
Spring 2014:
Computational and Variational Methods for Inverse Problems

CSE 397/GEO 391/ME 397/ORI 397
Assignment 3 (due 24 March 2014)

The problems below require a mix of paper-and-pencil work and COMSOL Multiphysics imple-
mentation. Example implementations in COMSOL with MATLAB (as used for Problems 2 and 3
below) can be found on the class website, http://users.ices.utexas.edu/~omar/inverse_
probs/index.html. Please hand in printouts of your COMSOL implementations together with
the results.

1. The problem of removing noise from an image without blurring sharp edges can be for-
mulated as an infinite-dimensional minimization problem. Given a possibly noisy image
u0(x, y) defined within a square domain Ω, we would like to find the image u(x, y) that is
closest in the L2 sense, i.e. we want to minimize

FLS :=
1

2

∫
Ω

(u− u0)2 dx,

while also removing noise, which is assumed to comprise very “rough” components of the
image. This latter goal can be incorporated as an additional term in the objective, in the
form of a penalty, i.e.,

RTN :=
1

2

∫
Ω

k(x)∇u ·∇u dx,

where k(x) acts as a “diffusion” coefficient that controls how strongly we impose the
penalty, i.e. how much smoothing occurs. Unfortunately, if there are sharp edges in the
image, this so-called Tikhonov (TN) regularization will blur them. Instead, in these cases
we prefer the so-called total variation (TV) regularization,

RTV :=

∫
Ω

k(x)(∇u ·∇u)
1
2 dx

where (we will see that) taking the square root is the key to preserving edges. Since RTV

is not differentiable when ∇u = 0, it is usually modified to include a positive parameter ε
as follows:

Rε
TV :=

∫
Ω

k(x)(∇u ·∇u+ ε)
1
2 dx.

We wish to study the performance of the two denoising functionals FTN and F ε
TV , where

FTN := FLS +RTN

and
F ε

TV := FLS +Rε
TV .

We will prescribe the homogeneous Neumann condition ∇u · n = 0 on the four sides of
the square, which amounts to assuming that the image intensity does not change normal
to the boundary of the image.
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(a) For both FTN and F ε
TV , derive the first-order necessary condition for optimality using

calculus of variations, in both weak form and strong form. Use û to represent the
variation of u.

(b) Show that when ∇u is zero, RTV is not differentiable, but Rε
TV is.

(c) For both FTN and F ε
TV , derive the infinite-dimensional Newton step, in both weak and

strong form. For consistency of notation, please use ũ as the differential of u (i.e. the
Newton step). The strong form of the second variation of F ε

TV will give an anisotropic
diffusion operator of the form −div(A(u)∇ũ), where A(u) is an anisotropic tensor
that plays the role of the diffusivity coefficient1. (In contrast, you can think of the
second variation of FTN giving an isotropic diffusion operator, i.e. with A = αI for
some α.)

(d) Derive expressions for the two eigenvalues and corresponding eigenvectors of A. Based
on these expressions, give an explanation of why F ε

TV is effective at preserving sharp
edges in the image, while FTN is not. Consider a single Newton step for this argument.

(e) Show that for large enough ε, Rε
TV behaves like RTN , and for ε = 0, the Hessian

of Rε
TV is singular. This suggests that ε should be chosen small enough that edge

preservation is not lost, but not too small that ill-conditioning occurs.

2. An anisotropic Poisson problem in a two-dimensional domain Ω is given by the strong form

−∇ · (A∇u) = f in Ω, (1a)

u = u0 on ∂Ω, (1b)

where the conductivity tensor A(x) ∈ R2×2 is assumed to be symmetric and positive
definite for all x, f(x) is a given distributed source, and u0(x) is the boundary source.2

(a) Derive the variational/weak form corresponding to the above problem, and give the
energy functional that is minimized by the solution u of (1).

(b) Solve problem (1) in COMSOL using quadratic finite elements. Choose Ω to be a
disc with radius 1 around the origin and take the source terms to be

f = exp(−100(x2 + y2)) and u0 = 0.

Use conductivity tensors A(x) given by

A1 =

(
10 0
0 10

)
and A2 =

(
1 −5
−5 100

)
and compare the results obtained using A1 and A2 in (1).

1Hint: For vectors a, b, c ∈ Rn, note the identity (a · b)c = (caT )b, where a · b ∈ R is the inner product and
caT ∈ Rn×n is a matrix of rank one.

2One interpretation of Eqn. (1) is that it describes the steady state conduction of heat in a solid body. In this
case, u is the temperature, A is the thermal conductivity, f is the distributed heat source, and the temperature
at the boundary ∂Ω is maintained at u0.
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3. Implement the image denoising method from Problem 1 above using Tikhonov (TN) and
total variation (TV) regularizations. To this end, set k(x) = α with small α > 0 in RTV

and RTN , choose small ε > 0, and take a homogeneous Neumann boundary condition for
u (i.e., ∇u ·n = 0). A function that evaluates the noisy image u0(x) is provided in the file
ustar_fun.m, while the file TNTV.m contains some lines to start up the implementation.

(a) Solve the denoising inverse problem using TN regularization. Since for TN regulariza-
tion, the gradient is linear in u, you can use COMSOL’s linear solver femlin. Choose
an α > 0 such that you obtain a reasonable reconstruction3, i.e., a reconstruction
that removes noise from the image but does not overly smooth the image.

(b) Solve the denoising inverse problem using TV regularization. Since the gradient is
nonlinear in u, use the nonlinear solver femnlin4. Find an appropriate value for α5.
You will have to increase the default number of nonlinear iterations in femnlin6. How
does the number of nonlinear iterations behave for decreasing ε (e.g., between 10 and
10−4)? Try to explain this behavior7.

(c) Compare the denoised images obtained with TN and TV regularizations, using the
insight derived from your answers to Problem 1.

3Either experiment manually with a few values for α or use the L-curve criterion. To evaluate terms in the
cost functional, use the function postint.

4This function implements a Newton method with damping to solve the weak form of a nonlinear equation,
using symbolic variations of the residual to obtain the Jacobian for Newton’s method. While COMSOL’s nonlinear
solver will work for this problem (and you should use it), it does not work for every nonlinear system of PDEs,
which is why it is often necessary to derive and implement Newton’s method manually (via explicit solution of
a sequence of linear problems). One situation where explicit implementation of Newton’s method is useful is
when the nonlinear equation corresponds to the vanishing of the gradient of an optimization problem (as it is in
the denoising problem). In this case, COMSOL does not know the underlying optimization cost functional, so
manual implementation allows one to globalize Newton’s method via a line search based on a knowledge of the
cost functional.

5Try out a few different values for α. Using the L-curve or Morozov’s criterion in not justified here, since
compared to TN regularization, TV regularization is not quadratic, which makes the automatic choice of α harder.

6Typing “help femnlin” will show you solver options. You should increase the value of Maxiter, which
defaults to 25.

7There are more efficient so-called primal-dual Newton algorithms for TV-regularized problems (see, for in-
stance, T.F. Chan, G.H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-based image
restoration, SIAM Journal on Scientific Computing, 20(6):1964–1977, 1999). The efficient solution of TV-
regularized problems is still an active field of research.
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