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SUMMARY

The formulation and numerical analysis of several problems related to the be-
havior of pneumatic tires are considered. These problems include the general
rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite
deformations and the finite deformation of cord-reinforced rubber composites. New
finite ~iement models are developed for these problems. Numerical results obtained
for several representative cases are presented.

INTRODUCTION

The study of the behavior of pneumatic tires under various loading conditions
cons titutes one of the mos t challenging and difficul t collections of nonlinear
problems in the mechanics of solids. It is our aim in this paper to investigate
two subclasses of problems related to tire mechanics which encompass some signifi-
cant and complex features of tire behavior:

1) The general rolling contact problem of finite deformation of a flexible,
viscoelastic cylinder in steady-state motion on a rough foundation (roadway)

2) The finit~ deformation of cord-reinforced rubber composites

,',The work reported here was supported by the NASA Langley Research Center under
Contra,ct NASl-17359 as a part of the National Tire Modelling Program, with the
Compu tational Mechanics Co., Inc. The encouragement and support of this work by
Mr. John Tanner of NASA is gratefully acknowledged.
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In all of the formula tions considered here, we place no limi tations on the
order of magnitude of deformations; if strains are "small or moderate", as is some-
times the case in cord-reinforced tires, then the prediction of small or moderate
strains should be a natural outcome of our analysis. Moreover, we also incorporate
the effects of non-conservative loads such as those encountered in the pressuriza-
tion of flexible surfaces.

For problem class 1, the rolling contact problem, we present a new and general
varia tional principle governing steady-state rolling of a cylindrical body, wi th
finite deformations, unilateral contact, friction, viscoelastic response, and
possibly st.anding waves at certain critical angular veloci ties. This principle
involves a.highly nonlinear variational inequality with the motion of the cylinder
relative to a natural reference configuration as the unknown. This variational
principle represents a generalization of our earlier work (ref. 1) to viscoelastic
materials, viscoelas tic effec ts being included to provide a model of rolling
resistance in tires. We use this variational principle, or rather a regularized
form of it, as a basis for the development of two-dimensional finite element
models. We discuss algorithms for solving the resulting systems of nonlinear equa-
tions, locating bifurcations and limit points, and following solution paths which
are based on .continuation methods of the Riks, Wempner, Keller type. Numerical
solutions of several representative problems are presented.

For problem class 2, the finite deformation of cord-reinforced rubber
composites, new finite element models are developed which employ anisotropic
membrane elements to model the cord layer and quadratic isoparametric elements to~
model the rubber ma trix. The rubber can be modelled as an incompress ible or
compressible material and Halpin-Tsai or Gough-Tangorra-type representations (see,
e.g., ref. 2) can be used as a basis for the model of the cord layers. An
interesting feature of such composite models is that they can predict the change in
"optimum" ply angles with finite uniaxial stretching, a phenomenon well outside the
scope of linear models of composi te rnaterials. Some representa tive numerical
solutions are presented.

MECHANICS OF FINITE ROLuING CONTACT
OF A VISCOELASTIC CYLINDER

Our first objective is to formulate the equations and inequalities governing
the deformation of a cylindrical body rolling at a constant angular velocity w on
a rough rigid roadway, as indicated in figure 1. A key consideration is the
kinematics: we compare the geometry of the deformed cylinder in its current
configura tion C with that of a rigid cylinder spinning at the same angular
velocity w , the latter characterizing the reference configuration CO' Polar
cylindrical coordinates (r, e ,z) of a particle with labels (R, ® ,Z) at
some arbi trary reference time T = 0 are defined by

r = R , e = ® + wt , z = Z (t ~ 0)

or, alternatively, we can employ the cartesian reference coordinates

(1)
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The reference coordinates (r, e, z) or
but :his dependence is only formal since
same a t all times t to any observer
geometry is illustrated in Figure 1.

(Xl' X2, X3) are thus time dependent,
the shape of the deformed cylinder is the
fixed to the axle of the cylinder. The

The motion
differentiable map

In particular,
frame of reference

u of the cylinder is defined by an invertible, twice
X that takes the configuration Co into the configuration C.
the cartesian components of u relative to the fixed spatial

are given by

Thus, time enters our description of motion only implici tly as e
Henceforth, we shall not distinguish between the values u (or ui)
X and the map itself, unless confusion is likely. -

(3)

H + wt
of the map

With this kinematical convention, we can easily write down expressions for the
deformation gradient F, the right (left) Cauchy-Green deformation tensor C (B) ,
the displacement field- d , the velocity v , and the acceleration a

i
F = ~u ; FOj = {aui/axj }

C = FTF , B = F FT (4)- - - - - -
d = u - r-

au.
1 -

v. = a-- = u. = wau./ae
1 til

av. 2 2 2
a. = ~ = U. = ell au. /ae
1 til

Here
z), 1

r is the position vector of the particle
5: i,j ~ 3. The time rate of change of !

au. au. au.
-2:. -2:. .2}

ar ' ae ' aZ I < i < 3

with reference coordinates (r,e ,
is

( 5)

or,'since

I, 2
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where £rtR is the two-dimensional permutation symbol (£ 11
=-1 ), we 1'iave

°a = wX E: u 8' 1 < a ,8 ,y ,p < 2F8 Y yp a,p -

03 _ 0j _ . _
F'j - F '3 - 0 , J - 1,2,3 (7)

where

c = wX £ (u u + u u)a8 y yp µ,pa µ,S µ,p(3 µ, a
•
C = 0 , 1 < j < 3 , 1 < a, 8, y, p, µ < 2
j3 - - - -

(8)

Thus, time derivatives of such deformation measures are characterized by functions
of second derivatives of the motion with respect to the referential coordinates Xi'

The cylinder is assumed to be composed of a viscoelastic material
characterized by a constitutive equation for the Cauchy stress a of the form

a = f(X; c, C) (9)

(10)

where the response functional f(o) is of a generalized Kelvin-Voight type; e.g.,

_ G l( ) G l( .)
Sij - ij ~,~ + ij~' ~

-T 1 2where S = det F cr F is the Piola-Kirchhoff stress tensor and F .and G
are resp~nse functio~ais of the deformation and deformation rate, 'respectively. In
certain applications, we may also impose the incompressibility constraint

1

VARIATIONAL FORMULATION

(11 )

Space limitations prevent a full discussion of the derivation of our
variational formulation of the rolling contact problem; see reference 1 for more
details. It can be demonstrated that the steady-state motion u of the rolling
vis~oelastic cylinder satisfies the following nonlinear variational inequality:

U 0:: K
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2A(u, v - u) + j(u, v) - j(u, u) > w B(u, v - u) + f(v - u)

for every v in k

(12 )



where

A(u, v) = virtual power

f Sij(~' ~~, w) Vi,j dVOn
j{u, v) = the virtual pO\.·erof the frictional forces

B(u, v) the power developed by inertial forces

J Po de ~ • ae ~ d V0
n

f(v) = the virtual power of external forces

= In Po ~ • ': d V0 + I r : 0 ~ d AO
F

(13 )

Here n is the reference domain in the rigid spinning cylinder, r is its
exterior (contact) boundary with unit exterior normal nO' r is a portion of
the boundary on which tractions t are applied (e.g. pressurlza tion loads), and
Sii(~' ~,!, w) is the Piola-Kirchhoff stress which is given as a function of X, ~u,
ana W by constitutive laws of the type (10). For example,

uk u k),Q, g,
wX E: u u + u u »

y yp µ,pa µ,{3 µ,p(3 µ,a
(14 )

Note that, again, time t does not appear explicitly in this formulation, but
the presence of deformation-rate terms in the constitutive equations leads to
second derivatives of the motion in the virtual power. In (12), K is the set of
admissible motions

2
V , v ~ H} (15)

where H is the distance from the axle of the deformed cylinder to the roadwaY2and
V is a space of functions on which the energy is well defined (e.g. V = W ,p
(Q) )'. In (13), \l is the coefficient of friction, wT = vT - vo!l is the slip
veloc i ty, v0 being the speed wi th which the cylinder mov-esalong the roadway,
Po is ~he reference mass density, and b is the body force density.
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We reduce (12) to a nonlinear variational equality by regularization: the
friction term is regularized by the smoothing scheme discribed in reference 3 (see
also ref. 1) and the unilateral contact condition is relaxed by the use of an
exterior penalty approximation, as described in reference 1. If the material is
incompressible, we also include the incompressibility constraint (11) by the
introduction of an appropriate penalty approximation.

SOLUTION OF THE DISCRETE PROBLEM

We now consider finite element approximations of a class of two-dimensional
(plane s train) rolling con tac t problems in which the motion y is approximated
over a mesh of Q2 (biquadratic) elements. When the regularized version of the
variational principle (12) is approximated by finite elements, we obtain a system
of nonlinear equations of the form

F(x, p) = 0

where ~ is ~n N-vector o~ nonlinear momentum equations governing
model, ~ = (xl' x , ... , x) is a vee tor of N degrees of freedom
the nodal values of the mo~ion, and p is a parameter representing,
the indentation distance H .

(16)

the discrete
representing
for example,

We solve (16) using variants of the Riks Keller continuation methods. For
example, we regard (x, p) as functions of a real arc-length parameter s , s ex:

[0,1] , and derive from(lO) the system of differential equations,

Fi (~( s ), p( s» = 0 s cc [0,1]

Jij(:,p )Xj + gi(~' p) P = 0

}o 02
xj xj + P = 1

where

(In

( 18)

Ji·(x, p) =
J -

gi (~, p) =

dx.
x. = ...-1.

J ds

P
_ dp
-as

aF.(x,p)
1 -

ax.
ago (x~ p)1 _

( 19)

Equations (17) and (18) hold on the path r = {(~, p ) I ~ = ~(s), p = P (s) , O~ s
~ I} in N+l-dimensional space. Repeated indices are summed from 1 to N. The
second member of (18) is, of course, the definition of arc length of r .

The system of nonlinear ordinary differential equations (18) is equivalent to
the system
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J .j (x , p) V. = g i (x , p)1 _ J _

• 2 1
P =-

. .
x. = ~pv.

J ]

(20)

J • •

Equations (20) are sufficient to determine directions: (x_i, p) which define a
hyperplane tangent to r. These can be used to define a l'inear extrapolation of
the solution into this plane. It then makes sense to correct this approximate
solution so that a point on the solution path r is obtained. One algorithm for
such a procedure is given as follows:

Step 1 (tangent Hyperplane)

With initial data ~o ' PO' (tlp)O ' compute

Step 2 (Extrapolation)

Compute

~1 = ~O + ~l(tls)l

PI = Po + Pl(tls)l

Step 3 (Correction)

J (r) (r)= -F (r)
ij w j i

J (r) (r)_ (r)
ij vj .- gh)

-x ·W
tl (r) _ -1-

( p) -.. (r)
P -x 'V_1 -) -

(tlx)(r) = w(r) _ v(r)(tlp)(r)
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with
(r) r r (r) r r

Jij = Jij(~ ' P ) , Fi = Fi(X I P )

r r (k)
x = x + k~l (~x)_1

r
= PI + E (~ ) (k)

P k=l P

k k+l k k k+l k
(~x) = x - x ; (~p) = P - P

1~i,j<N,1<r<R

Set
R R

:; = :1 + r Mr = xr=l

R
p{ = PI + r U. )(r) = R

r=l P P

Step 4

1") . Return to Step 1 and continue the process wi th (~o ' PO) replaced by (~;,

In Step 1, it is, in general, inappropriate to set (~O' PO)
this is not a point on the solution path. The starting point
computed by specifying a small initial value of Po and computing
method.

= (0, 0) since
(x~, PO) is

~O- oy Newton' s

The procedure in Step 2 was advocated by Keller (reference 4) and has the
attractive feature of preserving the symmetry and bandwidth of Ji. (when symmetry
exists) as opposed to treating the full system (16) at once. J

The algori thm given in Step 3 is also a Keller-type scheme, similar in
structure to that of Step 2, and is equivalent to the constrained Newton-Raphson
scheme,

( r r
- Fi ~ ' Pi )

x • ~r + P (~p)(r)= 0-1 _ 1

(21)

The second equation is a constraint on the Newton-Raphson process which forces
the scheme to progress toward the solu tion pa th r in a d irec tion normal to the
tangent plane. Some acceleration of this i tera ti ve process can be real ized by
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using alternative constraints which make the iterative scheme follow a spherical
path (Crisfield (reference 5», or an elliptical path (Padovan (reference 6», and
such variants are easily implemented.

Algorithms such as that above can be used to determine limit points and
bifurcations in solution paths. Multiple branches can also be determined and
followed. While our working program can handle these features, space limi tation
prevents a discussion of details.

SAMPLE CALCULATION OF A VISCOELASTIC CYLINDER

As a representative example of some of our numerical results, we consider the
finite deformation of a viscoelastic cylinder for which the Piola-Kirchhoff stress
is given by

- ~+ µDiJ'S -
ij aUi,j

where

We choose for the Mooney-Rivlin constants C1 and the viscosity µ ,

2 2C1 = 80 psi, C2 = 20 psi, µ = 0.0016 1b sec lin

The coefficient of friction is taken to be v = 0.3 and the densi ty PO = 1 . We
consider a solid cylinder of initial (undeformed) radius of 2.0 units spinning at
an angular velocity w = 5 rad/sec. The axle load is gradually increased so that
contact is made and H is, successively, H = 1.75, 1.694, 1.649, 1.600, 1.579,
1.545, and 1.532.

For these choices of parameters, the rolling contact problem was solved using
the formulation and methods discussed earlier on a rather coarse mesh of
Q2-biquadra tic elements. Computed deformed shapes together wi th principal stress
contours are shown in Figures 2-5 for various values of Hand w. Figure 3
contains the computed variations in maximum stress components with angular velocity
w for a fixed contact length H = 1.75 and Figure 4 indicates the variation in
axle load with w for H = 1.75. The computed variation of axle load with vertical
displacement d = 2 - H is shown in Figure 5. We have also computed contac t
pressure profiles as a function of H (or F) and w but do not include these
results here.

CORD-REINFORCED RUBBER COMPOSITES

We shall now direct our attention to the construction of a finite element
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model of cord-reinforced rubber composites of a type representative of those found
in modern pneumatic tires. Two special properties of such composites that
influences features of our model are:

1) the ratio of cord to matrix modulus is high (or, in other words, the
matrix (rubber) is very soft in comparison with the cord)

ii) the ratio of cord to rubber volume is small

These properties are reflected in a model in which the composite is represented by
an anisotropic, Hookean membrane of vanishing thickness attached to a thick layer
of isotropic, hyperelasdc, rubber matrix (figure 6). The membrane is in a state
of plane stress and has no transverse stiffness. Both the membrane and the rubber
matrix can withstand finite deformations.

In the models discussed here, the cord membrane element is modelled, using the
Gough-Tangorra theory, as an orthotropic sheet with cords oriented at an angle e,
indicated in Figure 6 (see reference 2) and the rubber matrix is assumed to be a
Mooney-Rivlin material.

As a sample calculation, consider the reinforced thin cylindrical shell, shown
in Figure 7, constructed of two polyester cord layers and a rubber matrix. The end
z = 0 of the shell element is fixed and the end at z = H is stretched uniformly
an amount U in the z-direction. In calculating elasticities of the cord layer
using the Gough-Tangorra theory, we take d = number of cord ends/em = 102 and Ec= Young's modulus = 3.97 GPa while the matrix is a 60NR/40 SBR rubber with a
Young's modulus C1 + Cz = 5.5 MPa. Other dimensions are given in Figure 7.

Sin~ this composite element can undergo finite extensions, the "optimum" cord
angle e" (the ply angle corresponding to a minimum axial force F for a given
stretch U/H) may vary with deformations. To study this beha~ior, we have
calculated solutions to finite element approximations of this problem for values ofo 0 0 0 va = 0 , 10 ,20 ,..., 90 and U/H of 1% to 20%.

It is first noted that stretching of the sheet changes the cord.angle
orientation throughout the specimen. The amount of angle change ve depends upon
the initial orientation e and the amount of stretch, and for U/H = .10 and the
material properties assumed, the maximum change occured for an orientation of e =
700

, as indicated in Figure 7b.

One problem of practical interest is to determine e for given U/H, the
value of e at which the inter-laminar shear stress T is minimized. For the
example compu ted here, T was found to be zero for U/H = .10 at a ply angle of
around 350 (see Figure 8). The results of other calculations are illustrated in
Figures 9 and 10. The total ~ord force versus cord angle for various stretches is
illustrated in Figure 9 while the net axial force F for various cord angles and
stretches is given in Figure 10. It is interestingZto note that the minimum F
is roughly independent of the amount of stretch and occurs for a ply angle of
around e % 350

.

We have performed similar calculations for reinforced shell elements subjected
to internal radial pressures, simulating pressuri zation of a tire. Because of
space limitations, these results are not given here.
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Figure 1. Finite deformation of a rolling viscoelastic cylinder.

308



H = 1.579

H = 1.649

H = 1.545

Figure 2. Computed generated deformed shapes and stress
contours for viscoelastic cylinder.
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(a) A cord-reinforced shell.
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Cord Angle

(b) Change in cord angle due to stretching.
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Figure 7. Reinforced thin cylindrical shell.
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Figure 8. Interlaminar shear stress as a function of cord angle for U/H = .10.
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