
Spring 2014:
Computational and Variational Methods for Inverse Problems

CSE 397/GEO 391/ME 397/ORI 397
Assignment 1 (due Feb. 12, 2014)

In this assignment we will generalize the deblurring inverse problem considered in class in two
ways: first, we will consider a different 1D blurring operator (this one compactly supported), and
second, we will extend to deblurring of 2D images. In both cases, you will compare the two
methods for selection of the regularization parameter (L-curve and Morozov discrepancy) to the
optimal choice of the regularization parameter (since you will know the true image).

MATLAB codes files required for this assignement can be downloaded from
http://users.ices.utexas.edu/~omar/inverse_probs.

Problem 1: Discretize the blurring operator1

d(x) =

∫ 1

0

k(x− x′)m(x′) dx′ for 0 < x < 1.

with 200 discretization points, with k(x) = c−2max(0, c − |x|) with c = 0.2. Use the resulting
matrix K to blur the (discrete version of the) true image

mtrue(x) =


0.75 0.1 < x < 0.25

0.25 0.3 < x < 0.32

sin4(2πx) 0.5 < x < 1

0 otherwise

Add normally distributed noise2 n with mean zero and variance σ2 = 0.1. The resulting blurred
and noisy image data is d = Kmtrue + n.

a) Use the truncated singular value decomposition3 filter (TSVD) with α = 0.0001, 0.001, 0.1, 1
to compute the regularized reconstructions mα.

b) Use the Tikhonov filter with the same values for α for the reconstruction.

c) Determine the (approximate) optimal value of the regularization parameter α in the Tikhonov
regularization using the L-curve criterion.

d) Determine the (approximate) optimal value of the regularization parameter α in the Tikhonov
regularization using Morozov’s discrepancy criterion, i.e., find the largest value of α such
that

‖Kmα − d‖ ≤ δ

where δ = ‖n‖ and mα is the solution of the Tikhonov-regularized inverse problem with
regularization parameter α.

1Compare with the MATLAB code deconv1D.m.
2Use the MATLAB function randn.
3MATLAB provides the function svd to compute the singular value decomposition of a matrix.

http://users.ices.utexas.edu/~omar/inverse_probs
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Figure 1: Noisy and blurred gray value image plotted as surface seen from side (left) and from top (right, in
pseudo color). In MATLAB, images are represented as matrices, in which each entry corresponds to the gray
value of a pixel.

e) Plot the error in the reconstruction, ‖mtrue −mα‖, as a function of α, where mα is the
Tiknonov regularized solution. Which value of α (approximately) minimizes this error?
Compare the “optimal” values of α obtained in parts c, d, and e of this problem and
comment on any differences.

Problem 2: We wish to use Tikhonov regularization to reconstruct the blurred and noisy 2D im-
age shown in Figure 1. A MATLAB code to create the noisy data from the image longhorn.png

and compute the Tikhonov reconstruction is provided in function deconv2D.m.4 Note that
the Tikhonov-regularized inverse problem is solved iteratively with the conjugate gradient (CG)
method5 (rather than with a direct solver) since the 2D-blurring operator matrix K cannot be
explicitly constructed. Instead, we can apply it to a vector using 1D-blurring operators in the x
and y directions.6

a) How much memory would be required to store the matrix K if we followed the same
approach as in the 1D deblurring problem?

b) Determine the (approximately) optimal value of the regularization parameter α in the
Tikhonov-regularized solution using the L-curve criterion.

c) Which value of α minimizes the L2 norm of the difference between the true image and the
Tikhonov-regularized reconstruction? How does this value compare to the α yielded by the
L-curve?

4Before running this function, an image has to be imported as a matrix into MATLAB’s workspace: choose
File→Import Data and select the image longhorn.png.

5If you have not heard of this method, don’t worry—we’ll cover it later in class. The CG method is simply an
iterative way to solve linear systems without explicitly constructing the coefficient matrix; all we need to provide
is the product of the matrix with a given vector.

6A similar situation occurs typically in the solution of inverse problems with PDEs; we cannot explicitly form
the inverse operator, but we can form its action on a vector.


