute the factor R in (40) using
2nk floating point operations.

REMARK 3. PRECOMPUTATION. The statement of Observation 1 relies on the fact that
has been precomputed for a given N and for a given hierarchical partitioning of the index set
{1, . . . , N}. This can be accomplished in O(N21og 2 N) arithmetic operations using a standard
rank-revealing QR-faetorization as described in [14,15]. However, using the fact that Y is circu-
1ant, it is possible to perform the precomputation in O(N log 2 N) operations since all neutered
block columns of the same size are identical and since a large neutered block column can be
factored by merging and updating the factorizations of two smaller ones.

5. N U M E R I C A L E X A M P L E S

In this section, we present some results from numerical examples illustrating the performance
of the fast inversion scheme of [11] when applied to four different types of Toeplitz matrices.
These types were chosen to illustrate how the performance of the scheme, in terms of speed and
accuracy, depends on,

(a) the condition number of the matrix T to be inverted, and
(b) the smoothness of the Toeplitz vector t.

0.8

0.6

0.4

0.2

0

-0.2

-0,4

-0.6

-0,8

t t i i i ' ' i i l i

X X -

x

X X

X X X x

X x XI~

~x x ~

X X X X

~ X X ~

. I I I I I I I

~00 200 300 400 ~ 0 800 700 800

Figure 2. A nonsmoo th Toeplitz w c t o r used to generate an ill-conditioned Toeplitz
mat r ix of "Type I I r ' .

748 P.G. MARTINSSON, e$ al.

The four types are as follows.

(1) Nonsmooth t, well-conditioned T. The Toeplitz vector consists of numbers randomly
distributed between - 1 and 1. Additionally, a constant 1 0 v ~ was added to t (N) to force
the matrix to be well-conditioned.

(2) Smooth t, well-conditioned T. t(j) = 1/(1 + IJ - g]) .
(3) Non-smooth t, ill-conditioned T. The Toeplitz vector was constructed from a sequence

of randomly distributed numbers by suppressing those numbers close to the diagonal, see

Figure 2.
(4) Smooth t, ill-conditioned T. t(j) = 0.05/(1 + 0.02lj - NI2).

For each of the four classes of matrices, the program was set to produce an approximate
inverse with a residual error of at most 10 - l° . For the two well-conditioned classes of matrices,
experiments were also performed at the lower accuracy 10 -5.

The algorithm was implemented in Fortran 77 and run on a Pentium IV desktop with a 2.8 GI-Iz
p r o c e s s o r a n d 5 1 2 M b o f R A M .

T h e r e s u l t s o f t h e s e e x p e r i m e n t s a r e g i v e n i n T a b l e s 1 - 4 . A s a r e f e r e n c e f o r t h e t i m i n g s ,

Table 5 g i v e s t h e c o m p u t a t i o n a l t i m e s r e q u i r e d t o i n v e r t t h e m a t r i c e s u s i n g T r e n c h ' s a l g o r i t h m

(a s d e s c r i b e d i n I 1 6]) .

Table 1. Computational results for Toeplitz matrices of T y p e I. The top block re-
ports experiments run at an accuracy of 10 -I° and the lower block experiments run
a t 10 - 5 .

N ~ tlnv

401 1.3 4 .2e - 2

801 1.3 9 .2e - 2

1601 1.4 1.8e - 1

3201 1.4 3 ,5e -- 1

6401 1,4 7 .2e -- I

12801 1.4 1.4

401 113 1.6e - 2

801 1.3 3 .0e -- 2

1601 1.4 5 .8e - 2

3201 1.4 1 . 2 e - 1

6401 1.4 2 . 3 e - 1

12801 1.4 4 . 6 e - 1

tBolve E F M F-'rrench

1 .Oe- - 3

3 . 0 e - - 3

7 . 0 e - - 3

1 . 4 e - 2

2 .ge -- 2

6 . 0 e - - 2

5 . 0 e - 4

1 . 2 e - 3

3 . 2 e - 3

47 .2e - 3

1 .4e - 2

3 ,1e - 2

1.0e - g

3.3e - 9

3.5e - - 9

4.0e - - 9

1.2e - - 8

1 . g e - - 8

8 . 8 e - 5

1.Se - 4

3 . 1 e - 4

7 .6e - 4

1 , I e - 3

2.9e - 3

3 , 6 e - I

7.1e-- 1

1.3

2.6

5.0

1 . 0 e - 1

1 . 7 c - - 1

3 , 2 e - 1

6 .1e - 1

1.2

2 .4

4 .9

8 .4e -- 15

1,2e -- 14

8 .4e -- 15

1.2e -- 14

1.2e -- 14

8.£'- 15
1 . 2 e - 14

8 . 4 e - 15

1 . 2 e - 14

1 . 2 e - 14

T a b l e 2. C o m p u t a t i o n a l r e s u l t s for T o e p l i t z m a t r i c e s o f T y p e II . T h e t o p b l o c k
r e p o r t s e x p e r i m e n t s r u n a t a n a c c u r a c y o f 10 - 1 ° a n d t h e l o w e r b l o c k e x p e r i m e n t s
r u n a t I 0 - s .

N

401 2 .0

801 2 .2

1601 2 .3

3201 2 ,5

6401 2 ,6

12801 2 .7

401 2 .0

801 2 .2

1601 2 ,3

3201 2.5

6401 2,6

12801 2 .7

t iny fBolve E F M ~rl~ren ch

1.Te - 2

3 .4e - 2

6 . 5 c - 2

1 . 3 e - 1

2 .6e - 1

5 .3c - 1

. 1 C - -

2.1c -

3 . 6 e -

7 . 4 e -

1 , S e - -

3 . 0 e - -

4 . 4 e - - 4

1 .4c -- 3

3 . 4 e - 3

7 . 4 e - 3

] , S e - 2

3 .1c - 2

2 . 6 e - 4

8 . 0 c - - 4

2 . 2 e - 3

4 . 8 e - - 3

9 .6e - - 3

2 ,1e - - 2

1 . 3 e - 10

1 . 1 c - 10

2 , 4 e - 10

9.Oe -- 10

6 . 8 e - 10

1,2e -- 9

1 . B e - - 6

2.2e -- 6

3.6e -- 6

5 . 4 e - - 6

8.7e -- 6

1,Te-- 5

1.Te-- 1

3.4e-- 1

6 .5e-- 1

1,3

2.6

5.1

1 . 0 e - 1

2 . 0 e - 1

3 . 9 e - 1

7 . 8 e - 1

1,5

3,2

8.3e - - 15

1 . 2 e - 14

8 . 0 c - 15

L l e - 14

1 . 1 c - 14

8 . 3 e - 15

1 . 2 e - 14

8.0e -- 15

1 . 1 e - - 14

1 . 1 e - - 14

A F a s t A l g o r i t h m

T a b l e 3. C o m p u t a t i o n a l r e su l t s fo r Toep l i t z m a t r i c e s o f T y p e III .

N

401 1.4e4 5 .0e - - 2

801 2 .1e4 l . l e - - 1

1601 2 .8e5 2 , 2 e - - I

3201 7 .5e5 4 .4e - - 1

6401 3 ,1e6 8 .8e - - 1

12801 5 ,0e6 1 . 6

T a b l e 4, C o m '

~inv ttsolve -EF M ~ I ' r eneh

1 . 4 e - 3

3 . 4 e - 3

7 . 4 e - 3

l . T e - 2

3 . 3 e - - 2

6 . 5 e - 2

1 . 8 e - 7

2 . 7 e - 7

6 .8e - 6

3 .0e - 5

8 .2e - 4

7 .5e - 3

4 . 0 e - 1

7 , ? e - 1

1.5

2.9

5 .7

I I

3 ,7e - I 0

9 .9e - - 9

3 . 2 e - - 7

3 .9e - 6

3 ,1e - - 5

N

401 2 .1e9

801 2 .2e9

1601 2 .2e9

3201 2 .2e9

6401 2 ,2e9

12801 2,2e9

r o t a t i o n a l r ~ u l t s for T o e p l i t z m a t r i c e s o f T y p e IV.

~;inv ~solve ~ F M J~T~ench

1 . 7 e - 2

3 ,3e - 2

6 .5e - 2

1 . 3 e - 1

2 . 6 e - 1

5 , 1 e - 1

4 .0e - 4

1.4e - 3

3 .4e - 3

7 .6e - 3

1.6e - 2

3 , 2 e - 2

2 ,1e - 3

1.8e - 3

8 .1e - 3

2 .0e - 2

1.1e - 2

1.4e - 2

1.Te - 1

3 .4e - 1

6 .5e - 1

1.3

2.6

5 .1

1,9e - 6

6 ,0e - 6

7 .4e - 6

7 .8e - 6

7 .9e - 6

10 ~

1 0 -t

T a b l e 5, P e r f o r m a n c e n u m b e r s for t h e T r e n c h a l g o r i t h m .

N

401 1.0e - 3

801 5 . 0 e - 3

1601 2 . 4 e - 2

3201 1 . 0 e - 1

6401 4 . 4 e - 1

t l n v tapply M

7 . 5 e - - 4

3 . 8 e - - 3

1 . 7 e - - 2

6 . 5 e - - 2

2 . 6 e - - 1

3 , 1 e - 1

1.2

4 .9

2 . 0 e l

7 . 8 e l

!

d
i

/

J
/

J
• f

J
•J

j J •

/

J
/

1 0 ~ :J(. l , , , I

10 j 10 4

F i g u r e 3. T i m e in s e c o n d s for i n v e r t i n g T v e r s u s p r o b l e m size. T h e t i m i n g s for t h e
c o m p r e s s e d a l g o r i t h m a p p l i e d t o d i f f e ren t t y p e s o f T o e p l i t z v e c t o r s a r e d r a w n w i t h

so l id l ines w h i l e t h e t i m e r e q u i r e d for t h e "lYench a l g o r i t h m is d r a w n w i t h a d a s h e d
l ine (t h e l a s t d a t a p o i n t is e x t r a p o l a t e d) .

749

750 P.G. MA~INSSON, et al.

i 0 "1

10 -=

. t /

/
/

/

I

/
/

/

/
/

J

.s

10 ~,,

i , , |,, , , , I , , J |

10 ~ 10 4

Figure 4. Time in seconds for applying the inverse of T versus problem size. The
timings for the compressed algorithm applied to different types of Toeplitz vectors
are drawn with solid lines while the time required for the Trench algorithm is drawn
with a dashed line.

~... . ,
/ d

t
J

/
/

/
J

/

101 i f l l I~"

/ i ' x

10 ° 1 "Xs / ~ ~

I n "I , , , , , , , , , ' ' ' '
i

10' 10 4

Figure 5. The amount of memory required (in Mb) for inverting T versus prob-
lem size. Solid lines corresponds to accelerated algorithms while the dashed line
corresponds t o the Trench algorithm.

The computational error is reported in the 12-operator norm; to be precise, if we denote the
computed inverse by T~ -1, what we report is

IIT:ll- T-lStl IITg -1T - lIT:iT_ II1" (52) EF = max = max =

~cR" lIT-lf l l ~ R ~ 11411

A Felt Algorithm T~I

This quantity was computed by applying a power iteration to the operator (T~'IT-I)*(T~-~T-I)
(we note t h a t T F I T is typ ica l ly not ent i re ly symmetr ic) . Similarly, l e t t ing T ~ denote the

inverse computed using the Trench algori thm, we r epor t E ' n ~ h =]] T ~ = h T - I]] for each of the
matr ices invest igated. In the tables, the following numbers are also repor ted .

The condi t ion number of the Toepl i tz ma t r i x T,

t ~ Time required to compute the compressed inverse (in seconds).
tso]ve Time required to apply the compressed inverse (in seconds).

M Memory required to compute the compressed inverse (in Mb).

The data given in the tables is presented graphically in Figures 3-5, in which, respectively, tjn~,
t,ol~, and M, are plotted against N.

The numerical experimems show that both the computational complexity and the memory
requirements of the fast inversion scheme presented here scale more or less linearly with problem
size. Moreover, both of these quantities depend on the structure of the matrix to be inverted; when
the Toeplitz vector t is smooth, the algorithm requires only 35% as many arithmetic operations
as in the worst ease.

The size of a matrix at which the procedure of this paper compares favorably with the Trench
scheme depends on wha t is being compared , wha t accuracy is required, and the proper t ies of the

Toepli tz vector. Thus, if the t imes for inver t ing the m a t r i x are compared , t he break-even poin t

in our exper iments lies somewhere between 2000 and 10000; if t he t ime to a p p l y the inverse to

a vector is compared , the break-even point is 800 or less; and ff t he memory requirements are

compared , the break-even poin t is 500 or less.

R E F E R E N C E S

1. W.R. Trench, An algorithm for the invemion of finite Toeplitz matrices, J. Soc. lndust. AppL Math. 12,
515--522, (1964).

2. S. Zohar, Toeplitz matrix inversion: The algorithm of W.F. Tcench, J. Assoc. Comput Math. 16, 592-601,
(1~9).

3. G. Ammar, Classical foundations of algorithms for solving positive definite Toeplitz equations, Oa/ce/o $$,
99-113, (190e).

4. M. VanBarel, G. Heinig and P. Kravanja, A stabilized superfast solver for nonsymmetric Toeplitz systems,
SIAM Journal on Mo~riffi A ~ s l s and Appllcs~ioas 23 (2), 494-510, (200I).

5. M. Stewart, A superfnst Toeplitz solver with impn:nted numerical stability, SIAM Journal on Matr~z Annie/sis
and A ~ n ~ ~ (3), ~ , (2oo3).

6. J.-P. Car~t-~l~ On a property of Caud~-like matrices, 0. P~ Aogd Sci. Paris S~r. I Math. 328 (11), 1089-
1093, (1999),

7. S. Chandrasekaran, T. Pale, M. Gu, P. Dewilde and A.-J. van der Veen, Fast and ~able direct solvem for PDEs
and integral equation~ In Colloqui,~ Tedl¢, Summer, l ~ c e Live~r4ove No~*ioned l . ~ t o r y , (2002).

8. T. Kailath and V. Olshevsky, Diagonal pivoting for partially reconstructible Canchy-like matricm, with
applications to Toeplitz-like linear equations and to boundary rational matrix interpolation problems, in Pro-
~ t ~ g s of the Fifth Conference of the lnternatlo~ai Linear Algebra Soci¢~j (Atlanta, GA, 1995), Special
Issue of Linear Algebra AppL 284, 251--302, (1997).

9. V. O]~aevkey, F~itor, Fast algorithmm for structured matrices: Theory and applications, In Contempo~$
McNwmo.tics, Volume 325, Papers from the AMS-IMS-SIAM Joint Summer Research Conference on Fast
Algorithms in Mathematics, Computer Science and Engineering held at Mount Holyolm College, South Hadley,
MA, August 5-9, 2001 pp. viii-433, American Mathematical Society, Providence, RI, U.S.A., (2003).

10. V.Y. Pan and A. Zheng, Superfnst algorithms for Canchy-like matrix computations and extensions, L/near
Algeb~ AppL 310 (1-3), 83--108, (2000).

11. P.G. Martinmon and V. Rokhlin, A f~t direct sol~er for boundary integral equations in two dimensions,
J. Co~p. Phys. 20S (i), 1-23, (2005).

12. S. Chandrnsekaran and M. Gu, A fast and stable solver for recursively semiemparable systems of equations,
In Structured Marries in Mathematica, Computer Science, and Engineering, Gontempornry Mathono~cs,
Volume II, Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference, University of Colorado,
Boulder, June 27--July 1, 1999, (Edited by V. Obheveky),, AMS Publications, Providence, M, U.S.A., (2001).

13. A. Dutt and V. Rokh|t-~ Fast Fourier trAndorms for nonequispaced data. II, Appt Gomput. Harmon. Anal
2 (1), 85-100, (l~s).

14. M. Gu and S.C. Ebmastat, Efficient algorithms for computing a strong rank-revealing QR fact~ization, SIAM
x s ~ co,.~,,,~ l ' t (4), s4s-8e,9, (19~.~).

752 P.G. MAIrrINSSON, et al.

15. H. Cheng, Z. Gimbutas, P.G. Martinsson and V. Rokhlin, On the compression of low-rank matrices, SIAM
J. Sci. Uomp. 20, 1389-1404, (2005).

16. G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopk i~ SSudi¢$ in the Mathematical Sciences,
Third Edition, Johns Hopkins University Press, Baltimore, MD~ U.S.A., (1996).

