
Spring 2014:
Computational and Variational Methods for Inverse Problems

CSE 397/GEO 391/ME 397/ORI 397
Assignment 4 (due 14 April 2014)

The first problem in this assignment is a paper-and-pencil exercise in which you work out
expressions for the gradient and the Hessian action (in a given direction) for a frequency domain
inverse wave propagation problem. This is an industrially-important problem: it’s how we image
the subsurface in search of energy resources, and how we non-destructively evaluate materials for
internal defects.

In the second problem, you will be asked to solve an inverse problem governed by an advection-
diffusion equation (this is the prototype inverse problem we discussed in class) using COMSOL.
For this assignment we’ll use just a steepest descent method; the next assignment will generalize
the solver to a Newton method. You will be given an existing implementation of an inverse solver
(for a Poisson equation) and will be asked to modify it.

1. Frequency-domain inverse wave propagation problem

Here we formulate and solve an inverse acoustic wave propagation problem in the frequency
domain, which is governed by the Helmholtz equation. Let Ω ⊂ Rd be a bounded domain (d ∈
{2, 3}). The idea is to propagate harmonic waves from multiple sources fj(x) (j = 1, . . . , Ns)
at multiple frequencies ωi (i = 1, . . . , Nf ) into a medium and measure the amplitude uij(x) of
the reflected wavefields at points xk (k = 1, . . . , Nd) for each source and frequency, with the
goal of inferring the soundspeed of the medium, c(x). We can formulate this inverse problem as
follows:

min
m
J (m) : =

1

2

Nf∑
i

Ns∑
j

Nd∑
k

∫
Ω

(uij(m)− uobsij )2 δ(x− xk) dx +
β

2

∫
Ω

∇m · ∇mdx

where uij(x) depends on the medium parameter field m(x), which is equal to 1/c(x)2, through
the solution of Helmholtz equations

−∆uij − ω2
i muij = fj in Ω, i = 1, . . . , Nf , j = 1, . . . , Ns,

uij = 0 on ∂Ω.

In the problem above, uobsij (x) denotes given measurements (for frequency i and source j), uij is
the amplitude of the acoustic wavefield, and β > 0 is the regularization parameter.

1. Derive an expression for the (infinite dimensional) gradient of J with respect to the medium
m using the Lagrangian method for a single source and frequency, i.e., for Nf = Ns = 1.

2. Derive an expression for the (infinite dimensional) action of the Hessian in a direction m̃ in
the single source and frequency case.
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3. Derive an expression for the (infinite dimensional) gradient for an arbitrary number of
sources and frequencies.1 How many state and adjoint equations have to be solved for a
single gradient computation?

2. Inverse advection-diffusion problem

We would like to solve the inverse problem for the advection-diffusion equation we discussed in
class, on the domain Ω = [0, 1]× [0, 1]:

min
m
J (m) :=

1

2

∫
Ω

(u(m)− uobs)2 dx +
β

2

∫
Ω

∇m · ∇mdx, (1)

where the field u(x) depends on the diffusivity m(x) through the solution of

−∇ · (m∇u) + v · ∇u = f in Ω,

u = 0 on ∂Ω,
(2)

where v(x) is the advective velocity vector with components (vx, vy), β > 0 is the regularization
parameter, and f(x) is the source term. We synthesize the measurement data uobs(x) by solving
the forward advection-diffusion equation with m(x, y) = 4 for (x − 0.5)2 + (y − 0.5)2 ≤ 0.22

and otherwise m(x, y) = 8, for a source f = 1. Noise is added to this “data” to simulate actual
instrument noise.

On the class website (http://users.ices.utexas.edu/~omar/inverse_probs), we pro-
vide the COMSOL code elliptic_sd_ip, which is an implementation of the steepest descent
method2 for this problem with advective velocity v = 0 (i.e., for a pure diffusion problem). This
code is also described at the end of this document. The COMSOL report that was referenced in
Assignment 3 will be useful here as well. Please turn in your modified code along with numerical
results for the following:

1. Report the solution of the inverse problem and the number of required iterations for the
following cases:

(a) Noise level of 0.01 (roughly 1% noise), and regularization β = 5× 10−10.

(b) Same, but with β = 0, i.e., no regularization3.

(c) No noise and β = 0, and use m ≡ 4 and m ≡ 8 as intitial guesses for the parameter
field m. Do you find the same solution? Explain the behavior.

1Hint: Every state equation with solution uij has a corresponding adjoint variable pij . The Lagrangian
functional involves the sum over all state equations.

2Note that we do not want to advocate the use of the steepest descent method for variational inverse problems,
since its convergence can be very slow. For all tests, please use a maximum number of 300 iterations—you will
need it! In the next assignment, we will solve this problem using an inexact Newton-CG method, which is more
efficient.

3Inverse problems can also be “iteratively regularized”, which means that iterative methods are terminated
early in an iterative process. This can allow a reasonable solution also without regularization. The basic idea is
that iterative methods such as the conjugate gradient method capture the most important modes determined by
the data early in the iterations. A critical issue in iterative regularization is to find appropriate termination criteria
such that the important information is found before the iterative method has brought in the noisy modes. See,
for instance, the book by Kaipio and Somersalo for more on iterative regularization methods.
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2. Add the advective term v = (30, 0) to the inverse problem and its COMSOL implementation
and plot the resulting reconstruction of m for a noise level of 0.01 and for a reasonably
chosen regularization parameter.

3. Since the coefficient m is discontinuous, a better choice of regularization is total variation
rather than Tikhonov regularization, to prevent an overly smooth reconstruction. Modify
the implementation and plot the result for a reasonably chosen regularization parameter4.

Line-by-line description of steepest descent implementation

First, note that the coefficient m is called a in the implementation below. Our implementation starts
with specifying the geometry and the mesh (lines 2 and 3), and with defining names for the finite
element basis functions, their polynomial order, and the regularization parameter (lines 4–8). In this
example, we use linear finite elements functions on a quadrilateral mesh for the coefficient a (and for
the gradient), and linear5 finite element functions for the state u, the adjoint p, and the measured data
ud. For our purposes, the latter are actually synthetic data computed by solving the forward problem
given a “truth” coefficient field, atrue (defined in line 6).

2 fem . geom = r e c t 2 ( 0 , 1 , 0 , 1 ) ;
3 fem . mesh = meshmap ( fem , ’ Edgelem ’ ,{1 , 4 0 , 2 , 4 0} ) ;
4 fem . dim = { ’ a ’ ’ grad ’ ’ p ’ ’ u ’ ’ ud ’ } ;
5 fem . shape = [ 1 1 1 1 1 ] ;
6 fem . equ . e x p r . a t r u e = ’4+4∗( s q r t ( ( x−0.5)ˆ2+( y−0 . 5 ) ˆ 2 ) >0 . 2 ) ’ ;
7 fem . equ . e x p r . f = ’ 1 ’ ;
8 fem . equ . e x p r . gamma = ’1 e−9 ’;

Homogeneous Dirichlet boundary conditions for the state6 and adjoint equations are used. In line 14 the
conditions u = 0, p = 0, and ud = 0 on the boundary ∂Ω are enforced. If different boundary conditions
on the different sides of the domain should be specified, this can be done. The weak form for the state
equation with the “truth” coefficient atrue, which is used to compute the synthetic measurements,
is given in line 15, followed by the state equation with the unknown, to-be-reconstructed coefficient a
(line 16). Lines 17–19 define the weak forms of the adjoint and the gradient equations, respectively.
Note that in COMSOL Multiphysics, test functions (also known as variations) are denoted by adding
“_test” to the variable name. Note also that in the code listing, the term “control” is used to refer to
the equation that sets the gradient to zero.7

14 fem . bnd . r = {{ ’ u ’ ’ p ’ ’ ud ’ } } ;
15 fem . equ . e x p r . g o a l = ’−( a t r u e ∗( udx∗ u d x t e s t+udy∗ u d y t e s t )− f ∗ u d t e s t ) ’ ;
16 fem . equ . e x p r . s t a t e = ’−(a ∗( ux∗ u x t e s t+uy∗ u y t e s t )− f ∗ u t e s t ) ’ ;
17 fem . equ . e x p r . a d j o i n t = ’−(a ∗( px∗ p x t e s t+py∗ p y t e s t )−(ud−u )∗ p t e s t ) ’ ;
18 fem . equ . e x p r . c o n t r o l = [ ’ ( grad ∗ g r a d t e s t−gamma∗( ax∗ g r a d x t e s t ’ . . .
19 ’+ ay∗ g r a d y t e s t )−( px∗ux+py∗uy )∗ g r a d t e s t ) ’ ] ;

4Use ε = 0.1 to regularize the non-differentiable TV regularization term; also, use realsqrt instead of sqrt
in weak forms. Do not forget to adjust the cost function appropriately.

5We could have used quadratic elements, for instance.
6Another term commonly used for the forward equation.
7The use of the term “control function” to refer to the inversion parameter a and the term “control equation”

to refer to the vanishing-of-the-gradient equation comes from optimal control theory, where the framework for
optimization of systems governed by PDEs originated.
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To synthesize measurement data, the state equation with the given coefficient atrue is solved (lines
20–22).

20 fem . equ . weak = ’ goa l ’ ;
21 fem . xmesh = meshextend ( fem ) ;
22 fem . s o l = f e m l i n ( fem , ’ Solcomp ’ , { ’ ud ’ } ) ;

COMSOL allows the user to access its internal finite element structures, such as the degrees of freedom
for each finite element function. Our implementation of the steepest descent iteration works on the
finite element coefficients, and the indices for the degrees of freedom are extracted from the finite
element data structure in the lines 23–29. Note that internally the unknowns are ordered alphabetically
(independently from the order given in line 4). Thus, the indices for the finite element function a can
be extracted from the first column of dofs; see line 25. If different order element functions are used
in the same finite element structure, COMSOL pads the list of indices for the lower-order function with
zeros. These zero indices are removed by only choosing the positive indices (lines 25–29). The index
vectors are used to access the entries in X, the vector containing all finite element coefficients, which
can be accessed as shown in line 30.

23 nodes = x m e s h i n f o ( fem , ’ out ’ , ’ nodes ’ ) ;
24 d o f s = nodes . dof s ’ ;
25 AI = d o f s ( d o f s ( : , 1 ) >0 , 1 ) ;
26 GI = d o f s ( d o f s ( : , 2 ) >0 , 2 ) ;
27 PI = d o f s ( d o f s ( : , 3 ) >0 , 3 ) ;
28 UI = d o f s ( d o f s ( : , 4 ) >0 , 4 ) ;
29 UDI = d o f s ( d o f s ( : , 5 ) >0 , 5 ) ;
30 X = fem . s o l . u ;

We add noise to our synthetic data (line 32) to lessen the “inverse crime,” which refers to the situation
where the same numerical method is used to both create the synthetic data as well as to solve the
inverse problem.8

31 randn ( ’ seed ’ , 0 ) ;
32 X( UDI ) = X( UDI ) + d a t a n o i s e ∗ max ( abs (X( UDI ) ) ) ∗ randn ( l e n g t h ( UDI ) , 1 ) ;

We initialize the coefficient a (line 33; the initial guess is a constant function) and (re-)define the weak
form as the sum of the state, adjoint, and control equations (line 34). Note that since the test functions
for these three weak forms differ, one can regain the individual equations by setting the appropriate test
functions to zero. To compute the initial value of the cost functional, in line 36 we solve the system
with respect to u only. For the variables not solved for, the finite element functions specified in X are
used. Then, the solution of the state equation is copied into X, and is used in the evaluation of the cost
functional (lines 37 and 38).

33 X( AI ) = 8 . 0 ;
34 fem . equ . weak = ’ s t a t e + a d j o i n t + c o n t r o l ’ ;
35 fem . xmesh = meshextend ( fem ) ;
36 fem . s o l = f e m l i n ( fem , ’ Solcomp ’ , { ’ u ’} , ’U’ , X ) ;

8This so-called inverse crime is often committed by those doing theoretical work on inverse problems. Using
the same forward model to both compute the synthetic data as well as to solve the inverse problem can make
inversion results look better than they would were real data used, or even if synthetic data generated from a
different forward model were used, because the effect of modeling error is not accounted for. (Here, forward
model refers both to a given mathematical model, as well as its discretization.) Nevertheless, synthesizing data
is popular when analyzing the accuracy of inversion methods, since one then knows the “truth” parameter field
that gave rise to the data.

4



37 X( UI ) = fem . s o l . u ( UI ) ;
38 c o s t o l d = e v a l u a t e c o s t ( fem , X ) ;

Next, we iteratively update a in the steepest descent direction. For a current iterate of the coefficient a,
we first solve the state equation (line 40) for u. Given the state solution, we solve the adjoint equation
(line 42) and compute the gradient from the control equation (line 44). A line search to satisfy the
Armijo descent criterion is used (line 56). If, for a step length α, the cost is not sufficiently decreased,
backtracking is performed, i.e., the step length is reduced (line 61). In each backtracking step, the state
equation has to be solved to evaluate the cost functional (lines 53-54).

39 f o r i t e r = 1 : m a x i t e r
40 fem . s o l = f e m l i n ( fem , ’ Solcomp ’ , { ’ u ’} , ’U’ , X ) ;
41 X( UI ) = fem . s o l . u ( UI ) ;
42 fem . s o l = f e m l i n ( fem , ’ Solcomp ’ , { ’ p ’} , ’U’ , X ) ;
43 X( PI ) = fem . s o l . u ( PI ) ;
44 fem . s o l = f e m l i n ( fem , ’ Solcomp ’ , { ’ grad ’} , ’U’ , X ) ;
45 X( GI ) = fem . s o l . u ( GI ) ;
46 grad2 = p o s t i n t ( fem , ’ grad ∗ grad ’ ) ;
47 Xtry = X ;
48 a l p h a = a l p h a ∗ 1 . 2 ;
49 d e s c e n t = 0 ;
50 n o b a c k t r a c k = 0 ;
51 w h i l e (˜ d e s c e n t && n o b a c k t r a c k < 10)
52 Xtry ( AI ) = X( AI ) − a l p h a ∗ X( GI ) ;
53 fem . s o l = f e m l i n ( fem , ’ Solcomp ’ , { ’ u ’} , ’U’ , Xtry ) ;
54 Xtry ( UI ) = fem . s o l . u ( UI ) ;
55 [ cos t , m i s f i t , r e g ] = e v a l u a t e c o s t ( fem , Xtry ) ;
56 i f ( c o s t < c o s t o l d − a l p h a ∗ c ∗ grad2 )
57 c o s t o l d = c o s t ;
58 d e s c e n t = 1 ;
59 e l s e
60 n o b a c k t r a c k = n o b a c k t r a c k + 1 ;
61 a l p h a = 0 . 5 ∗ a l p h a ;
62 end
63 end
64 X = Xtry ;
65 fem . s o l = f e m s o l (X ) ;
66 i f ( s q r t ( grad2 ) < t o l && i t e r > 1)
67 f p r i n t f ( [ ’ G r a d i e n t method c o n v e r g e d a f t e r %d i t e r a t i o n s . ’ . . .
68 ’\n\n ’ ] , i t e r ) ;
69 b r e a k ;
70 end
71 end

The steepest descent iteration is terminated when the norm of the gradient is sufficiently small.
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