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Organizational issues

I Meeting time: each session is 2 hours to compensate for
canceled classes due to travel (we may not always need 2 hrs)

I Office hours: after class or by appointment

I Prerequisites:

I Graduate standing or consent of instructor
I Background in numerical linear algebra, partial differential

equations, and nonlinear optimization is desirable
I The required mathematical background will be covered when

needed (albeit quickly; but a mathematically mature student
will be able to acquire the necessary mathematical and
computational background from the lectures)

I Required work: about 6 assignments consisting of theoretical
problems (paper & pencil) and numerical/coding exercises
based on Matlab with Comsol or FEniCS (high-level finite
element toolkits)

2 / 14



Course outline
I introduction and examples of inverse problems with PDEs
I ill-posed problems and regularization

I theoretical issues
I different regularization methods
I choice of regularization parameter

I variational methods, weak forms
I computing derivatives via adjoints

I steady and unsteady problems
I discrete vs. continuous
I linear and nonlinear PDEs
I distributed, boundary, and finite-dimensional parameters and

measurements
I numerical optimization methods

I line search globalization
I steepest descent
I Newton method
I Gauss-Newton method
I inexact Newton-conjugate gradient method

I inequality constraints on parameters
I Bayesian approach to inverse problems (time permitting)
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Anatomy of an inverse problem

General form of an inverse problem:

F (m)

+ n

= d

I F : parameter-to-observable map; given m, map is defined by
solution of forward problem to obtain observables

I m: model parameters or parameter field (also called model or
image)

I d: data (also called observations or measurements)

I n: noise due to errors in measurement process and/or model
inadequacy

I inverse problem: find m given d (often ill-posed problem!)

Variational methods: Our focus is on problems where F is defined
by solution of PDEs; will use weak/variational forms of PDEs

Computational methods: We will focus on numerical methods for
solution of large-scale inverse problems
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Computational & Variational Methods for Inverse Problems

Why inverse problems?

I maturing state of forward problem (models, discretizations,
solvers, hardware)

I availability of powerful algorithms for large-scale optimization

I growing interest in decision-making, which cannot be
undertaken until models are calibrated to data

Where do inverse problems arise?

I geosciences

I engineering

I biosciences

I medical imaging

I image processing

I . . . wherever the goal is to learn about a system that cannot
be directly observed
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Example I: Image deblurring & denoising

F−→

I F : blurring operator
I parameters: left image (original image we seek to recover)
I data: right image (blurred)

←− (inverse problem) (?) ←−

(we will study the blurring problem since it illustrates several of the
difficulties of inverse problems)
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Example II: Computed tomography

I data: X-ray intensity data
from sources surrounding
subject

I parameters: brain tissue
radiodensity field

I F : attenuation of X-rays
traveling through tissue

I image shows 3D reconstruction of brain tissue radiodensity

I many medical imaging procedures involve inverse problems
(MRI, PET, SPECT, . . . ).
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Example III: Infer permeability in groundwater flow model

−∇ · (a∇u) = f in Ω ⊂ Rd + boundary conditions

f : source term

a: permeability

u: pressure

I Given a, F solves the PDE for u and extracts the pressures at
the observation wells

I data: pressure u at points in Ω

I parameter field: a = a(x)

I inverse problem: given observations of u, find a
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Example IV: Inverse scattering
Use (acoustic/elastic/electromagnetic) waves scattered by object to infer its shape

For instance, the acoustic wave equation is given by:

utt −
1

s(x)2
∆u = 0 in Ω ⊂ Rd with bdry. & initial cond.

s(x): spatially varying wave speed

u(x, t): wave field

I parameter: shape of object

I F : given object shape, compute
the wave field u at receiver
locations by solving the PDE

I data: observations of u at
receivers over time window

Applications: detection of airborne or submerged vehicles, ocean
bathymetry, medical ultrasound, TSA body scans. . .
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Example V: Seismic (or electromagnetic) inversion
Infer medium wavespeed from propagating acoustic/elastic/electromagnetic waves

utt −
1

s(x)2
∆u = 0 in Ω ⊂ Rd with bdry. & initial cond.

s(x): spatially varying wave speed

u(x, t): wave field

I parameter: wave speed s(x)

I F : given wave speed s(x),
compute the wave field u at
seismometer locations by solving
the PDE

I data: waveforms u at
seismometers

Applications: study of earth’s interior, geophysical exploration,. . .
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Example V: Wave-based material inversion
Propagate acoustic/elastic/electromagnetic waves through unknown medium

Example: “Truth” wave speed anomaly on the left and solution of
inverse problem on right. Black dots correspond to earthquake
sources, white dots are receiver measurement points.

Wave speed anomaly at a depth of 70km
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Example: “Truth” wave speed anomaly on the left and solution of
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sources, white dots are receiver measurement points.
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Example VI: Inference of initial contaminant concentration
in an atmospheric transport model

Transport of a concentration field u(x, t) by diffusion and
advection. Use measurements at boundaries of white squares to
infer the initial concentration u0(x).

ut − κ∆u+ v · ∇u = 0 in Ω× [0, T ]

κ∇u · n = 0 on ∂Ω× [0, T ]

u(x, 0) = u0 in Ω

Applications: Detecting contaminant in ground water, ocean, or
atmosphere
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Example VII: Inference of basal friction in Antarctica
Creeping, viscous, incompressible, non-Newtonian flow:

∇ · u = 0 in Ω

−∇ · [η(u)(∇u+ ∇uT )− Ip] = ρg in Ω

σn = 0 on Γt

u · n = 0, Tσn+ exp(β)Tu = 0 on Γb

Invert for “friction” field β at base of ice sheet given InSAR
observations of velocity u on top surface of ice

left: InSAR surface velocities; middle: inferred β; right:
reconstructed surface velocities
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Regularization approach to inverse problems
This is the approach mainly used in this class

Inverse Problem:
F (m) + n = d

Reformulate as optimization problem:

min
m

1

2
‖F (m)− d‖2

+R(m)

I data misfit term, can be any measure of distance between
F (m) and d, e.g., a norm or a squared norm

I regularization term R(m) incorporates available information
about parameter field (such as smoothness). Regularization
plays an extremely important role; many possibilities exist.

Reminder: survey
Note: no class on Wed. 1/15!
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