Quadratic forms

We consider the quadratic function f : R> — R defined by

1
flx) = inAw —blz with z = (21, 22)7, (1)

where A € R?*? is symmetric and b € R?. We will see that, depending on
the eigenvalues of A, the quadratic function f behaves very differently. Note
that A is the second derivative of f, i.e., the Hessian matrix. To study basic
properties of quadratic forms we first consider the case with a positive definite

matrix
A |
a=(2 7)) v-o 2)

The eigenvectors of A corresponding to the eigenvalues Ay = 1, Ao = 3 are

o5l - 50)

Defining the orthonormal matrix U := [u!, u?] we obtain the eigenvalue de-

osf
o0af
o2f
of /
02}

-0.4H

—0.6H

_o8f

SN~ 7/

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 1: Quadratic form with the positive definite matrix A defined in . Left: Contour
lines with the red lines indicate the eigenvector directions of A. Right: Graph of the function.
Note that the function is bounded from below and convex.

composition of A, i.e.,

T . (1 0
UAU—A—<O 3>.

Note that U = U~!. The contour lines for f as well as the eigenvector
directions are shown in Figure . Defining the new variables & := Uz, the

quadratic form corresponding to can, in the new variables, be written as

f(z) = %EZA;_B.

Thus, in the variables that correspond to the eigenvector directions, the quadratic
form is based on the diagonal matrix A, and the eigenvalue matrix U corre-
sponds to the basis transformation. So to study basic properties of quadratic
forms, we can restrict ourselves to diagonal matrices A. Note also that the cur-

2 —
vature %@ is simply A;, so that the ith eigenvalue represents the curvature in

the direction of the ith eigenvector. In two dimensions, f(Z) is an ellipse with
/\i_l as the principal radii.

1

0.8

0.6
A

N

N
\\\\\\\\\\
N

0.4

0.2

QAR
N

R

I T . n L
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 2: Quadratic form with indefinite matrices A, (upper row) and A3 (lower row) defined
in . Left: Contour lines. Right: Graph of the function. Note that the function is unbounded
from above and from below.

We next consider the quadratic form corresponding to the indefinite matrices

Ar = <(2) —02> A= (_02 g) ’ (3)

and use b = 0. Visualizations of the corresponding quadratic form are shown
in Figure 2] Note that the function corresponding to A; coincides with the
one from A, after exchanging the coordinate axes. The origin is a maximum
in one coordinate direction, and it is a minimum in the other direction, which
is a consequence of the indefiniteness of matrices A1, As. These functions are
neither bounded from above, nor from below, and thus do not have a minimum
nor a maximum.

Finally, we study quadratic forms with semi-definite Hessian matrices. We
consider the cases

()

For the indefinite case, the choice of b influences whether there exists a minimum
or not. Visualizations of the quadratic forms can be seen in Figure 3| In the
direction where the Hessian matrix is singular, the function is dominated by
the linear term b. The function based on A and by is unbounded from below
and, thus, does not have a minimum. On the other hand, the function based
on A and b is independent of x5, and bounded from below. Thus, all points
with 29 = 0 are minima of f. If b; lies in the range space of A (i.e., it can
be written as a linear combination of the columns of A), then there exists a
minimum, and in fact infinitely many when A is singular, as it is here. On the
other hand, when b; does not lie in the range space of A, then there does not
exists a minimum.

Convergence of steepest descent for increasingly ill-
conditioned matrices

We consider the quadratic function

1 1
fz1,22) = 5(611'% + cpzl) = ixTAx (5)
for various ¢; and co, where A = diag(cy, c2) and = = (21, 22)”. The function
is convex and has a global minimum at x1 = x2 = 0. Since A is diagonal,
c1 and co are also the eigenvalues of A. We use the steepest descent method
with exact line search to minimize . A listing of the simple algorithm is given
next.

05

-0.5

-04 -02 0 0.2 0.4 06 08

Figure 3: Quadratic form with semi-definite matrix A, along with by (upper row) and b,
(lower row) defined in (ED Note that the case of by corresponds to an inconsistent right side
(i.e., b1 does not belong to the range space of A), and that of bs corresponds to a consistent
right side (b2 does belong to the range space of A). Left: Contour lines. Right: Graph of the
function. Note that depending on b, the function does not have a minimum (upper row) or

has infinitely many minima (lower row).

% starting point

x1 = ¢c2 / sqrt(cl”2 + c27°2);
x2 = cl / sqrt(cl™2 + c272);

for iter = 1:100

err = sqrt(x17°2 + x27°2);
fprintf (' lter: %3d: x1: %+4.8f, x2:

if (error < le—12)

%+4.8f ,

fprintf (' Converged with error %2.12f.\n",

break;
end
% exact line search

error %4.8f\n’,

error);

alpha = (c172xx172 + ¢c272%x272) / (cl173%x1"2 4+ c273%x2"2);

gl = cl * x1;

iter ,x1,x2

Lerr);

g2 = c2 x Xx2;

x1 = x1 — alpha x gl;
x2 = x2 — alpha * g2;
end

Running the above script with ¢; cg = 1, the method terminates after a
single iteration. This one-step convergence is a property of the steepest descent
when the eigenvalues ci, co coincide and thus the contour lines are circles; see

Figure [4]

1 - - 1 : T
N / A\
7 N ///, A
081/ “ o8]/ ‘\\\\y
- i (/] \
06} 06 / | \\K
i |
0.4 04, \
02 1 ozl
| | o |
-0.21 70.2J\“‘
-04 -0.4 r\ /H
-06 — -o.ex\\‘ “/}
FEIN A 08 \\\ \\“ ///[
’ \\)) ,'// ; \\\\)) \ .) ‘ / ‘]
1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 = -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4: Contour lines and iterates for ¢; = ¢z = 1 (left plot) and ¢1 = 5,¢co = 1 (right
plot).

Iteration 1: x1: 40.70710678, x2: +0.70710678, error 1.00000000
Iteration 2: x1: 40.00000000, x2: +0.00000000, error 0.00000000
Converged with error 0.000000000000.

For ¢y = 5,co = 1, the iteration terminates after 36 iterations; the first iterations
are as follows:

Iteration 1: x1: 4+0.19611614, x2: +0.98058068, error 1.000000000000
Iteration 2: x1: —0.13074409, x2: +0.65372045, error 0.666666666667
Iteration 3: x1: 4+0.08716273, x2: +0.43581363, error 0.444444444444
Iteration 4: x1: —0.05810848, x2: +0.29054242, error 0.296296296296
Iteration 5: x1: +0.03873899, x2: +4+0.19369495, error 0.197530864198
Iteration 6: x1: —0.02582599, x2: +0.12912997, error 0.131687242798
Iteration 7: x1: 4+0.01721733, x2: +0.08608664, error 0.087791495199
Iteration 8: x1: —0.01147822, x2: +4+0.05739110, error 0.058527663466
Iteration 9: x1: 4+0.00765215, x2: +0.03826073, error 0.039018442311
Iteration 10: x1: —0.00510143, x2: +4+0.02550715, error 0.026012294874

Taking coefficients between errors of two consecutive iterations, we observe that

errg41

erry, 3

2 5-1

5+1

k—1
k+1’

where x denotes the condition number of the matrix A, i.e.,

c
H:cond<1

0_
002_

Amax (A)
Amin(A)

C1
C2 '

The contour lines of f for c; = co =1 and ¢; = 5,co = 1 are shown in Figure .
Now, we study the function with ¢9 = 1 and with different values for ¢y,
namely ¢; = 10,50,100,1000. The number of iterations required for these
cases are 139,629,1383 and 13817, respectively. As can be seen, the number
increases significantly with ¢1, and thus with increasing x. The output of the
first iterations for ¢; = 10 are

Iteration 1: x1: 40.09950372, x2: +0.99503719, error 1.000000000000
Iteration 2: x1: —0.08141213, x2: +0.81412134, error 0.818181818182
Iteration 3: x1: 4+0.06660993, x2: +0.66609928, error 0.669421487603
Iteration 4: x1: —0.05449903, x2: +0.54499032, error 0.547708489857
Iteration 5: x1: 4+0.04459012, x2: +0.44590117, error 0.448125128065
Iteration 6: x1: —0.03648282, x2: +0.36482823, error 0.366647832053
Iteration 7: x1: 40.02984958, x2: +0.29849582, error 0.299984589862
Iteration 8: x1: —0.02442239, x2: +0.24422386, error 0.245441937160
Iteration 9: x1: 4+0.01998195, x2: +0.19981952, error 0.200816130403
Iteration 10: x1: —0.01634887, x2: +0.16348870, error 0.164304106694
— . YT TTTT i f i TTT T
i m l | ‘; |
08 / ‘ \\ il
| Wi os i ‘ r
il Il | |
(Wl oal | ‘ | H
04| I | |
02 \ 02
ol I} e
_04b|| } -04 ‘ ‘
| 1 i n
0.6 ‘ :/ -06 ‘ | I
“M /ﬁ” M L
I | D
711 : —018 -06 -04 -02 6 0.‘2 . 0.6 018 = 1 - -0.8 —0.‘6 —0‘14 —0.‘2 6 012 014 016 0.‘8

Figure 5: Contour lines and iterates for ¢; = 10 (left plot) and ¢; = 50 (right plot).

Taking quotients of consecutive errors, we again observe the theoretically ex-
pected convergence rate of (k—1)/(k+1) = 9/11 = 0.8182. The large number
of iterations for the other cases of ¢; can be explained due to the increasingly
ill-conditioning of the quadratic form. The theoretical convergence rates for
c1 = 50,100, 1000 are 0.9608,0.9802 and 0.9980, respectively. These are also
exactly the rates we observe for all these cases. Contour lines and iterates for
c2 = 10,50 are shown in Figure [f

Convergence examples for Newton’s method

Here, we study convergence properties of Newton's method for various functions.
We start by studying the nonlinear function f : R — R defined by

f(2) = 5a® - 2a®. (6)

L L L L L 2 L L L L L
-1 -05 0 05 1 15 2 =1 -05 0 05 1 15 2

Figure 6: Graph of nonlinear function defined in @ (left plot) and of its derivative (right
plot).

We want to find the (local) minimum of f, i.e., the point z = 0. As expected,
at the local minimum, the derivative of f vanishes. However, the derivative
also vanishes at the local maximum x = 1. A Newton method to find the local
minimum of f uses the stationarity of the derivative at the extremal points
(minimum and maximum). At a given point xj, the new point zj1 is computes
as (where we use a step length of 1)

2
Ly

(7)

This expression is plotted in Figure [7] First, we consider a Newton iteration

T+l = 57—
o —1

2+ 4

3 I I I I
-1 -0.5 0 0.5 1 1.5 2

Figure 7: The Newton step plotted as a function.

starting from « = 20. We obtain the iterations

Iteration 1: x:4+20.0000000000000000
Iteration 2: x:410.2564102564102573
Iteration 3: x: +5.3910172175612390
Iteration 4: x: +2.9710656645912565
Iteration 5: x: +1.7861182949934302
Iteration 6: x: +1.2402508292312779
Iteration 7: x: 41.0389870964455772
Iteration 8: x: +1.0014100464549898
Iteration 9: x: +1.0000019826397768
Iteration 10: x: 41.0000000000039309
Iteration 11: x: 4+1.0000000000000000

Thus, the Newton method converges the local maximum z = 1. Observe that
initially, the convergence rate appears to be linear, but beginning from the 6th
iteration we can observe the quadratic convergence of Newton's method, i.e.,
the number of correct digits doubles in every Newton iteration.

Next we use the initialization x = —20, which results in the following itera-

tions:

Iteration 1: x:—20.0000000000000000
Iteration 2: x: —9.7560975609756095
Iteration 3: x: —4.6402366520692562
Iteration 4: x: —2.0944362725536236
Iteration 5: x: —0.8453981595529151
Iteration 6: x: —0.2656083788656865
Iteration 7: x: —0.0460730399974074
Iteration 8: x: —0.0019436273713611
Iteration 9: x: —0.0000037630593883

Iteration 10: x: —0.0000000000141605
Iteration 11: x: —0.0000000000000000

Now, the iterates converge to the local minimum x = 0. Again we initially ob-
serve linear convergence, and as we get close to the minimum, the convergence
becomes quadratic.

To show how sensitive Newton's method is to the initial guess, we now
compute initialize the method with values that are very close from each other.
Initializing with = 0.501 results in convergence to x = 1:

Iteration 1: x: +4+0.5010000000000000
Iteration 2: x:4125.5004999999998745
Iteration 3: x: +63.0012499959999559
Iteration 4: x: +31.7526249580009043
Iteration 5: x: +416.1303121430340468
Iteration 6: x: +8.3231533526241517
Iteration 7: x: +4.4275548879571378
Iteration 8: x: +2.4956038610665341
Iteration 9: x: +1.5604396125094859
Iteration 10: x: +1.1480954481351822
Iteration 11: x: +1.0169205491424664
Iteration 12: x: +1.0002769332576908
Iteration 13: x: +1.0000000766495756
Iteration 14: x: +1.0000000000000058

Initialization with x = 0.499 leads to convergence to the local minimum x = 0:

Iteration 1: x: 4+0.4990000000000000
Iteration 2: x: —124.5004999999998887
Iteration 3: x: —62.0012499959999630
Iteration 4: x: —30.7526249580009114
Iteration 5: x: —15.1303121430340521
Iteration 6: x: —7.3231533526241543
Iteration 7: x: —3.4275548879571387
Iteration 8: x: —1.4956038610665345
Iteration 9: x: —0.5604396125094862
Iteration 10: x: —0.1480954481351824
Iteration 11: x: —0.0169205491424666
Iteration 12: x: —0.0002769332576907
Iteration 13: x: —0.0000000766495756
Iteration 14: x: —0.0000000000000059

Finally, if the method is initialized with x = 0.5, it diverges since the second
derivative (i.e., the Hessian) of f is singular at this point.
Next, we study the function

which is shown, together with its derivative in Figure [8l This function has a
singular Hessian at its minimum x = 0. Using the Newton matrix to find the

0.25 T T T T T T T T T 1

08 B

02 1 osp 4

04 . : 4

045 9 o02f B

o 4

(313 : 4 -o2p : : 4

—04f 4

0.05F 4 -06F B

—08f 4

0 L L h L T L L 4 L L L L L L L L L
-1 -08 -06 04 -02 0 0.2 0.4 06 0.8 1 -1 08 -06 04 02 o 02 04 06 08 1

Figure 8: Function f(x) = 2*/4 (left) and its derivative (right).

global minimum results in the with starting guess « = 1 results in the following
iterations (only the first 15 iterations are shown):

Iteration 1: +1.0000000000000000
Iteration 2: +0.6666666666666666
Iteration 3: +0.4444444444444444
Iteration 4. 4+0.2962962962962963
Iteration 5: +0.1975308641975309
Iteration 6: +0.1316872427983539
Iteration 7: +0.0877914951989026
Iteration 8: +0.0585276634659351
Iteration 9: +0.0390184423106234

Iteration 10:
Iteration 11:
Iteration 12:
Iteration 13:
Iteration 14:
Iteration 15:

+0.0260122948737489
+0.0173415299158326
+0.0115610199438884
+0.0077073466292589
+0.0051382310861726
+0.0034254873907817

X X X X X X X X X X X X X X X

Note that the iterates converge to the solution z = 0, but they only converge

at a linear rate due to singularity of the Hessian at the solution. For the initial

guess x = —1, the iterates have the negative values of the ones shown above.
Finally, we consider the negative hyperbolic secant function

f(x) = —sech(x).

The graph of the function and its derivative are shown in Figure[9] This function
changes its curvature, and thus Newton's method diverges if the initial guess is
too far from the minimum. The Newton iteration to find the minimum z =0

10

:
—sech(x)

sech(x)*tanh(x)

Figure 9: Function f(z) = —sech(x) (left) and its derivative (right).

of this function computes, at a current iterate x; the new iterate as

sinh(2zy,)

el = T+ cosh(2zg) — 3 ()

We first study the Newton iterates for starting value x = 0.1 and observe
quadratic convergence (actually, the convergence is even faster than quadratic,
which is due to properties of the hyperbolic secant function):

Iteration 1: x: +0.1000000000000000
Iteration 2: x: —0.0016882781843722
Iteration 3: x: 4+0.0000000080201476
Iteration 4: x: —0.0000000000000000

Starting the iteration from x = 0.2 or x = 0.5, the method also converges to
the local (and global) minimum. The iterates for starting guess of x = 0.5 are:

Iteration 1: x: +0.5000000000000000
Iteration 2: x: —0.3066343421104646
Iteration 3: x: +0.0546314000372350
Iteration 4: x: —0.0002727960502389
Iteration 5: x: 40.0000000000338348
Iteration 6: x: +0.0000000000000000

However, if the method is initialized with = = 0.6 (or any value larger than
that), the method diverges. The first 10 iterates for a starting guess of x = 0.6
are:

Iteration 1: x: 4+0.6000000000000000
Iteration 2: x: —0.6691540935844730
Iteration 3: x: +1.1750390494712146
Iteration 4. x: +3.4429554757227767
Iteration 5: x: +4.4491237147096072

11

Iteration 6: x: +5.4499441189054147
Iteration 7: x: +6.4500548922755296
Iteration 8: x: 4+7.4500698791442161
Iteration 9: x: +8.4500719073107184
Iteration 10: x: +9.4500721817916382

This divergence is explained by the fact that the function is concave at x = 0.6.

12

