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CHAPTER 1

Introduction

The goal of these notes is to provide an overview of basic analysis, reg-
ularization and solution methods for inverse problem, with an emphasis on
inverse problems that involve (partial) differential equations. As general
references for inverse problem, and also as sources for these notes we refer
to [1–3].

This section introduces basic definitions and naming conventions used
throughout these notes. Based on an image deblurring problem, typical
features of inverse problems are illustrated. While the deblurring problem
does not involve a differential equation, it shares many features with prob-
lems in which the parameters and the measurements are linked through
the solution of a partial differential equation. This makes it an illustrative
introductionary example.

Let us introduce the notation used in these notes. We denote vectors
with bold letters, e.g., u ∈ Rn. Components of these vectors are denoted
using indices, i.e., u = (u1, . . . , un) and vectors are understood as column
vectors. The inner product between two vectors u,v is defined by uTv, and

the norm of u by ‖u‖ :=
√
uTu. Matrices are denoted using bold capital

letters such as A ∈ Rn×m. Real-valued functions and variables not further
specified are denoted by lower case Latin letters such as g or h, and real
scalars are usually denoted by Greek letters such as α or β.

1. Ill-posed problems

The basic setup of an inverse problem can be explained using the relation

(1) d = F (p) + n,

where

• The variable p, which we want to reconstruct in the inverse problem
is called the parameter (field), the image or the model. The set
of all parameters is called parameter (or image) space. In many
of the applications we are interested in, p is a function or, after
discretization, a vector in a high-dimensional space.
• The forward (or direct) model F maps p to the quantity we are

able to measure. This forward mapping can be linear or nonlinear
in p. Usually, F describes a physical theory, such as the propaga-
tion of waves, the diffusion of a substance, the absorption of rays
when passing through an object, or fluid flow. In the cases we are
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4 1. INTRODUCTION

mainly interested in, F is given by an ordinary or a partial differ-
ential equation, in which case F often also contains an observation
operator that restricts the solution of the differential equation to
the quantity that can be measured, e.g., values at a part of the
domain, at boundaries or points.
• The variable d denotes the data or the measurements we are able

to make. Often, these measurements are a corrupted version of the
outputs of the forward model. This error can be due to a model
that does not fully describe the physical phenomenon, it can be
intrinsic in the measurement process, or it can be due to roundoff
error from a computer representation of the measurements. Mea-
surement errors, denoted by n in (1) are usually not known, but
statistical properties of n (such as the mean and the variance) are
often available.

The inverse problem is to find the parameters p given the (noisy) measure-
ments d, having knowledge over the forward operator F . A main difficulty
is that in many applications of interest, inverse problems are not well-posed
in the sense of Hadamard, who defined the inverse problem of solving

d = F (p)

to be well-posed, if the following properties are satisfied:

(1) Existence: For all data d (in an appropriate data space), there
exists a parameter p of the problem (in an appropriate parameter
space).

(2) Uniqueness: For all (suitable) data d, the solution p is unique.
(3) Stability: The solution depends continuously on the data, i.e., small

changes in the data d result in small changes in the parameter p.

The problem (1) is called ill-posed if at least one of the above conditions
is not satisfied. The main challenge in the numerical solution of inverse
problems is the stability condition. If one wants to approximate a problem
whose solution does not depend continuously on the data by a numerical
method as one does for well-posed problems, one has to expect the method
to become unstable.

There are two conceptually very different approaches to solve ill-
conditioned inverse problems:

• Deterministic inversion is usually based on regularization methods
that help to overcome the difficulties due to the ill-posedness of
inverse problems. These methods usually find a single parameter
or image p, which solves (1) in an appropriate sense. In this class,
we will mainly focus on this deterministic approach for the solution
of inverse problems, discuss regularization methods, their influence
on the reconstruction and numerical solution algorithms.
• Bayesian inversion methods compute a probability density for the

parameter p rather than a single solution. This approach allows a
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flexible integration of prior knowledge about p into the solution (i.e.,
the probability density function). Such a probabilistic approach is
often preferable in practical problems since its solution also quan-
tifies the uncertainties in the reconstruction. However, Bayesian
inversion is very costly and sometimes infeasible, in particular for
the large-dimensional problems, which arise as discretizations of
inverse problems with partial differential equations.

In simple situations, connections between the Bayesian and the determin-
istic approach can be made. For instance, the choice of the prior in the
probabilistic approach is closely related to regularization methods in the
deterministic approach.

2. A deblurring problem

Let us consider a deblurring (or deconvolution) problem as illustrative
example. Even though in this problem the parameters and the data are not
connected through a differential equation, it shares several features with
more complicated inverse problems that involve differential equations. For
simplicity, we consider a one-dimensional blurring operator given by a Fred-
holm first kind integral equation. For a function p : [0, 1]→ R, we consider
the operator

(2) F (p) = d : [0, 1]→ R
defined by

d(x) =

∫ 1

0
k(x− x′)p(x′) dx′ for 0 ≤ x ≤ 1.

Here, the kernel k(x) is given by

(3) k(x) = C exp(
−x2

2γ2
) with C, γ > 0.

The forward problem is the following: Given the source function p and the
kernel k, determine the blurred image d. The associated inverse problem
is: Given the kernel k and the blurred image d, determine the original
image p. To illustrate the ill-posedness of this inverse problem, consider a
perturbation δp(x) := ε sin(2πωx) for p, where ε > 0 and ω = 1, 2, . . .. The
corresponding perturbation for F (p+ δp) is

δd(x) = ε

∫ 1

0
k(x− x′) sin(2πωx′) dx′,

which converges to zero as ω → ∞1. Hence, the ratio between δp and δd2

can become arbitrary large, which shows that the stability requirement for
well-posedness cannot be satisfied.

Figure 2 illustrates the effect of the convolution operator. While the
parameter function p contains jumps, the convolved data Kp is a smoothly

1This is a consequence of the Riemann Lebesgue lemma.
2The norms for δp and δd can either be the L∞ or the L2-norm on (0, 1).
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varying function. This smoothing effect of the convolution operator is partic-
ularly obvious in the interval [0, 1/4], since the small wave length variations
in p are averaged out in the convolved data. The amount of averaging de-
pends on the width of the Gaussian, which is controlled by the value γ in
(3).
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Figure 1. Gaussian kernel k(x − 0.5) with γ = 0.05, C =
1/(γ
√

2π) as defined in (3) (left plot). A parameter function
p (middle plot) and its convolution d (right plot). Shown
are the exact convolution data in blue, and the noisy data
in green. The discretization of the convolution operator uses
N = 128 unknowns.

Next, we discretize the integral in (2) as needed for numerical compu-
tations. For that purpose we use split [0, 1] into N intervals [kh, (k + 1)h],
k = 0, N − 1, where h = 1/N and N is a large integer. Using midpoint
quadrature, the discrete version of (2) becomes

(4) d = Kp

with the vectors d, p corresponding to the function values of d, p at the
midpoints of the intervals, and a matrix K ∈ RN×N . The entries of K are,
for 1 ≤ i, j ≤ N given by

Kij =

{
hC exp

(
− ((i−j)h)2

2γ2

)
if 1 ≤ i− j ≤ N,

0 else.

Since the matrix K is invertible, for given (discrete) data d one may sim-
ply compute the image p as p = K−1d. However, K becomes increasingly
ill-conditioned as N becomes large and small noise in d can result in large
errors in p, which is a consequence of the ill-posedness of the deconvolution
problem3.

3To be precise, the discrete system (4) is stable, but the stability constant grows as
N becomes larger and (4) becomes a better approximation to the unstable continuous
problem (2). The ill-posedness of this linear inverse problem is closely related to the fact
that the matrix K is ill-conditioned.
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2.1. SVD-based filtering. To analyze properties of the system (4) we
include a noise vector n, i.e., we consider

(5) d = Kptrue + n.

Here, ptrue are the true parameters we are trying to reconstruct from the
data d. The below analysis is based on the singular value decomposition
(SVD) of the matrix K. The SVD decomposition also allows to stabilize
the inverse problem by filtering. While this regularization approach is il-
lustrative and works well for moderate size inverse problems, it cannot be
applied for large-scale inverse problems, where computing an explicit SVD
decomposition is infeasible.

2.1.1. Singular value decomposition. For a real-valued matrix A ∈
Rm×n, there exist orthogonal matrices

(6) U = [u1, . . . ,um] ∈ Rm×m and V = [v1, . . . ,vn] ∈ Rn×n

such that

(7) A = Udiag(σ1, . . . , σp)V
T , with p = min{m,n},

with σ1 ≥ σ2 ≥ . . . σp ≥ 0. The σi are the singular values and the vectors
ui and vi are the left and the right singular vectors, respectively.

If A ∈ Rn×n is symmetric and positive definite, the singular values are
all positive, they coincide with the eigenvalues (i.e., λi = σi for 1 ≤ i ≤ n),
and U = V . The columns uj of U are then orthonormal eigenvectors of A,
i.e.,

Auj = λjuj , uTi uj = δij :=

{
1 if i = j

0 if i 6= j
for 1 ≤ i, j ≤ n.

Moreover, the orthonormality of the matrix U implies that U−1 = UT .
Using the properties of the SVD and denoting by Λ = diag(λ1, . . . , λn)

the matrix with eigenvalues on the diagonal, we can find the inverse of K
as K−1 = UΛ−1UT and obtain from (5) that

(8) K−1d = UΛ−1UTd =

N∑
i=1

λ−1
i (uTi d)ui = ptrue +

N∑
i=1

λ−1
i (uTi n)ui.

From (8), it can be seen that instability arises for small eigenvalues λi, since
(8) involves terms weighted by λ−1

i . The eigenvalues for K ∈ R128×128 are
shown in Figure 2.1.1. For the convolution matrix K, as well as for many
inverse problems with PDEs, large eigenvalues λi correspond to smooth
eigenfunctions, and small eigenvalues correspond to oscillatory eigenfunc-
tions, as can be seen in Figure 3. Thus, from (8) it follows that oscillatory
components cannot reliably be reconstructed from noisy data (i.e., when
n 6= 0) since they correspond to small eigenvalues. Often the noise intro-
duced by round off error is large enough to render the explicit inversion (8)
useless.
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Figure 2. Eigenvalues of the discrete convolution operator
K with N = 128. All eigenvalues are positive, the largest
being 1 and the smallest being about 10−20.
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Figure 3. Eigenvectors corresponding to the largest (top
left), second largest (top right), 10th largest (bottom left)
and 100th largest (bottom right) eigenvalue.

2.1.2. Truncated SVD and Tikhonov filtering. As a remedy to the above
described problems, one can employ filter methods, which remove or dampen
the terms corresponding to the small eigenvalues in (8). Filter functions
ω(λi) for i = 1, . . . , n are employed by modifying (8) as follows:

(9) p ≈
N∑
i=1

ω(λ2
i )λ
−1
i (uTi d)ui.
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A popular choice for a family of filter function is

(10) ω̄α(λ2) :=

{
1 if λ2 ≥ α,
0 else,

where α > 0 is a regularization parameter. Using this filter, (9) simplifies to

(11) pTSVD =
N∑
i=1
λ2i≥α

λ−1
i (uTi d)ui,

that is, all terms corresponding to eigenvalues that are smaller than the
square root of α are dropped from the sum. Due to this truncation, this
method is known as truncated singular value decomposition (TSVD). The
parameter α controls where the sum is truncated and must be adjusted
according to the noise level, see the discussion in Section 2.2.

An alternative family of filter functions in (9) is

(12) ω̃α(λ2) =
λ2

λ2 + α
,

where, again, α is a regularization parameter. Note that ω̃α(λ2) is close
to one when λ2 � α, and it is close to zero when λ2 � α. Thus, this
filter strongly dampens terms corresponding to the small eigenvalues of K,
while letting the terms for large eigenvalues (almost) unchanged. It is called
Tikhonov filter and uses a smoothed version of the truncation filter function
(10). It results in the filtered image

(13) pTIK =

N∑
i=1

λi
λ2
i + α

(uTi d)ui.

An advantage of the Tikhonov filter compared to the TSVD filter is that
it can be computed without explicit knowledge of the SVD of K. This is
due to the fact that pTIK can also be found as solution of the minimization
problem

(14) min
p

1

2
‖Kp− d‖2 +

α

2
‖p‖2,

where ‖ · ‖ denoted the Euklidian vector norm in RN . To show that the
minimizer of (14) is pTIK, one uses that the minimizer is also characterized
by the normal equations

(15) pTIK =
(
KTK + αI

)−1
KTd,

and uses the SVD decomposition of K in (15). The question arises if the
regularization parameter α can be chosen such that the filtered solutions
converge as the noise level goes to zero. For TSVD and Tikhonov filtering
for the deblurring problem, this question is answered next.
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2.1.3. A deterministic error analysis. We consider filtered solutions of
(5) denoted by

(16) K−1
α d := pα =

N∑
i=1

ω(λ2
i )λ
−1
i (uTi d)ui,

where Kα denotes the filtered convolution matrix corresponding either to
TSVD or Tikhonov filtering with filter parameter α. Depending on the
choice of α, an error eα in the reconstruction is committed, namely

(17) eα := pα − ptrue = K−1
α (Kptrue + n)− ptrue =: etrunc

α + enoise
α ,

where the truncation error due to the regularization etrunc
α and the noise

amplification error enoise
α are defined as

etrunc
α = K−1

α Kptrue − ptrue =
N∑
i=1

(
ωα(λ2

i )− 1
)

(uTi ptrue)ui,

enoise
α = K−1

α n =
N∑
i=1

ωα(λ2
i )λ
−1
i (uTi n)ui.

Next, we show that for Tikhonov filtering and the TSVD, the parameter
α can be chosen such that both errors converge to zero as the noise level
δ := ‖n‖ goes to zero. We first estimate the truncation error:

• By definition of the filter weight functions (10) and (12), it follows
that ωα(λ2)→ 1 as α→ 0. This immediately implies that

(19) etrunc
α → 0 as α→ 0.

• Next we study the noise amplification factor. By using the explicit
form of the filter functions, it can be verified that

(20) ωα(λ2)λ−1 ≤ 1√
α

for both, TSVD and Tikhonov filtering. Using the orthonormality
of U , this implies that

‖enoise
α ‖ ≤ 1√

α
‖

N∑
i=1

(uTi n)ui‖ =
δ√
α
.

Thus, if we choose the filter parameter as α := δp with p < 2 we
obtain

(21) enoise
α → 0 as δ → 0.

Combining the requirements for the truncation and the noise amplification
error, the choice α := δp with 0 < p < 2 guarantees that eα → 0 as the noise
level δ → 0. This means that the TSVD and Tikhonov filters, together with
the above choice for the regularization parameter are convergent. A signifi-
cant amount of research in inverse problems deals with the computation of
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rates for this convergence in linear and nonlinear inverse problems. Next,
we consider practical methods for choosing the regularization parameters.

2.2. Choice of the regularization parameter. As seen above, the
choice of the regularization parameter α in either TSVD or Tikhonov fil-
tering is important. If α is small, the computation of the parameter p is
unstable as in the case without filtering. On the other hand, if α is too
large, information is lost in the filtered image. In this section we discuss
methods to choose appropriate filter (or regularization) parameters. Both
methods are a posteriori parameter choice methods, i.e., they require the
solution of several regularized inverse problems to find an appropriate value
for α. While the L-curve criterion, which is presented first, does not require
knowledge of the noise level, the discrepancy principle presented afterwards
is based on an estimate of δ := ‖n‖.

2.2.1. The L-curve criterion. Choosing the filter parameter using the
L-curve criterion requires the solution of inverse problems for a sequence
of regularization parameters α. Then, for each α, the norm of the data
misfit (also called residual) ‖Kpα − d‖ is plotted against the norm of the
regularization term ‖pα‖ in a log-log plot. This curve usually is found to be
L-shaped and thus has an “elbow,” i.e. a point of greatest curvature. The L-
curve criterion chooses the regularization parameter corresponding to that
point; see the left plot in Figure 4 for an illustration. The idea behind
the L-curve criterion is that this choice for the regularization parameter is
a good compromise between fitting the data and controlling the stability
of the parameters. A smaller α, which correspond to points to the left of
the optimal value in Figure 4, only leads to a slightly better data fit while
significantly increasing the norm of the parameters. Conversely, a larger α,
corresponding to points to the right of the optimal value, slightly decrease
the norm of the solution, but they increase the data misfit significantly.
Proving convergence for this parameter choice method is problematic and
cannot be shown in all cases.

2.2.2. The discrepancy principle. The discrepancy principle, due to Mo-
rozov, chooses the regularization parameter to be the largest value of α such
that the norm of the misfit is bounded by the noise level in the data, i.e.,

(22) ‖Kpα − d‖ ≤ δ,

where δ is the noise level. Here, pα denotes the parameter found either using
a TSVD filter or Tikhonov regularization with parameter α. This choice
aims to avoid overfitting of the data, i.e., fitting the noise. The criterion is
illustrated in the right plot in Figure 4. Convergence results and rates for
the parameter when determined by the Morozov criterion as the noise level
goes to zero are available.

Next, we prove that for the discretized deblurring problem such a regu-
larization parameter α always exists provided the noise level is less than the
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Figure 4. Choosing the regularization parameter α: The
red dot on the L-curve (left plot), which corresponds to
the point with largest curvature, yields the optimal fil-
ter/regularization parameter according to the L-curve crite-
rion. For the discrepancy criterion (right plot), the optimal
parameter corresponds to the intersection of the data misfit
curve with the red line indicating the noise level.

norm of the data, i.e., δ < ‖d‖. For that purpose we define the function

(23) D(α) := ‖Kpα − d‖

Using the form of the Tikhonov-regularized parameter pα as given in (13)
and the eigenvalue decomposition K = UΛUT , one obtains

Kpα − d =
N∑
i=1

(
λ2
i

λ2
i + α

− 1

)
(uTi d)ui,

and due to the orthonormality of U this implies

(24) D2(α) =

N∑
i=1

(
λ2
i

λ2
i + α

− 1

)2

(uTi d)2.

This shows that D(α) is continuous in α, that D(0) = 0 and that D is
monotonically increasing. Moreover, D(α) → ‖d‖ as α → ∞. Thus, pro-
vided δ < ‖d‖, there exists an α such that D(α) = δ, as desired.

Note that a similar argument does not work for TSVD filtering, since
the function D is not continuous in α for the filter function (10). Thus,
in general, the optimal α according to the discrepancy principle will satisfy
(22) with a strict inequality.

2.3. Variational regularization methods. As discussed above, the
Tikhonov filtered solution can also be found through the solution of an
optimization problem. This has the advantage that no explicit SVD is re-
quired. Moreover, such an optimization approach allows more flexibility in
the choice of norms for the misfit and the regularization, as is often desired in
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variational inverse problems, i.e., inverse problems that involve differential
equations. To illustrate this flexibility we consider the following generaliza-
tion of the optimization problem (14):

(25) min
p

1

2
‖Kp− d‖2 +R(p),

with a regularization function R : RN → R. Above we have discussed the
choice of R(p) = α/2‖p‖2. Alternative choice are the squared difference
operator

(26) R2(p) =
α

2

N−1∑
i=1

(pi+1 − pi)2, with p = (p1, . . . , pN ),

which is closely related to the squared gradient if p corresponds to the
discretization of a function. The choice (26) favors the parameter p that has
small differences between its components. If the vector p originates from
a discretized parameter function, (26) expresses a preference for smooth
parameter functions. An alternative choice is to replace the sum of squares
by a sum of absolute values

(27) R1(p) = α

N−1∑
i=1

|pi+1 − pi|.

Similar to (26), the regularization (27) favors small differences. However,
compared to (26) it puts less emphasis on large values in the sum. For
discretized functions, the choice (27) corresponds to total variation regular-
ization, which is a popular regularization for inverse problems, in particular
in imaging. Note that R2 corresponds to the squared Euclidian (also called
`2-norm) of the differences, while R1 corresponds to the `1 norm of the dif-
ferences. Since R1 is not differentiable due to the absolute value | · |, which
makes computing derivatives of (25), as required by numerical optimization
methods, challenging.
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