DOLFIN: is a C++/Python library that functions as the main end interface with FEniCS.

UFL (Unified Form Language) - a language that defines a flexible user interface for defining finite element spaces and expressions for weak forms in a notation close to mathematical notation.

SciFi: finite element library - framework for defining finite elements symbolically (continuous and discontinuous, finite elements, Robust-Thomsen element, etc).

PET: FEniCS form compiler (compilation of variational forms, assembly)

FEC: (Unified Form - assembly code) - a unified framework for finite element assembly (framework for finite element code generation)

Viper: is a minimalistic scientific builder and run-time visualization module. It has support for visualizing meshes and solutions in DOLFIN.

FiAT: (Finite element Automatic Tabulator) - supports generation of arbitrary order instances of the Lagrange elements on circles, triangles, tetrahedra, etc.

Instant: a Python module that allows for instant building of C and C++ code from Python.

Tera: optimizing compiler for variational forms.
External Libraries:

PETSc: Portable, Extensible Toolkit for Scientific Computation
- functional: data structures (parallel blocks, sparse matrices, distributed arrays); functions (Krylov subspace methods (GMRES, CG, etc.), preconditioners, nonlinear solvers (line search, trust region), time steps (forward/backward Euler);

UBLAS: C++ (Basic Linear Algebra Library) - C++ lib that provides functionality for dense, unit and sparse matrices, dense, identity, triangular, banded, symmetric, hermitian and sparse matrices.

UMFPACK: is a set of routines for solving unsymmetric sparse linear systems, $Ax=b$.

NumPy: Fundamental package for scientific computing with Python.

SCOTCH: software package and libraries for sequential and parallel graph partitioning, sequential and parallel sparse matrix block ordering, etc.

VTK: Visualization Toolkit.

Trilinos: collection of open source software libraries intended to be used for the development of scientific applications (e.g., contains packages for constructing and using sparse and dense matrices, iterative and direct solution of linear systems, preconditioning, etc.)
GMP: Free library for arbitrary precision arithmetic, operating on signed integers, rational numbers, and floating point numbers.

ParMentis: Parallel graph partitioning and fill reducing Matrix Ordering - MPI-based library that implements a variety of algorithms for partitioning unstructured graphs, meshes, and for computing fill reducing orderings of sparse matrices.

CGAL: Computational geometry algorithms library - offers data structures and algorithms like triangulation, mesh generation, geometry processing.

MPI: Message Passing Interface - is a language-independent communications protocol used to program parallel computers.

SLEPc: Scalable Library for Eigenvalue Problem Computation - software library for parallel computation of eigenvalues and eigenvectors of large, sparse matrices.