
/ An Icmrcmlkmal J0~r~l 
Available online at www.sciencedirect.com computers & 

• ~ , . . ~ .  ~----(-~o,R.oT- m a t h e m a t i c s  
with appllcatlona 

Computers and Mathematics with Applications 50 (2005) 741-752 
www.elsevier .com/]oc at e/camwa 

A Fast A lgor i thm for the  
Inversion of General  Toepl i tz  Matr ices  

P. G. MARTINSSON, V. ROKHLIN AND M. TYGERT 
Department of Mathematics 

Yale University, P.O. Box 208283 
New Haven, CT 06520-8283, U.S.A. 

(Received February 2005; revised and accepted March 2005) 

Abstract--we propose a "fast" algorithm for the construction of a data-sparse inver'~ of a general 
Toeplitz matrix. The computational cost for inverting an N × N Toeplitz matrix equals the cost of 
four length-N FFTs plus an O(N)-term. This cost should be compared to the O(Nlog2N) cost 

of previously published methods. Moreover, while those earlier methods are based on algebraic 
considerations, the procedure of this paper is analysis-based; as a result, its stability does not depend 
on the symmetry and positive-definiteness of the matrix being inverted. The performance of the 
scheme is illustrated with numerical examples. (~) 2005 Elsevier Ltd. All rights reserved. 
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I .  I N T R O D U C T I O N  

We consider the problem of inverting an N x N Toeplitz matrix, 

tN iN--1 
tN+l tN 

T =  

]; 2N - 1 t 

(t) 
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with real or complex entries. Methods for computing T -x in O(N 2) operations have been known 
since the 1960s, see, for example, [1,2]. For the case where T is positive-definite, it is fairly well 
understood how to construct T -x  stably in O(Nlog2N)  operations, see [3] and the references 
therein. These techniques are based on algebraic properties implied by the Toeplitz structure. 
When  such algebraic techniques are applied to general Toeplitz matrices, stability issues arise; 
methods for managing such issues (at the cost of sacrificing the O ( N  log 2 N)  CPU time estimate 

for certain matrices) are presented in, e.g., [4,5]. 
In this paper, we use rank considerations, rather than  algebraic properties, to  construct a fast 

inversion scheme. Our  approach depends crucially on the well-known fact t ha t  the representa- 
t ion of T in Fourier space, T, is semiseparable in the sense tha t  its off-diagonal blocks can be 
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approximated by low-rank matrices, see, [6-10]. Combining this fact with the observation that 
factorizations of these off-diagonal blocks can be obtained very rapidly, we demonstrate that  the 
O(N) inversion algorithm of [11] can be used to compute a compressed representation of T - l ,  
whence T -1 is readily applied via two FFTs. This inversion scheme is in no way dependent on 
either the positivity or the symmetry of T. Numerical experiments on general symmetric Toeplitz 
matrices indicate that  the procedure is very stable. According to [7], similar results should be 
obtained if the inversion scheme of [12] were applied to the problem of inverting T. 

This paper is structured as follows. Section 2 introduces our notation. Section 3 lists some 
basic facts about Toeplitz matrices and their Fourier representations. Section 4 contains the proof 
that  the Fourier representation of a Toeplitz matrix possesses the properties required for the fast 
inversion scheme of [11] to be applicable. Section 5 presents the results of several numerical 
examples. 

2. P R E L I M I N A R I E S  

In this section, we introduce a notational framework. 
Let N be a positive integer and let 

t = [ t ( 1 ) , t ( 2 ) , . . . , t ( 2 N -  1)] (2) 

be a sequence of (possibly complex) numbers. We call this sequence the Toeplitz-vector that  
generates the Toeplitz-matvix T E C g×lv with elements, 

T (m, n) = t (N + m - n) .  (a) 

As an example, for N = 4, we have 

[~ (4) t(3) t(2) t 0 ) l  
T =  (5) t(4) t(3) ~(2)| 

(6) t(5) t(4) ~(3)|" (4) 
(r) t (6) t(5) t (4)]  

Matrices are always named using upper case letters while lower case letters are used for vectors. 
We define a discrete Fourier transform F by 

N 

which is a unitary operator on C N. The inverse transform is thus given by 

1 N 
(m) = [F*~] (m) = ~ ~ ~,<~-I/~) . /N~ (~). (0) 

(See Remark 2 for some comments on our choice of a discrete Fourier transform.) Then, the 
Fourier representation of T is defined by 

= FTF*.  (7) 

We introduce a shift operator S, such that, for u E C N, 

f u ( n + l ) ,  n = l  . . . . .  N - l ,  
[su] (~) = - 0 ) ,  ~ = N, (s) 
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and a flip operator P, such that 

[Pu] (n) --- u ( N  + 1 - n ) .  0) 

As an example, for N = 4, S and P have the matrix representations, 

S =  0 0 1 and p__  0 0 1 (10) 
0 0 1 0 " 
0 0 0 0 

Throughout this paper, norms of vectors are/2-norms, Ilvll -- (5:N=1 Ivjl~) 1/~, and n o r m  of 
matrices axe the corresponding operator norms. Thus, if A is an m x n matrix, 

IIAull (11) IIAII = max . 
~,~c-IMI 

Finally, we introduce the concept of neutered block columns and rows. Suppose that A is a 
matrix composed of p x p blocks. We say that the submatrix formed by all the blocks in say, 
the jth column of blocks, except the block on the diagonal, is the jth neutered block column. 
Neutered rows are defined analogously. See Figure 1 for an illustration. 

Figure 1. Illustration of the concept of a nvuSered block column. The figure shows a 
4 x 4 block matrix. The submatr ix  formed by the three gray blocks is the "second 
neutered block column". 

3. P R O P E R T I E S  O F  T H E  F O U R I E R  

R E P R E S E N T A T I O N  O F  A T O E P L I T Z  M A T R I X  

This section contains two technical results. Lemma 1 gives a formula for the Fourier represen- 
tation T of a Toeplitz matrix T, while Lemma 2 fists some its properties. 

LEMMA 1. The entries of the matr/x T defined by (7) are given by 

(m, n) = { (~3 (m) - ~ (n)) ~o (m - n) ,  if m # n, (12) 
(m), if m = n. 

where, for n = 1 , . . . ,  N, 

v (n) = t ( N  + n) - t ( ~ ) ,  

(n) = e -~ i~ /N~ (n ) ,  

x (n) = nt  (n) + ( N  - n) t ( N  + n),  

(n) = e -~ i"/N ~ (n) 
v T '  

(13) 
(14) 

(15) 

(16) 



'1. = %~ '0 

(0~) 'U:#tU '(U--U*)OS j~ = (U'U*)X 

Xq 1[ xT.aa~m N x N u~ ~m3op 
sn ~lo I 'pu~ s tq:l o& "maol x!z~,~m u! (gI) ~Inma°J aq~, o~,ta~ o~ inlosn 2ip, uonbaa/s! 3I 'I >IaVnal:I 

II "(c2) ptr~ '(9I) '(~'I) mo~ ~mOlIO; mou (u)x = (u'u)$ a~tlJ , 

I=a 

(s~) ((~ + ~) ~ (~- ~) + (~) ~) ~(~z~,~- ~ ~ N 
y = 

9/ 

I----s I~.* 

(~1 (~ + N) ~ (~ - N) ,la/~,.,~> ~ -{ + (~) ~{~/~,,~)-~ ~ ~ -~= 
• +I=a l=S l=d l=a 

N = (u 'u) £ 
(9a) (~ + 2v)~,(~,/,.,~,~)-~, ~ :-( ~ + (-,)~(~,-~)~u.,,.~)- ~ ~ .-"--< y . 

N I-N [ ~ N 

~q~ pn-,_j om '5 - d = s pll~ h -- d + N = "~ m, solq~!a~A uo!~mns Su.t~-eqD 

i=b ][=g 

(~) .(b- a + a) ~c,-~lc~/,,,,~)- ~ ~ ~ T ) a; N N 
u.'m~qo 

o:~ (2,) o~.u! (9) pu~ '(S) '(~) ~osu! o,z, '£ 1o s~u~tuoto l'~Uo~!p oq~ ao; uo!ssoadxo oq~, oA!iop o,. L 
• u # ~ uoq~ (lzg) moa:j XlaaOat.p s~oEo~ (~I) uop,~nb~t 

(I75) "(u)~vt~"'a (-'~--) - tct~"~'a (u~) ~ (--~) = 

'maoj auouodmoo u! (60 o~!a~ o0, 

(~g) '~¢ = 4.¢ 

(~) ,m,,,~,a (--~)=(u)ZCa 

(,~) ',¢1.,,._~ (--~)= (u),, 

'N "'" 'I = u aol ':~qa pu~ 

(0~) ',~#,:,,~ -- (~'') s 

'maoj oq:~ s~:l (8I) uot~nbo 'op.m aa!ano~I ~q~, u O "(,[0 ..... 0 'I] ----- ta '.il.o ~,~q~ 
os) ao:laaA s!s~q l~O!uo,-mo q,.g oq:~ s.t ~v3 9 ca pu~ '(6) '~q POUt3oP s! or '(gI) ~q pout3oP st. r~ axoq2~ 

'OSlooxd oq offb "om4 ~[u~a s~q B/~ - d~B :l~tta 

. (N/(u - ~) #) u.~N_#~ = (~) 
Ca) 

pm~ 

• p Za '~ossmJ~IVlAI "D'd I'I>/, 



A Fast Algorithm 745 

where ~ is defined by (17). Since ~ is N-periodic, the matrix Y is circulant. Furthermore, let us 
define X and V as N x N diagonal matrices with nonzero elements, 

x (n, n) = • (~) ,  (30) 
v (n, n) = ~ (n) .  (31) 

Then, we can write (12) in matrix form as 

= v y  - v v  + x .  (32) 

In particular, using the index notation of [16], the off-diagonal block T(J2, J1) corresponding to 
two disjoint index sets J1 and J2, is given by the formula 

(J~, J1) = V (J2, J2) Y (J2,-/1) - Y (J2, Jr) V ( Jb  J ] ) .  (33) 

LEMMA 2. Let T be a ToepIitz matr/x (as defined by (3)) and let T be its Fourier representation 
(as d ~ n o a  by  (7)).  Then, 

(i) the matr/x i b is always symmetric (but not necessarily Hermitian), 

= ~' ,  (34) 

(ii) i£T is real, then T is almost persyrnmetric in the sense that 

(iii) 

T(m,n) - - T ( N - n , N - m ) ,  form, n = l , . . . , N - 1 ,  

T ( N , n ) = T ( N , N - n ) ,  for n =  1 . . . . .  N - l ,  

T ( m , N ) = T ( N - m , N ) ,  f o r m = l , . . . , N - 1 ,  

if T is both real and symmetric, then ~" is real. In fact, 

~h = - imag  (V) imag (Y) + imag (Y) imag (V) + real (X) .  

(35) 

(36) 

(37) 

(3s) 

All of these statements are direct consequences of the definition of a Toeplitz matrix, (3), and 
the definition of its Fourier representation, (5)-(7). 

REMARK 2. While the exact form of the results of Lemma 2 depends on the choice of a Fourier 
transform, some incarnation of the lemma holds for any reasonable choice. For instance, if we 
had used the common definition, 

N 1 IF,,] (n) = ~ ~ e-~"~"~/", (39) 
w'l.= 1 

then in the case that  T is real and symmetric, T would not be real, but  its imaginary part would 
have had rank two. Our particular choice, given by (5), was motivated simply by the fact that it 
resulted in a cleaner formulation of Lemma 2 than the other options we tricd. 

4 .  T H E  F O U R I E R  T R A N S F O R M  O F  A 
T O E P L I T Z  M A T R I X  I S  S E M I S E P A R A B L E  

In this section, we will demonstrate that  when T is nonsingular, it is possible to compute a 
compressed representation for the inverse of the N × N matrix T defined by (7) using O(N) 
arithmetic operations, once ~ and ~ (see (14),(16)) have been computed. We do this by using 
the fast inversion algorithm described in Ill]. This algorithm is applicable to any matrix that 
satisfies the following two conditions, 

(i) its off-diagonal blocks have low rank and 
(ii) these blocks can be factored cheaply. 
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In this section, we will state these conditions in detail and prove that the matrix 2 ~, satisfies both 
of them. 

The following lemma states that to precision ~, the rank of any neutered block column of if' 
(see Figure 1) is at most O(log(1/~) log Y). 

LEMMA 3. Let ~" be the Fourier representation of a Toeplitz matrix T (as defined by (7)), let 
,/1 = [~, j + 1, j + 2 , . . . ,  j + n - 1] be an index set and let TNC be ~he corresponding neutered 
block column (see Figure I). Then, for sut~eiently small but positive e, the matr/x TNC allows 
the factorization, 

~¢ = w a  + E, (40) 

where the matrix R has dimension k x n for some integer k satisfying 

k <  ClogNlog  ( 1 ) ,  (41) 

the matrix W has dimension (N - n) x k and satisfies 

ilWH < 1, (42) 

and the rema/nder matr/x E ha8 d/mension (N - n) x n arid satisfies 

IIEII < 9.~ Ilvll. (43) 

SKETCH OF PROOF. Let J2 denote the indices not contained in J1, i.e., 

J2  = [1 ,2 , . . . , j  - 1 , j + n , . . . , N ] .  

From Remark 1 we know that 

where for i , j  E {1,2}, 

~'NC = V2Y21 - -  Y21V1, (44) 

v, = v(J~,J~), 

Y~s = Y (d,,d~), 

with V and Y defined by (31) and (29), respectively. 
The entries of the matrix Y are samples of the continuous function z ~-* (sin z)-1, see (17), (29). 

Using this fact, calculations similar to those in [13] show that the singular values of Y21 decay 
exponentially. Employing a standard rank-revealing QR-factorization, see [14], then, it follows 
that Ym admits the factorization, 

Y21 = QR +/~,  (45) 

where Q is an (N - n) x k matrix with orthonormal columns for some k satisfying (41),/~ is a 
k x n matrix, and/~ is an (N - n) x n matrix satisfying, 

< , .  (46) 

Combining (44) and (45), we find that 

~Nc = ½Q[~ - Qr~v~ + v2~ - ~v~ (47) 

= It~(J2)tl Rv~ J 

To convert (47) into (40), we set 

1 V, , 

R = [~ II~_RVt(Ja)H ]j, (50) 
E = V2E - 2~VI. (51) 
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The bound (42) follows from (49) and the fact that Q has orthonormal columns. The bound (43) 
follows from (46) and (51). I 

The fast inversion algorithm that we use to invert T requires only very limited information 
about the off-diagonal blocks of the matrix in the compression stage. In fact, it only needs to 
know the linear dependence relations between the columns (rows) in a neutered block column 
(row) (see Figure i). According to the factorization (40), these linear dependence relations are 
the same for the (small) matrix R as for the (large) matrix Tnc, to within precision ~. In other 
words, during the inversion, we can compute R in lieu of IPNC and use it to determine the linear 
dependence relations. Now, since the matrix/~ in (45) can be precomputed, formula (50) shows 
that  once a particular Toeplitz vector t has been specified, it is possible to compute R in 2nk 
floating point operations. We summarize these findings as follows. 

OBSEB.VATION 1. Given a Toeplitz vector t, it is possible to compute the factor R in (40) using 
2nk floating point operations. 

REMARK 3. PRECOMPUTATION. The statement of Observation 1 relies on the fact that 
has been precomputed for a given N and for a given hierarchical partitioning of the index set 
{1, . . . ,  N}. This can be accomplished in O(N21og 2 N) arithmetic operations using a standard 
rank-revealing QR-faetorization as described in [14,15]. However, using the fact that Y is circu- 
1ant, it is possible to perform the precomputation in O(N log 2 N) operations since all neutered 
block columns of the same size are identical and since a large neutered block column can be 
factored by merging and updating the factorizations of two smaller ones. 

5.  N U M E R I C A L  E X A M P L E S  

In this section, we present some results from numerical examples illustrating the performance 
of the fast inversion scheme of [11] when applied to four different types of Toeplitz matrices. 
These types were chosen to illustrate how the performance of the scheme, in terms of speed and 
accuracy, depends on, 

(a) the condition number of the matrix T to be inverted, and 
(b) the smoothness of the Toeplitz vector t. 
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Figure 2. A nonsmoo th  Toeplitz w c t o r  used to  generate  an  ill-conditioned Toeplitz 
mat r ix  of  "Type  I I r ' .  
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The four types are as follows. 

(1) Nonsmooth t, well-conditioned T. The Toeplitz vector consists of numbers randomly 
distributed between - 1  and 1. Additionally, a constant 1 0 v ~  was added to t (N)  to force 
the matrix to be well-conditioned. 

(2) Smooth t, well-conditioned T.  t(j)  = 1/(1 + IJ - g]) .  
(3) Non-smooth t, ill-conditioned T. The Toeplitz vector was constructed from a sequence 

of randomly distributed numbers by suppressing those numbers close to the diagonal, see 

Figure 2. 
(4) Smooth t, ill-conditioned T. t( j)  = 0.05/(1 + 0.02lj - NI2). 

For each of the four classes of matrices, the program was set to produce an approximate 
inverse with a residual error of at most 10 - l° .  For the two well-conditioned classes of matrices, 
experiments were also performed at the lower accuracy 10 -5. 

The algorithm was implemented in Fortran 77 and run on a Pentium IV desktop with a 2.8 GI-Iz 
p r o c e s s o r  a n d  5 1 2  M b  o f  R A M .  

T h e  r e s u l t s  o f  t h e s e  e x p e r i m e n t s  a r e  g i v e n  i n  T a b l e s  1 - 4 .  A s  a r e f e r e n c e  f o r  t h e  t i m i n g s ,  

Table 5 g i v e s  t h e  c o m p u t a t i o n a l  t i m e s  r e q u i r e d  t o  i n v e r t  t h e  m a t r i c e s  u s i n g  T r e n c h ' s  a l g o r i t h m  

( a s  d e s c r i b e d  i n  I 1 6 ] ) .  

Table 1. Computational results for Toeplitz matrices of T y p e  I. The top block re- 
ports experiments run at an accuracy of 10 -I° and the lower block experiments run 
a t  10 - 5  . 

N ~ tlnv 

401  1.3 4 .2e  - 2 

801 1.3 9 .2e  - 2 

1601 1.4 1.8e - 1 

3201  1.4 3 ,5e  --  1 

6401  1,4 7 .2e  --  I 

12801 1.4 1.4 

401  113 1.6e - 2 

801 1.3 3 .0e  --  2 

1601 1.4 5 .8e  - 2 

3201 1.4 1 . 2 e -  1 

6401 1.4 2 . 3 e -  1 

12801 1.4 4 . 6 e -  1 

tBolve E F  M F-'rrench 

1 .Oe- -  3 

3 . 0 e - -  3 

7 . 0 e - -  3 

1 . 4 e -  2 

2 .ge  -- 2 

6 . 0 e - -  2 

5 . 0 e -  4 

1 . 2 e -  3 

3 . 2 e -  3 

47 .2e  - 3 

1 .4e  - 2 

3 ,1e  - 2 

1.0e - g 

3.3e - 9 

3.5e - - 9  

4.0e - - 9  

1.2e - - 8  

1 . g e  - -  8 

8 . 8 e  - 5 

1.Se - 4 

3 . 1 e - 4  

7 .6e  - 4 

1 , I e  - 3 

2.9e - 3 

3 , 6 e -  I 

7.1e--  1 

1.3 

2.6 

5.0 

1 . 0 e -  1 

1 . 7 c - -  1 

3 , 2 e -  1 

6 .1e  - 1 

1.2 

2 .4  

4 .9  

8 .4e  --  15 

1,2e --  14 

8 .4e  --  15 

1.2e --  14 

1.2e --  14 

8.£'-  15 
1 . 2 e -  14 

8 . 4 e -  15 

1 . 2 e -  14 

1 . 2 e -  14 

T a b l e  2. C o m p u t a t i o n a l  r e s u l t s  for  T o e p l i t z  m a t r i c e s  o f  T y p e  II .  T h e  t o p  b l o c k  
r e p o r t s  e x p e r i m e n t s  r u n  a t  a n  a c c u r a c y  o f  10 - 1 °  a n d  t h e  l o w e r  b l o c k  e x p e r i m e n t s  
r u n  a t  I 0  - s .  

N 

401  2 .0  

801  2 .2  

1601 2 .3  

3201 2 ,5  

6401 2 ,6  

12801 2 .7  

401  2 .0  

801 2 .2  

1601 2 ,3  

3201 2.5 

6401 2,6 

12801 2 .7  

t iny fBolve E F  M ~rl~ren ch 

1.Te - 2 

3 .4e  - 2 

6 . 5 c  - 2 

1 . 3 e -  1 

2 .6e  - 1 

5 .3c  - 1 

. 1 C  - -  

2.1c  - 

3 . 6 e -  

7 . 4 e -  

1 , S e - -  

3 . 0 e - -  

4 . 4 e  - -  4 

1 .4c  --  3 

3 . 4 e -  3 

7 . 4 e -  3 

] , S e -  2 

3 .1c  - 2 

2 . 6 e -  4 

8 . 0 c - - 4  

2 . 2 e -  3 

4 . 8 e - -  3 

9 .6e  - -  3 

2 ,1e  - -  2 

1 . 3 e -  10 

1 . 1 c -  10 

2 , 4 e -  10 

9.Oe -- 10 

6 . 8 e -  10 

1,2e -- 9 

1 . B e  - -  6 

2.2e -- 6 

3.6e -- 6 

5 . 4 e  - -  6 

8.7e -- 6 

1,Te-- 5 

1.Te-- 1 

3.4e--  1 

6 .5e--  1 

1,3 

2.6 

5.1 

1 . 0 e -  1 

2 . 0 e -  1 

3 . 9 e -  1 

7 . 8 e -  1 

1,5 

3,2 

8.3e - -  15 

1 . 2 e -  14 

8 . 0 c -  15 

L l e -  14 

1 . 1 c -  14 

8 . 3 e -  15 

1 . 2 e -  14 

8.0e -- 15 

1 . 1 e  - -  14 

1 . 1 e  - -  14 
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T a b l e  3. C o m p u t a t i o n a l  r e su l t s  fo r  Toep l i t z  m a t r i c e s  o f  T y p e  III .  

N 

401 1.4e4 5 .0e  - -  2 

801 2 .1e4  l . l e  - -  1 

1601 2 .8e5  2 , 2 e - - I  

3201 7 .5e5  4 .4e  - -  1 

6401  3 ,1e6  8 .8e  - -  1 

12801 5 ,0e6  1 . 6  

T a b l e  4, C o m '  

~inv ttsolve -EF M ~ I ' r  eneh 

1 . 4 e -  3 

3 . 4 e -  3 

7 . 4 e -  3 

l . T e -  2 

3 . 3 e - -  2 

6 . 5 e -  2 

1 . 8 e -  7 

2 . 7 e -  7 

6 .8e  - 6 

3 .0e  - 5 

8 .2e  - 4  

7 .5e  - 3 

4 . 0 e -  1 

7 , ? e -  1 

1.5 

2.9 

5 .7  

I I  

3 ,7e  - I 0  

9 .9e  - -  9 

3 . 2 e - -  7 

3 .9e  - 6 

3 ,1e  - -  5 

N 

401 2 .1e9  

801 2 .2e9  

1601 2 .2e9  

3201 2 .2e9  

6401 2 ,2e9  

12801 2,2e9 

r o t a t i o n a l  r ~ u l t s  for  T o e p l i t z  m a t r i c e s  o f  T y p e  IV.  

~;inv ~solve ~ F  M J~T~ench  

1 . 7 e -  2 

3 ,3e  - 2 

6 .5e  - 2 

1 . 3 e -  1 

2 . 6 e -  1 

5 , 1 e -  1 

4 .0e  - 4 

1.4e - 3 

3 .4e  - 3 

7 .6e  - 3 

1.6e - 2 

3 , 2 e -  2 
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T a b l e  5, P e r f o r m a n c e  n u m b e r s  for  t h e  T r e n c h  a l g o r i t h m .  
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F i g u r e  3. T i m e  in  s e c o n d s  for  i n v e r t i n g  T v e r s u s  p r o b l e m  size.  T h e  t i m i n g s  for  t h e  
c o m p r e s s e d  a l g o r i t h m  a p p l i e d  t o  d i f f e ren t  t y p e s  o f  T o e p l i t z  v e c t o r s  a r e  d r a w n  w i t h  

so l id  l ines  w h i l e  t h e  t i m e  r e q u i r e d  for  t h e  "lYench a l g o r i t h m  is d r a w n  w i t h  a d a s h e d  
l ine  ( t h e  l a s t  d a t a  p o i n t  is e x t r a p o l a t e d ) .  
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Figure 4. Time in seconds for applying the inverse of T versus problem size. The 
timings for the compressed algorithm applied to different types of Toeplitz vectors 
are drawn with solid lines while the time required for the Trench algorithm is drawn 
with a dashed line. 
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Figure 5. The amount of memory required (in Mb) for inverting T versus prob- 
lem size. Solid lines corresponds to accelerated algorithms while the dashed line 
corresponds t o  the Trench algorithm. 

The computational error is reported in the 12-operator norm; to be precise, if we denote the 
computed inverse by T~ -1,  what we report is 

IIT:ll- T-lStl IITg -1T - lIT:iT_ II1" (52) EF = max = max = 

~cR" lIT-lf l l  ~ R ~  11411 



A Felt Algorithm T~I 

This quantity was computed by applying a power iteration to the operator (T~'IT-I)*(T~-~T-I) 
(we note  t h a t  T F I T  is typ ica l ly  not  ent i re ly  symmetr ic ) .  Similarly,  l e t t ing  T ~  denote  the  

inverse computed  using the  Trench algori thm, we r epor t  E ' n ~ h  = ] ] T ~ = h T -  I]] for each of the  
matr ices  invest igated.  In  the  tables,  the  following numbers  are  also repor ted .  

The  condi t ion number  of the  Toepl i tz  ma t r i x  T, 

t ~  Time required to compute the compressed inverse (in seconds). 
tso]ve Time required to apply the compressed inverse (in seconds). 

M Memory required to compute the compressed inverse (in Mb). 

The data given in the tables is presented graphically in Figures 3-5, in which, respectively, tjn~, 
t,ol~, and M, are plotted against N. 

The numerical experimems show that both the computational complexity and the memory 
requirements of the fast inversion scheme presented here scale more or less linearly with problem 
size. Moreover, both of these quantities depend on the structure of the matrix to be inverted; when 
the Toeplitz vector t is smooth, the algorithm requires only 35% as many arithmetic operations 
as in the worst ease. 

The size of a matrix at which the procedure of this paper compares favorably with the Trench 
scheme depends  on wha t  is being compared ,  wha t  accuracy is required,  and  the  proper t ies  of  the  

Toepli tz vector.  Thus,  if  the  t imes  for inver t ing the  m a t r i x  are  compared ,  t he  break-even poin t  

in our exper iments  lies somewhere between 2000 and 10000; if  t he  t ime  to  a p p l y  the  inverse to  

a vector  is compared ,  the  break-even point  is 800 or  less; and  ff t he  memory  requirements  are 

compared ,  the  break-even poin t  is 500 or  less. 
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